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Editorial

Pietro Baroni
Università di Brescia, Italy
pietro.baroni@unibs.it

Dov Gabbay
King’s College London, UK and University of Luxembourg

dov.gabbay@kcl.ac.uk

Massimiliano Giacomin
Università di Brescia, Italy

massimiliano.giacomin@unibs.it

Leendert van der Torre
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leon.vandertorre@uni.lu

This special issue contains the journal version of thirteen contributions to the
first volume of the Handbook of Formal Argumentation (HOFA), which will appear
at College Publications. The HOFA initiative aims at producing a series of volumes
providing a comprehensive coverage of both the state of the art and future research
perspectives in the lively interdisciplinary field of formal argumentation. It is meant
to be an open community effort and a service to current and future students and
researchers interested in this field.

Some authors changed the title in the journal version compared to their article
in the handbook when they felt this appropriate. Other papers kept the same title.
We invite the readers to buy the forthcoming HOFA, which consists of 19 chapters,
for a full view. Please visit the website for more information and feel free to send
us comments, suggestions and proposals. http://formalargumentation.org/

The articles in this special issue and the handbook series reflect the development
of formal argumentation theory in the last decades, with a special emphasis on the
role played by the theory of abstract argumentation introduced by Dung in 1995.
The graph based framework and language introduced by Dung constitutes a turning
point for the modern stage of formal argumentation theory.
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Baroni, Gabbay, Giacomin and van der Torre

It gave rise to many further developments both in theory and in application and
should be a focal point of reference for any study of argumentation, even if (espe-
cially if) it is critical about it. The contributions in this special issue highlight the
main innovations of this new stage of formal argumentation theory. Dung’s graph
based theory is integrated within structured approaches using abstract rules and
assumptions, and extensions of the graph based representation have been studied as
abstract dialectical frameworks. Argumentation as inference developed by Dung has
been complemented by argumentation as dialogue, based on argumentation seman-
tics as formal discussion, and argumentation schemes. In addition, computational
problems have been studied, including their complexity, and implementations have
been built. Formal analysis is based on a principle based approach to formal ar-
gumentation, including the use of rationality postulates to evaluate argumentation
semantics. The relations between formal argumentation and other areas of formal
reasoning, in particular logic, has been studied.

The articles in this special issue give a survey of the area and may also contain a
more personal view. For the survey part, at least the work reported in the COMMA
conference series is discussed. Instead of just a historical overview, which is restricted
to the first two articles, the authors also address new developments, open topics and
emerging areas. We appeal to all disciplines, including logic, computer science, law,
philosophy, and linguistics. Maybe the most pressing question is how this theory of
formal argumentation, developed from the area of non-monotonic logic and artificial
intelligence, can be used as the foundations for informal argumentation in areas such
as linguistics and law. Future volumes of the handbook series will consider extensions
of Dung’s theory, including numerical ones, dynamics and update, dialogue, and
applications, for example in artificial intelligence, computer science, linguistics or
legal reasoning.
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Argumentation Theory in Formal and
Computational Perspective

Frans H. van Eemeren
University of Amsterdam
f.h.vaneemeren@uva.nl

Bart Verheij
University of Groningen
bart.verheij@rug.nl

Abstract

Argumentation has been studied since Antiquity. Modern argumentation the-
ory took inspiration from these classical roots, with Toulmin’s ‘The Uses of
Argument’ (1958) and Perelman and Olbrechts-Tyteca’s ‘The New Rhetoric’
(1969) as representants of a neo-classical development. In the 1970s, a signifi-
cant rise of the study of argumentation started, often in opposition to the logical
formalisms of those days that lacked the tools to be of much relevance for the
study of argumentation as it appears in the wild. In this period, argumenta-
tion theory, rhetoric, dialectics, informal logic, and critical thinking became the
subject of productive academic study. Since the 1990s, innovations in artifi-
cial intelligence supported a formal and computational turn in argumentation
theory, with ever stronger interaction with non-formal and non-computational
scholars. The present article sketches argumentation and argumentation theory
as it goes back to classical times, following the developments before and during
the currently ongoing formal and computational turn.

1 Introduction
Argumentation has been studied since Antiquity. Several 20th century developments
in the study of argumentation (in particular since the 1950s) were initiated by con-
cerns that the formal methods of the time, especially classical formal logic, were
not fully adequate for the study of argumentation. In recent years, such concerns
have been addressed, and partially answered, using innovations in formal and com-
putational methods, in particular in computer science and in artificial intelligence.

Vol. 4 No. 8 2017
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We can speak of a formal and computational turn in the study of argumentation.
This article sketches argumentation and argumentation theory as it goes back to
classical times, following the developments before and during the currently ongoing
formal and computational turn. While doing so, we explain what the study of argu-
mentation, generally known as argumentation theory, involves. Our exposé is based
on the Handbook of Argumentation Theory that we recently co-authored with Bart
Garssen, Erik C.W. Krabbe, A. Francisca Snoeck Henkemans and Jean Wagemans
[Amgoud et al., 2008, in particular Chapters 1 and 11].1

In Section 2, ‘Argumentation and argumentation theory before the formal and
computational turn’, we define argumentation in the way this concept has been used
in argumentation theory before the formal and computational turn; starting from
this definition we explain what argumentation theory is about and describe its main
aims. We introduce crucial concepts that play a major role in argumentation the-
ory, and give an overview of prominent theoretical approaches. In Section 3, ‘Formal
and computational argumentation theory: precursors and first steps’, we start the
discussion of formal and computational approaches to argumentation by addressing
precursors and first steps made, in particular in non-monotonic logic and defeasible
reasoning. Section 4, ‘Argumentation and the structure of arguments in formal and
computational perspective’, is about the formalization of argument attack, the struc-
ture of arguments, argument schemes and dialogue. In Section 5, ‘Specific kinds of
argumentation in formal and computational perspective’, we discuss argumentation
with rules, cases, values and evidence. We conclude the article by looking back at
the formal and computational turn in argumentation theory using the crucial con-
cepts of argumentation theory before that turn, and by an outlook into the future
of argumentation theory.2

1Relevant journals include: Artificial Intelligence, Artificial Intelligence and Law, Autonomous
Agents and Multi-Agent Systems, Computational Intelligence, International Journal of Cooperative
Information Systems, International Journal of Human-Computer Studies, Journal of Logic and
Computation, and The Knowledge Engineering Review. Contributions have also been made to
journals that deal primarily with argumentation, such as Argumentation and Informal Logic. A
journal devoted explicitly to the interdisciplinary area of AI is Argument and Computation. The
biennial conference series COMMA is devoted to the study of computational models of argument.
The first was held in Liverpool in 2006, followed by conferences in Toulouse (2008), Desenzano del
Garda (2010), Vienna (2012), Pitlochry (2014), and Potsdam (2016). See http://www.comma-conf.
org/. ArgMAS (Argumentation in Multi-Agent Systems) and CMNA (Computational Models of
Natural Argument) are related workshops.

2The article has been written as a chapter for the Handbook of Formal Argumentation (Volume
1: Foundations) (http://formalargumentation.org/).
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Argumentation Theory in Formal and Computational Perspective

2 Argumentation and argumentation theory before the
formal and computational turn

Argumentation, a phenomenon we are all familiar with, arises in response to, or
in anticipation of, a real or imagined difference of opinion. It comes into play in
cases when people start defending a view they assume not to be shared by others.
Not only the need for argumentation, but also the requirements argumentation has
to fulfil and the structure of argumentation are connected with a context in which
doubt, potential opposition, and perhaps also objections and counterclaims arise.

A definition of argumentation suitable to be used in argumentation theory should
connect with commonly recognized characteristics of argumentation. It is impor-
tant to realize however that there are striking differences between the meaning of
the pivotal word ‘argumentation’ in English usage and the meaning of its lexical
counterparts in other languages.3 A first relevant difference is that the meaning
of argumentation in the latter naturally includes both argumentation as a process
and argumentation as a product. Second, unlike the English word ‘argumentation’,
its non-English counterparts pertain exclusively to a constructive effort to convince
the addressee of the acceptability of one’s standpoint, so that argumentation is im-
mediately associated with reasonableness.4 Third, in the non-English counterparts
‘argumentation’ is taken to refer only to the constellation of propositions put forward
in defence of a standpoint without including the standpoint,5 so that standpoint and
argumentation are viewed as separate entities, which facilitates the study of their
relationship [van Eemeren & Grootendorst, 1984, p. 18]. Note that—as we will
see below—since the formal and computational turn discussed below, attention for
argumentation that goes against a standpoint has increased.

Next to the meaning of the non-English counterparts, which captures some vital
characteristics, there are also some general characteristics of argumentation that are
independent of any specific language that are taken into account in defining the
term argumentation in argumentation theory. To begin with, argumentation is a
communicative act complex,6 whose structural design reflects the functional intent of
the communicative moves that are made. Next, argumentation is an interactional act

3For instance, in French ‘argumentation,’ in German ‘Argumentation,’ in Italian ‘argomen-
tazione,’ in Portuguese ‘argumentação,’ in Spanish ‘argumentación,’ in Dutch ‘argumentatie,’ and
in Swedish ‘argumentation.’

4This does not mean, of course, that in practice argumentation cannot be abused, so that there
is no matter of acting reasonably.

5According to Tindale [1999, p. 45], it is ‘the European fashion’ to refer to the premises of an
argument as the argumentation and to the conclusion by using another term, such as standpoint.

6Because argumentation can also be non-verbal, for instance, visual, it is defined here—more
generally—as a ‘communicative’ rather than a ‘verbal’ (‘linguistic’) act complex.
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van Eemeren and Verheij

complex directed at eliciting a response that indicates acceptance of the standpoint
that is defended, so that it is always part of an explicit or implicit dialogue with the
addressee. Further, as a rational activity of reason, argumentation involves putting
forward a constellation of propositions the arguer can be held accountable for, so that
it is not just an expressive but creates commitments. Finally, in making an appeal
to common critical standards of reasonableness in trying to convince the addressee,
the arguer approaches the addressee as a rational judge who judges reasonably.7

Based on these starting points, defining argumentation starts from ordinary us-
age and is next made more precise and explicit in order to adequately serve its
purpose in argumentation theory:

Argumentation is a communicative and interactional act complex aimed at re-
solving a difference of opinion with the addressee by putting forward a constellation
of propositions the arguer can be held accountable for to make the standpoint at
issue acceptable to a rational judge who judges reasonably.8

Argumentation theory is the umbrella term used to denote the study of ar-
gumentation in all its manifestations and varieties, irrespective of the intellectual
backgrounds, primary research interests and angles of approach of the theorists.
Other general labels, such as informal logic and rhetoric, refer to specific theoretical
perspectives on the study of argumentation (and usually also include other research
interests than argumentation).

Because the standpoints at issue in a difference of opinion and the argumentation
advanced to support them can pertain to all walks of life and all kinds of subjects,
the scope of argumentation theory is very broad. It ranges from argumentative
discourse in the public and the professional sphere to argumentative discourse in the
personal or private sphere. The types of standpoints supported by argumentation
may vary from descriptive standpoints to evaluative and prescriptive standpoints.
It is in particular worth noting that argumentation is certainly not used only for
truth-finding and truth-preservation.9

Scholars are often drawn to studying argumentation by their practical interest in
improving the quality of argumentative discourse where this is called for. In order

7Although the terms rational and reasonable are often used interchangeably, we think that it is
useful to make a distinction between acting ‘rationally’ in the sense of using one’s faculty of reason
and acting ‘reasonably’ in the sense of utilizing one’s faculty of reason in an appropriate way.

8The term argumentation refers to the whole constellation of propositions put forward in defence
of the standpoint. Because each of the propositions constituting the constellation has its own share
in providing grounds for accepting the standpoint at issue, in principle, these propositions by
themselves also have an argumentative function. This is expressed terminologically by calling them
the reasons that make up the argumentation as a whole.

9Generally, in discussing a claim to acceptance, argumentation has in fact no major role to play
when a decisive solution can readily be offered by other means.
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to be able to realize this ambition, they have to combine an empirical orientation to-
wards how argumentative discourse is conducted with a critical orientation towards
how it should be conducted. To give substance to this challenging combination,
they need to carry out a comprehensive research programme that ensures that argu-
mentative discourse will not only be examined descriptively as a specimen of verbal
communication and interaction (‘pragmatics’) but also be measured against norma-
tive standards of reasonableness (‘normative pragmatics’) [van Eemeren, 1990].

In order to combine critical and empirical insights systematically, in argumenta-
tion theory argumentation scholars make it their business to bridge the gap between
the normative dimension and the descriptive dimension of argumentative discourse.
The complex problems that are at stake are to be solved with the help of a research
programme with five interrelated components [van Eemeren & Grootendorst, 2004,
pp. 9–41].10 On the one hand, the programme has a philosophical component, in
which a philosophy of reasonableness is developed, and a theoretical component,
in which, starting from this philosophy, a model for argumentative discourse is de-
signed. On the other hand, the programme has an empirical component, in which
argumentative reality as it manifests itself in communicative and interactional ex-
changes is investigated. Next, in the pivotal analytical component of the research
programme, the normative and the descriptive dimensions are systematically linked
together by a theoretically motivated and empirically justified reconstruction of ar-
gumentative discourse. Finally, in the practical component the problems that occur
in the various kinds of argumentative practices are identified, and methods are de-
veloped to tackle these problems.

In developing a philosophy of reasonableness argumentation theorists reflect in
the philosophical component upon the rationale for the view of reasonableness that
is to underlie their theoretical approach. Depending on the conception of reasonable-
ness they favour, in the theoretical component standards for the validity, soundness
or appropriateness of argumentation are adopted and theoretical models are devel-
oped based on these conceptions. Because the model of argumentation is in this case
a normative instrument for assessing the quality of argumentation put forward in
argumentative reality, the model constitutes a point of orientation for the empirical
research that is to be carried out in argumentation theory but does not constitute
a test of the model. The model indicates which factors and processes are worth in-
vestigating and to what extent the norms prevailing in argumentative reality agree
with the theoretical standards, but deviations are not necessarily an indication of
any wrongness in the model.11

10The five components of a fully-fledged research programme in argumentation theory were
introduced in van Eemeren [1987].

11Only in case of a purely descriptive theory the empirical research could be aimed at testing
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Analytical research in argumentation theory is aimed at the reconstruction of
argumentative discourse as it occurs in argumentative reality from the perspec-
tive of the model of argumentation that is chosen as the theoretical starting point.
Whichever theoretical background they may have, argumentation theorists engag-
ing in analytical research need to develop appropriate tools and methods for re-
constructing argumentative discourse. Practical research in argumentation theory,
finally, is aimed at analyzing the (spoken and written) argumentative practices that
can be distinguished in the various communicative domains from the perspective
of argumentation theory and developing instruments for intervention in argumen-
tative discourse where this is due. The instruments for enhancing the quality of
argumentative practices may consist of designs for the formats of communicative
activity types or of methods for improving arguers’ skills in analysing, evaluating
and producing argumentative discourse.

In the end, the general objective of argumentation theory is a practical one: to
provide adequate instruments for analysing, evaluating and producing argumenta-
tive discourse. Ultimately the raison d’être of the other components of the research
programme carried out in argumentation theory is that they enable the systematic
development of such instruments. When taken together, philosophical and theo-
retical insights into argumentative discourse, analytically connected with empirical
insights, are to lead to methodical applications of argumentation theory to the var-
ious kinds of argumentative practices.

In pursuing their objective of improving the analysis, evaluation and produc-
tion of argumentative discourse, argumentation theorists take account of the point
of departure of argumentation, consisting of the explicit and implicit material and
procedural premises that serve as the starting point, and the layout of the argumen-
tation displayed in the constellation of propositions explicitly or implicitly advanced
in support of the standpoints at issue. Both the point of departure and the layout
of argumentation are to be judged by appropriate standards of evaluation that are
in agreement with all requirements a rational judge who judges reasonably should
comply with. This means that the descriptive and normative aims of argumentation
theory as a discipline can be specified as follows:12

1. Giving a descriptive account of the components of argumentative discourse
that constitute together the point of departure of argumentation;

the model, but so far no fully-fledged argumentation theory without a critical dimension has been
developed.

12The descriptive aims of argumentation theory are often associated with the ‘emic’ study of
what is involved in justifying claims and what are good reasons for accepting a claim viewed from
the ‘internal’ perspective of the arguers while the normative aims are associated with the ‘etic’
study of these matters viewed from the ‘external’ perspective of a critical theorist.
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2. Giving a normative account of the standards for evaluating the point of de-
parture of argumentation that are appropriate to a rational judge who judges
reasonably;

3. Giving a descriptive account of the components of argumentative discourse
that constitute together the layout of argumentation;

4. Giving a normative account of the standards for evaluating argumentation as
it is laid out in argumentative discourse that are appropriate to a rational
judge who judges reasonably.

2.1 Crucial concepts
Certain theoretical concepts are indispensable in developing instruments for me-
thodically improving the quality of the analysis, evaluation and production of ar-
gumentative discourse. Among them are the notions of ‘standpoint,’ ‘unexpressed
premise,’ ‘argument scheme,’ ‘argumentation structure,’ and ‘fallacy.’ All of them
are immediately connected with central problem areas in argumentation theory.

Standpoints We use the term standpoint (or point of view) to refer to what is at
issue in argumentative discourse in the sense of what is being argued about.13 In
advancing a standpoint the speaker or writer assumes a positive or negative position
regarding a proposition. Because advancing a standpoint implies undertaking a
positive or negative commitment, in view of the aim of resolving a difference of
opinion, whoever advances a standpoint is obliged to defend their standpoint if
challenged to do so by the listener or reader. The standpoints at issue in a difference
of opinion can be descriptive, evaluative or prescriptive, but in all cases they can
be reconstructed as a claim to acceptability (in case of a positive standpoint) or
unacceptability (in case of a negative standpoint) regarding the proposition the
standpoint pertains to.14

Unexpressed premises Unexpressed premises are often pivotal missing links in
transferring acceptance from the premises that are explicitly put forward in the argu-

13The terms claim, conclusion, thesis and debate proposition are used to refer from different
theoretical angles to virtually the same concept as the term standpoint. Terms such as belief,
opinion and attitude usually refer to related concepts that are in relevant ways different from a
standpoint.

14For an overview of the various approaches to standpoints see Houtlosser [2001].
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mentation to the standpoint that is defended.15 Such partly implicit argumentation,
which is quite usual in ordinary argumentative discourse, is called enthymematic.
The identification of elements left implicit in enthymematic argumentation is in
practice usually unproblematic, but in some cases it can be a problem. According
to most argumentation theorists, then carrying out a logical analysis does not suf-
fice. Starting from a logical analysis, a pragmatic analysis needs to be carried out
in which the analyst tries to identify the unexpressed premise by determining on
the basis of the available contextual and background information to which implicit
proposition the arguer can be held committed to.16

Argument schemes An argument(ation) scheme is an abstract characterization
of the way in which in a particular type of argumentation a reason used in support
of a standpoint is related to that standpoint in order to bring about a transfer of ac-
ceptance from that reason to the standpoint. Depending on the kind of relationship
established in the argument scheme, specific kinds of evaluative questions—usually
referred to as critical questions—are to be answered in evaluating the argumenta-
tion. These critical questions capture the specific pragmatic rationale for bringing
about the transition of acceptance.17

Argumentation structures The argumentation structure of a piece of argumen-
tative discourse characterizes the ‘external’ organization of the argumentation that
is advanced: how do the reasons put forward in a particular argumentation hang
together and in what way exactly do they relate to the standpoint at issue? In argu-
mentation theory, various ways of combining reasons have been distinguished that
characterize the different kinds of argumentation structures that can be instrumental
in defending a standpoint.18

15Depending on the theoretical background of the theorists, other terms are used to refer to an
unexpressed premise: implicit, suppressed, tacit, and missing premise, reason or argument, but also
warrant, implicature, supposition, and even assumption, inference and implication.

16For an approach in which a logical analysis is used as a heuristic tool in carrying out a pragmatic
analysis see van Eemeren and Grootendorst [1992, pp. 64–67]; [2004, pp. 117–118]. For the various
kinds of resources that can be used in accounting for the reconstruction see van Eemeren [2010, pp.
16–29]

17For an overview of the study of argument schemes, see Garssen [2001]; for attempts at formal-
ization and the computational implications, see Walton, Reed and Macagno [2008, Ch. 11 and 12].
A recent development is the study of what have been called prototypical argumentative patterns.
These consist of constellations of argumentative moves in which a particular argument scheme or
combination of argument schemes is used [van Eemeren, 2017].

18Different terminological conventions have been developed for naming the combinations of rea-
sons and the divisions of the various types of structures are not always exactly the same. For an
overview of the study of argumentation structures see Snoeck Henkemans [2001].
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Fallacies The difference of opinion at issue in argumentative discourse will not be
resolved satisfactorily if contaminators of the argumentative exchange enter the dis-
course that are not detected. Such contaminators, which may be so treacherous that
they go unobserved in the argumentative exchange, are known as fallacies. Virtually
every normative theory of argumentation includes a treatment of the fallacies. The
degree to which a theory of argumentation makes it possible to give an adequate
treatment of the fallacies can even be considered as a litmus test of the quality of
the theory.19

2.2 Prominent theoretical approaches
Ancient dialectic and rhetoric—in combination with syllogistic logicare the forbears
of modern argumentation theory.20 The Aristotelian concept of dialectic is best
understood as the art of inquiry through critical dialogue. In a dialogue that is di-
alectical in the Aristotelian sense the adequacy of any particular claim is supposed
to be cooperatively assessed by eliciting premises that might serve as commonly ac-
cepted starting points, then drawing out implications from those starting points and
determining their compatibility with the claim in question. Where contradictions
emerge, revised claims might be put forward to avoid such problems. This method of
regimented opposition amounts to a pragmatic application of logic, a collaborative
method of putting logic into use so as to move from conjecture and opinion to more
secure belief.

Aristotle’s rhetoric deals with the principles of effective persuasion leading to
assent or consensus. It bears little resemblance to modern-day persuasion theories
heavily oriented to the analysis of attitude formation and attitude change but largely
indifferent to the problem of the invention of persuasive messages [Eagly & Chaiken,
1993; O’Keefe, 2002]. In Aristotle’s rhetoric, the emphasis is on the production of
effective argumentation for an audience when the subject matter does not lend itself
to a logical demonstration of certainty. When it comes to logical demonstration, the
syllogism is the most prominent form; the enthymeme, thought of as an incomplete
syllogism whose premises are acceptable to the audience, is its rhetorical counterpart.
As yet, there is no unitary theory of argumentation available that encompasses the
dialectical and rhetorical dimensions of argumentation and is universally accepted.
The current state of the art in the argumentation theory (as it developed before the

19For a more detailed overview of the study of fallacies see van Eemeren [2001].
20Although ancient dialectic and rhetoric are often discussed as if both of them were unified

wholes, contributions to their development have been made by various scholars and their views
were by no means always in harmony. In order to be accurate, we must therefore always indicate
precisely to whose views exactly we are referring.
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recent formal and computational turn) is characterized by the co-existence of a vari-
ety of theoretical perspectives and approaches, which differ considerably from each
other in conceptualization, scope and theoretical refinement. Every fully-fledged
theoretical approach to argumentation represents in fact a particular specification
of what it means for a rational judge to judge reasonably and provides a definition
of (crucial aspects of) the type of validity favoured by the theorist.

Some argumentation theorists, especially those having a background in linguis-
tics, discourse analysis or rhetoric, have a goal that is primarily (and sometimes even
exclusively) descriptive. They are interested in finding out how in argumentative
discourse speakers and writers try to convince or persuade others. Other argu-
mentation theorists, often inspired by logic, philosophy or insights from law, study
argumentation primarily for normative purposes. They are interested in developing
validity or soundness criteria that argumentation must satisfy in order to qualify
as rational or reasonable. Currently, however, most argumentation theorists seem
to recognize that argumentation research has a descriptive as well as a normative
dimension and that in argumentation theory both dimensions must be combined.21

Most modern approaches to argumentation are strongly affected by the perspec-
tives on argumentation developed in Antiquity. Both the dialectical perspective
(which nowadays usually incorporates the logical dimension) and the rhetorical per-
spective are represented prominently. Approaches to argumentation that are dialec-
tically oriented tend to focus primarily on the quality of argumentation in defending
standpoints in regulated critical dialogues. They put an emphasis on guarding the
reasonableness of argumentation by means of regimentation. It is noteworthy that
in the rhetorically oriented approaches to argumentation putting an emphasis on
factors influencing the effectiveness of argumentation, effectiveness is usually viewed
as a ‘right to acceptance’ that speakers or writers are, as it were, entitled to on the
basis of the qualities of their argumentation rather than in terms of actual persuasive
effects.22

21The infrastructure of the field of argumentation theory in terms of academic associations, jour-
nals and book series reflects to some extent the existing division in theoretical perspectives. The
American Forensic Association (AFA), associated with the National Communication Association,
and its journal Argumentation & Advocacy concentrate on argumentation, communication and de-
bate. The Ontario Society for the Study of Argumentation (OSSA), the Association of Informal
Logic and Critical Thinking (AILACT) and the electronic journal Informal Logic focus on informal
logic. The International Society for the Study of Argumentation (ISSA), the journals Argumenta-
tion and Journal of Argumentation in Context, and the accompanying book series Argumentation
Library and Argumentation in Context aim to cover the whole spectrum of argumentation theory.
Other international journals relevant to argumentation theory are Philosophy and Rhetoric, Logique
et Analyse, Controversia, Pragmatics and Cognition, Argument and Computation, and Cogency.

22Research aimed at examining the actual effectiveness of argumentation is usually called per-
suasion research. In practice, it generally amounts to quantitative empirical testing of the ways in
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In modern argumentation theory a remarkable revival has taken place of both
dialectic and rhetoric. Unlike in Aristotle’s approach, however, there is a wide con-
ceptual gap between the two perspectives on argumentation, going together with a
communicative gap between their protagonists. In recent times, some argumenta-
tion scholars have come to the conclusion that the dialectical and rhetorical views
on argumentation are not per se incompatible. It has even been argued that re-
establishing the link between dialectic and rhetoric will enrich the analysis and
evaluation of argumentative discourse [van Eemeren, 2010, especially Ch. 3].

In giving a brief overview of the current theoretical approaches, we first turn
to two ‘neo-classical’ proposals developed in the 1950s: the Toulmin model and the
‘new rhetoric’. In dealing with argumentation both aim to counterbalance the formal
approach that modern logic provides for dealing with analytic reasoning.

In The uses of argument, first published in 1958, Toulmin [2003] reacted against
the then dominant logical view that argumentation is just another specimen of the
reasoning that the formal approach is qualified to deal with. As an alternative, he
presented a model of the ‘procedural form’ of argumentation aimed at capturing
the functional steps that can be distinguished in the defence of a standpoint by
means of argumentation. The procedural form of argumentation is, according to
Toulmin, ‘field-independent’, meaning that the steps that are taken are always the
same, irrespective of the subject that is being discussed.23

In judging the validity of argumentation, Toulmin gives the term validity a dif-
ferent meaning than it has in formal logic. The validity of argumentation is in his
view primarily determined by the degree to which the (usually implicit) warrant
that connects the data advanced in the argumentation with the claim at issue is
acceptable—or, if challenged, can be made acceptable by a backing. What kind
of backing may be required in a particular case depends on the field to which the
standpoint at issue belongs. This means that the criteria used in evaluating the
validity of argumentation are in Toulmin’s view ‘field-dependent’. Thus, Toulmin
puts the validity criteria for argumentation in an empirical and historical context.

In their monograph The new rhetoric, also first published in 1958, Perelman and
Olbrechts-Tyteca [1969] regard argumentation—in line with classical rhetoric—as
sound if it adduces or reinforces assent among the audience to the standpoint at
issue. The audience addressed may be a ‘particular’ audience consisting of a specific
person or group of people, but it can also be the ‘universal’ audience—the (real or
imagined) audience that, in the arguer’s view, embodies reasonableness.

which argumentation and other means of persuasion lead to changes of attitude in the recipients
[O’Keefe, 2002].

23It is noteworthy that Toulmin’s model of the argumentative procedure is in fact conceptually
equivalent to the extended syllogism known in Roman-Hellenistic rhetoric as epicheirema.
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Besides an overview of the elements of agreement that can in argumentation
serve as points of departure (facts, truths, presumptions, values, value hierarchies
and topoi24), Perelman and Olbrechts-Tyteca provide an overview of the argument
schemes that in the layout of argumentation can be used to convince or persuade an
audience. The argument schemes they distinguish remain for the most part close to
the classical topical tradition. Apart from argumentative techniques of ‘association’,
in which these argument schemes are employed, Perelman and Olbrechts-Tyteca
also distinguish an argumentative technique of ‘dissociation.’ Dissociation divides
an existing conceptual unity into two separate conceptual unities.

In spite of obvious differences between Toulmin’s approach to argumentation and
that of Perelman and Olbrechts-Tyteca, there are also some striking commonalities.
Starting from an interest in the justification of views by means of argumentative
discourse, both emphasize that values play a part in argumentation, both reject
formal logic as a theoretical tool, and both turn for an alternative model to juridical
procedures. A theoretical connection between the Toulmin model and the new
rhetoric could be made by viewing the various points of departure distinguished
in the new rhetoric as representing different types of data in the Toulmin model and
its argument schemes as different types of warrants or backings.

Of the approaches to argumentation that have been developed more recently,
formal dialectic, coined and instigated by Hamblin [1970], remains closest to formal
logic, albeit logic in a dialectical garb. The scholars responsible for the revival of
dialectic in the second part of the twentieth century treat argumentation as part
of a formal discussion procedure for resolving a difference of opinion by testing the
tenability of the ‘thesis’ at issue against challenges. Apart from the ideas about
formal dialectic articulated by Hamblin, in designing such a procedure they make
use of the ‘dialogue logic’ of the Erlangen School [Lorenzen & Lorenz, 1978], but
also from insights advanced by Crawshay-Williams [1957]; Næss [1966]. The most
complete proposal was presented by Barth and Krabbe [1982] in From axiom to
dialogue. Their formal dialectic describes systems for determining by means of a
regimented dialogue game between the proponent and the opponent of the thesis
whether the proponent’s thesis can be maintained given the premises allowed as
‘concessions’ by the opponent.

Building on the proposals for a dialogue logic made by the Erlangen School,
Barth and Krabbe’s formal dialectic offers a translation of formal logical systems
into formal rules of dialogue. In Commitment in dialogue, Walton and Krabbe [1995]
integrate the proposals of the Erlangen School with the more permissive kind of
dialogues promoted in Hamblin’s [1970] dialectical systems. After having provided a

24Perelman and Olbrechts-Tyteca use the Latin equivalent loci.
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classification of the main types of dialogue, they discuss the conditions under which
in argumentation commitments should be maintained or may be retracted without
violating any of the rules of the type of dialogue concerned.

Related approaches can be found in some of the proposals made by formal and
informal logicians. Out of dissatisfaction with the treatment of argumentation in
logical textbooks, and inspired by the Toulmin model (and to a much lesser extent
the new rhetoric), a group of Canadian and American philosophers have propagated
since the 1970s an approach known as informal logic. The label informal logic
refers in fact to a collection of logic-oriented normative approaches to the study of
reasoning in ordinary language which remain closer to the practice of argumentation
than is usually the case in formal logic. Informal logicians aim in the first place at
developing adequate norms for interpreting, assessing and construing argumentation.

Since 1978, the journal Informal Logic,25 started and edited by Blair and John-
son (later joined by others), has been the speaking voice of informal logic and the
connected educational reform movement dedicated to ‘critical thinking’. In their
textbook Logical self-defense, Johnson and Blair [2006] have indicated what they
have in mind when they speak of an informal logical alternative to formal logic.
They explain that the premises of an argument have to meet the criteria of ‘accept-
ability’, ‘relevance’ and ‘sufficiency’. Other informal logicians have adopted these
three criteria, albeit sometimes under slightly different names (e.g., [Govier, 1987]).

Freeman [2005] provides, from an epistemological perspective on informal logic,
a comprehensive theory of premise acceptability. Generally, however, informal logi-
cians remain in the first place interested in the premise-conclusion relations in argu-
ments (e.g., [Walton, 1989]). Most of them maintain that argumentation should be
valid in some logical sense, but generally they do not stick to the formal criterion
of deductive validity. Woods and Walton [1989] claim that each fallacy requires
its own theoretical treatment, which leads them to applying a variety of logical
systems in their theoretical treatment of the fallacies. Johnson [2000] also takes a
predominantly logical approach, but he complements this approach with a ‘dialecti-
cal tier’, where the arguer discharges his or her dialectical obligations, for instance,
by anticipating objections, and dealing with alternative positions. In Finocchiaro’s
contributions to informal logic, too, the logical and the dialectical approach are
combined, albeit that the emphasis is more strongly on the dialectical dimension,
and historical and empirical dimensions are added (e.g., [Finocchiaro, 2005]). The
rhetorical perspective has received less attention from informal logicians. A notable
exception is Christopher Tindale [1999; 2004].

In modern times, the study of rhetoric has fared considerably better in the United

25At first named Informal Logic Newsletter.
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States than in Europe. Not only has classical rhetoric from the nineteenth century
onwards been represented in the academic curriculum, but also has the development
of modern rhetorical approaches been more prolific. In the last decades of the
twentieth century, the image that rhetoric had acquired of being irrational and even
anti-rational has been revised. Paying tribute to Perelman and Olbrechts-Tyteca’s
new rhetoric, in various countries various scholars have argued for a rehabilitation
of the rhetorical approach. In spite of the unlimited extension in the United States
in the 1960s of the scope of Big Rhetoric ‘to the point that everything, or virtually
everything, can be described as ‘rhetorical’ [Swearingen & Schiappa, 2009, p. 2],
Wenzel [1987] emphasized the rational qualities of rhetoric. In Europe, Reboul
[1990] and Kopperschmidt [1989a] argued at about the same time for giving rhetoric
its rightful position in the study of argumentation beside dialectic.

Although all of them may be described as rhetoricians in the broad sense, the
American scholars from the field of (speech) communication currently engaged in
argumentation theory do not share a clearly articulated joint perspective. Their
most obvious common feature is a concern with the connection between claims and
the people engaged in some kind of argumentative practice. The American debate
tradition in particular has had an enormous influence on American argumentation
studies. More or less outside the immediate debate tradition, Zarefsky [2006; 2009],
Leff [2003] and Schiappa [2002] have contributed profound historical rhetorical analy-
ses. Fahnestock [1999; 2009] dealt theoretically with rhetorical figures and stylistics.

Concentrating on the public features of communicative acts, Jackson and Jacobs
[1982] initiated a research programme to study argumentation in informal conversa-
tions. Their joint research aims at understanding the reasoning processes by which
individuals make inferences and resolve disputes in ordinary conversation. A re-
lated empirical angle in American argumentation research is the study of argument
in natural settings, such as school board meetings, counseling sessions and public
relations campaigns, to produce ‘grounded theory’—a theory of the specific case.

A Toulminian concept that has strongly influenced American argumentation
scholarship is the notion of ‘field’. Toulmin [1972] describes fields as ‘rational enter-
prises’, which he equates with intellectual disciplines, and explores how the nature of
reasoning differs from field to field. This treatment led to vigorous discussion about
what defines a ‘field of argument’: subject matter, general perspective, world-view,
or the arguer’s purpose—to mention just a few of the possibilities. The concept
of fields of argument encouraged recognition that the soundness of arguments is
not something universal and necessary, but context-specific and contingent. Instead
of the term fields, Goodnight prefers the term spheres, referring to ‘the grounds
upon which arguments are built and the authorities to which arguers appeal’ [1982,
p. 216]. He uses ‘argument’ to mean interaction based on dissensus, so that the
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grounds of arguments lie in doubts and uncertainties. In a similar vein as Haber-
mas [1984], Goodnight [2012] distinguishes between three spheres of argument: the
‘personal’ (or ‘private’) sphere, the ‘public’ sphere, and the ‘technical’ sphere.

Meanwhile, starting in the 1970s, in Europe a descriptive approach has devel-
oped in which argumentation is viewed as a linguistic phenomenon that not only
manifests itself in language use, but is also inherent in most language use. In a num-
ber of publications (almost exclusively in French), the protagonists of this approach,
Ducrot and Anscombre, have presented a linguistic analysis to show that almost all
verbal utterances lead the listener or reader—often implicitly—to certain conclu-
sions, so that their meaning is crucially argumentative. In L’argumentation dans la
langue [Anscombre & Ducrot, 1983] they refer to the theoretical position they adopt
as radical argumentativism. Their approach is characterized by a strong interest in
words that can serve as argumentative ‘operators’ or ‘connectors’, giving linguistic
utterances a specific argumentative force and argumentative direction (e.g., ‘only’,
‘no less than’, ‘but’, ‘even’, ‘still’, ‘because’, ‘so’). Anscombre[1994] observes that
the argumentative principles that are at issue here are on a par with the topoi from
classical rhetoric.

It has become a tradition among a substantial group of European researchers,
primarily based in the French-speaking world, to approach argumentation from a
descriptive linguistic angle. Some of them continue the approach started by Ducrot
and Anscombre. Others, such as Plantin [1996] and Doury [1997], build on this
approach but are also—and often more strongly—influenced by conversation anal-
ysis and discourse analysis. Other researchers, based in Switzerland, who favour a
linguistic approach, but allow also for normativity, are Rigotti [2009], Rocci [2009],
and Greco Morasso [2011]. They combine their linguistic approach with insights
from other approaches, such as pragma-dialectics.

The pragma-dialectical theory of argumentation developed in Amsterdam com-
bines a dialectical and a rhetorical perspective on argumentation and is both nor-
mative and descriptive. As van Eemeren and Grootendorst [1984] explain, pragma-
dialecticians view argumentation as part of a discourse aimed at resolving a difference
of opinion on the merits by methodically testing the acceptability of the standpoints
at issue. The dialectical dimension of the approach is inspired by normative insights
from critical rationalism and formal dialectics, the pragmatic dimension by descrip-
tive insights from speech act theory, Gricean pragmatics and discourse analysis.

The various stages argumentative discourse must pass through to resolve a dif-
ference of opinion on the merits by a critical exchange of speech acts are in the
pragma-dialectical theory laid down in an ideal model of a critical discussion [van
Eemeren & Grootendorst, 2004)] Viewed analytically, there should be a ‘confronta-
tion stage’, in which the difference of opinion comes about, an ‘opening stage’, in
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which the point of departure of the discussion is determined, an ‘argumentation
stage’, in which the standpoints at issue are defended against criticism, and a ‘con-
cluding stage’, in which it is determined what the result of the discussion is. The
model of a critical discussion defines the nature and the distribution of the speech
acts that have a constructive role in the various stages of the resolution process.
In addition, the standards of reasonableness authorizing the performance of par-
ticular speech acts in the various stages of a critical discussion are laid down in
a set of dialectical rules for critical discussion. Any violation of any of the rules
amounts to making an argumentative move that is an impediment to the resolution
of a difference of opinion on the merits and is therefore fallacious [van Eemeren &
Grootendorst, 1992].26

Because argumentative discourse generally diverges for various reasons from the
ideal of a critical discussion, in the analysis of the discourse a reconstruction is re-
quired to achieve an analytic overview of all those, and only those, speech acts that
play a potential part in resolving a difference of opinion on the merits. Van Eemeren,
Grootendorst, Jackson and Jacobs [1993] emphasize that the reconstruction should
be guided by the theoretical model of a critical discussion and faithful to the com-
mitments that may be ascribed to the arguers on the basis of their contributions to
the discourse. Because the reconstruction of argumentative discourse as well as its
evaluation can be made more pertinent, more precise, and also better accounted for
if, next to the maintenance of dialectical reasonableness, the simultaneous pursuit
of rhetorical effectiveness is taken into account, van Eemeren and Houtlosser [2002]
developed the notion of strategic manoeuvring. This notion makes it possible to in-
tegrate relevant rhetorical insights systematically in the pragma-dialectical analysis
and evaluation [van Eemeren, 2010].

3 Formal and computational argumentation theory:
precursors and first steps

Today much research addresses argumentation using formal and computational
methods. Precursors can be found in the fields of non-monotonic logic and logic
programming, and first steps were made by philosophers addressing defeasible rea-
soning.

26The extent to which the rules for critical discussion are capable of dealing with the defective
argumentative moves traditionally designated as fallacies is viewed as a test of their ‘problem-solving
validity’. For experimental empirical research of the ‘intersubjective acceptability’ of the rules for
critical discussion that lends them ‘conventional validity’ see van Eemeren, Garssen and Meuffels
[2009].
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3.1 Non-monotonic logic
A relevant field predating the formal and computational study of argumentation is
non-monotonic logic [Antonelli, 2010]. A logic is non-monotonic when a conclusion
that, according to the logic, follows from certain premises need not always follow
when premises are added. In contrast, classical logic is monotonic. For instance,
in a standard classical analysis, from premises ‘Edith goes to Vienna or Rome’ and
‘Edith does not go to Rome’, it follows that ‘Edith goes to Vienna’, irrespective of
possible additional premises. The standard example of non-monotonicity used in
the literature of the 1980s concerns the flying of birds. Typically, birds fly, so if you
hear about a bird, you will conclude that it can fly. However, when you next learn
that the bird is a penguin, you retract your conclusion. In a non-monotonic logic,
a balance can be sought between the advantage of drawing a tentative conclusion,
which is usually correct, and the risk of having to withdraw the conclusion in light
of new information.

A prominent proposal in non-monotonic logic is Raymond Reiter’s [1980] logic
for default reasoning, using default rules. Reiter’s first example of a default rule
expresses that birds typically fly:

BIRD(x) : M FLY(x) / FLY(x)

The default rule expresses that, if x is a bird, and it is consistent to assume that x can
fly, then by default one can conclude that x can fly. Other influential logical systems
for non-monotonic reasoning include circumscription, auto-epistemic logic, and non-
monotonic inheritance; each of them discussed in the representative overview of the
study of non-monotonic logic at its heyday by Gabbay, Hogger and Robinson [1994].

3.2 Logic programming
A development related to non-monotonic logic is logic programming. The general
idea underlying logic programming is that a computer can be programmed using
logical techniques. In this view, computer programs are not only considered pro-
cedurally as recipes for how to achieve the program’s aims, but also declaratively,
in the sense that the program can be read like a text, for instance, as the rule-like
knowledge needed to answer a question. In the logic programming language Pro-
log (the result of a collaboration between Colmerauer and Kowalski; see [Kowalski,
2011]), these are examples of facts and a rule [Bratko, 2001]:

parent(pam, bob)
female(pam)
mother(X,Y ) :- parent(X,Y ), female(X)
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This small logic program represents the facts that Pam is Bob’s parent, and that
Pam is female, and the rule that someone’s mother is a female parent. Given this
Prolog program, a computer can as expected derive that Pam is Bob’s mother. In
the interpretation of logic programs, the closed world assumption plays a key role:
a logic program is assumed to describe all facts and rules about the world. For
instance, in the program above it is assumed that all parent relations are given,
so ‘parent(tom, bob)’ cannot be derived. By what is called negation as failure, it
will be considered false that Tom is Bob’s parent. If we add ‘parent(tom, bob)’ it
becomes derivable that Tom is Bob’s parent, showing the connection between logic
programming’s negation as failure and non-monotonic logic.

3.3 Themes and impact of non-monotonic logics

The study of non-monotonic logics gave hope that logical tools would become more
relevant for the study of natural reasoning. To some extent this hope has been
fulfilled, since certain themes that before were at the boundaries of logic, were now
placed in the centre of attention. Examples of such themes are defeasible inference,
consistency preservation, and uncertainty. In the handbook edited by Gabbay, Hog-
ger and Robinson [1994], Donald Nute discusses defeasible inference that can be
blocked or defeated in some way [Nute, 1994, p. 354]. Interestingly, Donald Nute
speaks of the presentation of sets of beliefs as reasons for holding other beliefs as
advancing arguments. David Makinson [1994, p. 51] describes consistency preser-
vation as the property that the conclusions drawn on the basis of certain premises
can only be inconsistent in case the premises are inconsistent. Henry Kyburg [1994,
p. 400] distinguishes three kinds of inference involving uncertainty: classical, de-
ductive, valid inference about uncertainty; an ‘inductive’ kind where a conclusion
can be false even when the premises are true (hence distinct from the idea of in-
duction as going from the specific to the general, and closer to what today is often
called ‘defeasible’); and a kind of inference with uncertainty that gives probabilities
of particular statements.

The study of non-monotonic logic has been very successful as a research enter-
prise, and coincided with innovations in computer programming in the form of logic-
based languages such as Prolog, and to commercial applications: today’s knowledge-
based expert systems—in wide-spread use—often include some elementary form of
non-monotonic reasoning.

At the same time, non-monotonic logic did not fulfil all expectations of the
artificial intelligence community in which it was initiated. Matthew Ginsberg [1994],
for instance, notes—somewhat disappointedly—that the field put itself “in a position
where it is almost impossible for our work to be validated by anyone other than a
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member of our small subcommunity of Artificial Intelligence as a whole” [1994, p.
28–29]. His diagnosis of this issue is that attention shifted from the key objective of
building an intelligent artefact to the study of simple examples and mathematics.
This leads him to plead for a more experimental, scientific attitude as opposed to a
theoretical, mathematical focus.

3.4 Defeasible reasoning

In 1987, the publication of John Pollock’s paper ‘Defeasible reasoning’ in Cognitive
Science marked a turning point. The paper emphasized that the philosophical notion
of ‘defeasible reasoning’ coincides with what in AI is called ‘non-monotonic reason-
ing.’ As philosophical heritage for the study of defeasible reasoning, Pollock [1987]
refers to works by Roderick Chisholm (going back to 1957) and himself (earliest ref-
erence in 1967). Ronald Loui [1995] places the origins of the notion of ‘defeasibility’
a decade earlier, namely in 1948 when the legal positivist H. L. A. Hart presented
the paper ‘The ascription of responsibility and rights’ at the Aristotelian Society
[Hart, 1951]. Although Toulmin [1958/2003] rarely uses the term defeasible in The
uses of argument, he is obviously an early adopter of the idea of defeasible reasoning,
but he is not mentioned by Pollock [1987]. Like Pollock, he mentions Hart, but also
another philosopher, David Ross, who applied the idea to ethics, recognizing that
moral rules may hold prima facie, but can have exceptions.

In Pollock’s approach [1987], ‘reasoning’ is conceived as a process that proceeds in
terms of reasons. Pollock’s reasons correspond to the constellations of premises and a
conclusion which argumentation theorists and logicians call (elementary) arguments.
Pollock distinguishes two kinds of reasons:

1. A reason is non-defeasible when it logically implies its conclusion;

2. A reason P for Q is prima facie when there is a circumstance R such that
P ∧ R [where ’∧’ denotes logical conjunction] is not a reason for the reasoner
to believe Q. R is then a defeater of P as a reason for Q.

Note how closely related the idea of a prima facie reason is to non-monotonic in-
ference: Q can be concluded from P , but not when there is additional information
R.

Pollock’s standard example is about an object that looks red. ‘X looks red to
John’ is a reason for John to believe that X is red, but there can be defeating
circumstances, for instance, when there is a red light illuminating the object. See
Figure 1.
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Figure 1: Pollock’s red light example

Figure 2: A rebutting defeater and an undercutting defeater

Pollock argues for the existence of two kinds of defeaters: ‘rebutting’ and ‘un-
dercutting defeaters.’ A defeater is rebutting when it is a reason for the opposite
conclusion (Figure 2, left). Undercutting defeaters attack the connection between
the reason and the conclusion, and not the conclusion itself (Figure 2, right). The
example about looking red concerns an undercutting defeater since when there is
a red light it is not attacked that the object is red, but merely that the object’s
looking red is a reason for its being red.

A key element in Pollock’s work on defeasible reasoning is the development of
a theory of warrant. Pollock uses the term warrant as follows: a proposition is
warranted in an epistemic situation if and only if an ideal reasoner starting in that
situation would be justified in believing the proposition. Here justification is based
on the existence of an undefeated argument with the proposition as conclusion.
Pollock has developed his theory of warrant in a series of publications which formed
the basis of his 1995 book Cognitive Carpentry. As a background for his approach to
the structure of defeasible reasoning, Pollock provides a list of important classes of
specific reasons: reasons based on logical deduction, perception, memory, statistics,
or induction. Pollock’s theory is embedded in what he called the OSCAR project
[Pollock, 1995]. This project aims at the implementation of a rational agent. In the
project Pollock addresses both theoretical (epistemic) and practical reasoning.27

In a theory of defeasible reasoning based on arguments that can defeat each other,
such as Pollock’s, the question needs to be considered which arguments can defeat
which other arguments. Different forms of argument defeat can be distinguished:

27See Hitchcock [2001; 2002] for a survey and a discussion of the OSCAR project for those
interested in argumentation. Hitchcock also gives further information about Pollock’s work on
practical reasoning, i.e., reasoning concerning what to do.
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1. An argument can be undermined. In this form of defeat, the premises or
assumptions of an argument are attacked.28 Cf. the denial of the premises of
an argument.

2. An argument can be undercut. In this form of defeat, the connection between
a (set of) reason(s) and a conclusion in an argument is attacked. Cf. Pollock’s
undercutting defeaters.

3. An argument can be rebutted. In this form of defeat, an argument is attacked
by giving an argument for an opposite conclusion. Cf. Pollock’s rebutting
defeaters.

4. An argument can be defeated by sequential weakening. Then each step in
an argument is correct, but the argument breaks down when the steps are
chained. An example is an argument based on the sorites paradox [Verheij
1996a, p. 122f.]:

This body of grains of sand is a heap.
So, this body of grains of sand minus 1 grain is a heap.
So, this body of grains of sand minus 2 grains is a heap.
...
So, this body of grains of sand minus n grains is a heap.

5. An argument can be defeated by parallel strengthening. This kind of defeat is
associated with what has been called the ‘accrual of reasons.’ When reasons
can accrue, it is possible that different reasons for a conclusion are together
stronger than each reason separately. For instance, having robbed someone
and having injured someone can be separate reasons for convicting someone.
But when the suspect is a minor first offender, these reasons may each by itself
be rebutted. On the other hand when a suspect has both robbed someone and
also injured that person, the reasons may accrue and outweigh the fact that
the suspect is a minor first offender. The argument for not punishing the
suspect based on the reason that he is a minor first offender is defeated by the
‘parallel strengthening’ of the two arguments for punishing him.

28This form of defeat is the basis of Bondarenko et al. [1997]. We shall here not elaborate on
the distinction between premises and assumptions. One way of thinking about assumptions is to
see them as defeasible premises.
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Building on experiences in the ASPIC project,29 the recent state-of-the-art ASPIC+
system for the formal modelling of defeasible argumentation [Prakken, 2010]30 uses
the first three kinds of defeat. The final two kinds of defeat are distinguished by
Verheij [1996a, p. 122f.]. Pollock considered the accrual of reasons to be a natural
idea, but argued against it [1995, p. 101f.]. More recent discussions of the accrual
of reasons are to be found in Prakken [2005]; Gómez Lucero et al. [2009; 2013], and
D’Avila Garcez et al. [2009, p. 155f.].

4 Argumentation and the structure of arguments in for-
mal and computational perspective

4.1 Abstract argumentation
Phan Minh Dung’s 1995 paper ‘On the acceptability of arguments and its funda-
mental role in non-monotonic reasoning, logic programming and n-person games’ in
the journal Artificial Intelligence [Dung, 1995] reformed the formal study of non-
monotonic logic and defeasible reasoning. By his focus on argument attack as an
abstract formal relation, Dung gave the field of study a mathematical basis that in-
spired many new insights. Dung’s approach and the work inspired by it are generally
referred to as abstract argumentation.

Dung’s paper is strongly mathematically oriented, and has led to intricate for-
mal studies. However, the mathematical tools used by Dung are elementary, hence
various concepts studied by Dung can be explained without going into much formal
detail.

The central innovation of Dung’s 1995 paper is that he started the formal study of
the attack relation between arguments, thereby separating the properties depending
exclusively on argument attack from any concerns related to the structure of the
arguments. Mathematically speaking, the argument attack relation is a directed
graph, the nodes of which are the arguments, whereas the edges represent that
one argument attacks another. Such a directed graph is called an argumentation
framework. Figure 3 shows an example of an argumentation framework, with the
dots representing arguments, and the arrows (ending in a cross to emphasize the

29The ASPIC project (full name: Argumentation Service Platform with Integrated Components)
was supported by the EU 6th Framework Programme and ran from January 2004 to September
2007. In the project, academic and industry partners cooperated in developing argumentation-based
software systems.

30Prakken [2010] speaks of ways of attack, where argument defeat is the result of argument
attack.
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Figure 3: An argumentation framework representing attack between arguments

attacking nature of the connection31) representing argument attack.
In Figure 3, the argument α attacks the argument β, which in turn attacks both

γ and δ, etc.
Dung’s paper consists of two parts, corresponding to two steps in what he refers

to as an ‘analysis of the nature of human argumentation in its full generality’ [Dung,
1995, p. 324]. In the first step, Dung develops the theory of argument attack and
how argument attack determines argument acceptability. In the second part, he eval-
uates his theory by two applications, one consisting of a study of the logical structure
of human economic and social problems, the other comprising a reconstruction of a
number of approaches to non-monotonic reasoning, among them Reiter’s and Pol-
lock’s. Notwithstanding the relevance of the second part of the paper, the paper’s
influence is largely based on the first part about argument attack and acceptability.

In Dung’s approach, the notion of an ‘admissible set of arguments’ is central. A
set of arguments is admissible if two conditions obtain:

1. The set of arguments is conflict-free, i.e., does not contain an argument that
attacks another argument in the set (nor self-attacking arguments).

2. Each argument in the set is acceptable with respect to the set, i.e., when an
argument in the set is attacked by an argument (which by (1) cannot be in
the set itself), the set contains an argument that attacks the attacker.

In other words, a set of arguments is admissible if it contains no conflicts and if
the set also can defend itself against all attacks. An example of an admissible set
of arguments for the framework in Figure 3 is {α, γ}. Since α and γ do not attack
one another the set is conflict-free. The argument α is acceptable with respect to
the set since it is not attacked, so that it needs no defence. The argument γ is

31This is especially helpful when also supporting connections are considered; see Section 4.2.
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also acceptable with respect to {α, γ}: the argument γ needs a defence against the
attack by β, which defence is provided by the argument α, α being in the set. The
set {α, β} is not admissible since it is not conflict-free. The set {γ} is not admissible
since it does not contain a defence against the argument β, which attacks argument
γ.

Admissible sets of arguments can be used to define argumentation notions of what
counts as a proof or a refutation.32 An argument is ‘(admissibly) provable’ when
there is an admissible set of arguments that contains the argument. A minimal
such set can be regarded as a kind of ‘proof’ of the argument, in the sense that
the arguments in such a set are just enough to successfully defend the argument
against counterarguments. An argument is ‘(admissibly) refutable’ when there is
an admissible set of arguments that contains an argument that attacks the former
argument. A minimal such set can be regarded as a kind of ‘refutation’ of the
attacked argument.

Dung speaks of the basic principle of argument acceptability using an informal
slogan: the one who has the last word laughs best. The argumentative meaning of
this slogan can be explained as follows. When someone makes a claim, and that is
the end of the discussion, the claim stands. But when there is an opponent raising
a counterargument attacking the claim, the claim is no longer accepted—unless the
proponent of the claim provides a counterattack in the form of an argument attacking
the counterargument raised by the opponent. Whoever has raised the last argument
in a sequence of arguments, counterarguments, counter-counterarguments, etc., is
the one who has won the argumentative discussion.

Formally, Dung’s argumentation principle ‘the one who has the last word laughs
best’ can be illustrated using the notion of an ‘admissible set of arguments’. In
Figure 3, a proponent of the argument γ has the last word and laughs best, since the
only counterargument β is attacked by the counter-counterargument α. Formally,
this is captured by the admissibility of the set {α, γ}.

Although the principle of argument acceptability and the concept of an admissi-
ble set of arguments seem straightforward enough, it turns out that intricate formal
puzzles loom. This has to do with two important formal facts:

1. It can happen that an argument is both admissibly provable and refutable.

2. It can happen that an argument is neither admissibly provable nor refutable.

The two argumentation frameworks shown in Figure 4 provide examples of these
two facts. In the cycle of attacks on the left, consisting of two arguments α and β,

32In the following, we make use of terminology proposed by Verheij [2007].
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Figure 4: Arguments attacking each other in cycles

each of the arguments is both admissibly provable and admissibly refutable. This
is a consequence of the fact that the two sets {α} and {β} are each admissible.
For instance, {α} is admissible since it is conflict-free and can defend itself against
attacks: the argument α itself defends against its attacker α. By the admissibility of
the set {α}, the argument α is admissibly probable, and the argument β admissibly
refutable.

The cycle of attacks on the right containing three arguments α1, α2 and α3 is an
example of the second fact above, the fact that it can happen that an argument is
neither admissibly provable nor refutable. This follows from the fact that there is no
admissible set that contains (at least) one of the arguments α1, α2 or α3. Suppose
that the argument α3 is in an admissible set. Then the set should defend α3 against
the argument α2, which attacks α3. This means that α1 should also be in the set,
since it is the only argument that can defend α3 against α2. But this is not possible,
because then α1 and α3 are both in the set, introducing a conflict in the set. As a
result, there is only one admissible set: the empty set, which contains no arguments
at all. We conclude that no argument is admissibly provable or admissibly refutable.

A related formal issue is that when two sets of arguments are admissible, it
need not be the case that their union is admissible. The framework on the left in
Figure 4 is an example. As we saw, the two sets {α} and {β} are both admissible,
but their union {α, β}is not, since it contains a conflict. This has led Dung to
propose the notion of a preferred extension of an argumentation framework, which
is an admissible set that is as large as possible, in the sense that adding elements
to the set makes it not admissible. The framework in Figure 3 has one preferred
extension: the set {α, γ, δ, ζ, η}. The framework in Figure 4 on the left has two
preferred extensions {α} and {β}, the one on the right has one: the empty set.

Some preferred extensions have a special property, namely that each argument
that is not in the set is attacked by an argument in the set. Such an extension is
called a stable extension. Stable extensions are formally defined as conflict-free sets
that attack each argument not in the set. It follows from this definition that a stable
extension is also a preferred extension.

The preferred extension {α, γ, δ, ζ, η} of the framework in Figure 3, for instance,
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is stable, since the arguments β and ε, which are the only ones that are not in
the set, are attacked by arguments in the set, α and δ, respectively. The preferred
extensions {α} and {β} of Figure 4 (left) are also stable. The preferred extension
of Figure 4 (right), the empty set, is not stable, since none of the arguments α1, α2
and α3 is attacked by an argument in the set. This example shows that there exist
preferred extensions that are not stable. It also shows that there are argumentation
frameworks that do not have a stable extension. In contrast, every argumentation
framework has at least one preferred extension (which can be the empty set).

The concepts of preferred and stable extension of an argumentation framework
can be regarded as different ways to interpret a framework, and therefore they are
often referred to as ‘preferred semantics’ and ‘stable semantics.’ Dung [1995] pro-
posed two other kinds of semantics: ‘grounded semantics’ and ‘complete semantics,’
and following his paper several additional kinds of semantics have been proposed
(see Baroni et al. [2011], for an overview). By the abstract nature of argumentation
frameworks, formal questions about the computational complexity of related algo-
rithms and formal connections with other theoretical paradigms came within reach
(see, e.g., [Dunne & Bench-Capon, 2003; Dunne, 2007; Egly et al., 2010]).

Dung’s original definitions are in terms of mathematical sets. An alternative
way of studying argument attack is in terms of labelling. Arguments are marked
with a label, such as ‘Justified’ or ‘Defeated’ (or IN/OUT, +/-, 1/0, ‘Warranted’/
‘Unwarranted,’ etc.), and the properties of different kinds of labelling are studied in
the field. For instance, the notion of a stable extension corresponds to the following
notion in terms of labelling:

A stable labelling is a function that assigns one label ‘Justified’ or
‘Defeated’ to each argument in the argumentation framework such that
the following property holds: an argument α is labelled ‘Defeated’ if
and only if there is an argument β that attacks α and that is labelled
‘Justified.’

A stable extension gives rise to a stable labelling by labelling all arguments in the
extension ‘Justified’ and all other arguments ‘Defeated.’ A stable labelling gives rise
to a stable extension by considering the set of arguments labelled ‘Justified.’

The idea of labelling arguments can be thought of in analogy with the truth
functions of propositional logic, where propositions are labelled with truth-values
‘true’ and ‘false’ (or 1/0, t/f, etc.). In the formal study of argumentation, labelling
techniques predate Dung’s abstract argumentation [1995]. Pollock [1994] uses la-
belling techniques in order to develop a new version of a criterion that determines
warrant.
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Verheij [1996b] applied the labelling approach to Dung’s abstract argumentation
frameworks. He uses argument labelling also as a technique to formally model which
arguments are taken into account: in an interpretation of an abstract argumentation
framework, the arguments that are assigned a label can be regarded as the ones taken
into account, whereas the unlabelled arguments are not considered. Using this idea,
Verheij defines two new kinds of semantics: the ‘stage semantics’ and the ‘semi-
stable semantics.’33 Other authors using a labelling approach are Jakobovits and
Vermeir [1999] and Caminada [2006]. The latter author translated each of Dung’s
extension types into a mode of labelling.

As an illustration of the labelling approach, we give a labelling treatment of the
grounded extension of an argumentation framework as defined by Dung.34 Consider
the following procedure in which gradually labels are assigned to the arguments of
an argumentation framework:

1. Apply the following to each unlabelled argument α in the framework: if the
argument α is only attacked by arguments that have been labelled ‘Defeated’
(or perhaps is not attacked at all), label the argument α as ‘Justified.’

2. Apply the following to each unlabelled argument α in the framework: if the
argument α is attacked by an argument that has been labelled ‘Justified,’ label
the argument α as ‘Defeated.’

3. If step 1 and/or step 2 have led to new labelling, go back to step 1; otherwise
stop.

When this procedure is completed (which always happens after a finite number of
steps when the argumentation framework is finite), the arguments labelled ‘Justified’
constitute the grounded extension of the argumentation framework. Consider, for
instance, the framework of Figure 3. In the first step, the arguments α, ζ and η
are labelled ‘Justified.’ The condition that all arguments attacking them have been
‘Defeated’ is vacuously fulfilled, since there are no arguments attacking them. In
the second step the argument β is labelled ‘Defeated’, since α has been labelled
‘Justified.’ Then a second pass of step 1 occurs and the arguments γ and δ are
labelled ‘Justified,’ since their only attacker β has been labelled ‘Defeated.’ Finally,
the argument ε is labelled ‘Defeated,’ since δ has been labelled ‘Justified.’ The
arguments α, γ, δ, ζ and η (i.e., those labelled ‘Justified’) together form the grounded

33In establishing the concept Verheij [1996b] used the term admissible stage extensions. The
now standard term semi-stable extension was proposed by Caminada [2006].

34Dung’s own definition of grounded extension, which does not use labelling, is not discussed
here.
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extension of the framework. Every argumentation framework has a unique grounded
extension. In the framework of Figure 3, the grounded extension coincides with the
unique preferred extension that is also the unique stable extension. The framework in
Figure 4 (left) shows that the grounded extension is not always a stable or preferred
extension. Its grounded extension is here the empty set, but its two preferred and
stable extensions are not empty.

4.2 Arguments with structure
Abstract argumentation, discussed in the previous subsection, focuses on the attack
relation between arguments, abstracting from the structure of arguments. We now
discuss various themes related to the structure of arguments for and against con-
clusions, and how it has been studied: arguments and specificity, the comparison of
conclusive force, arguments with prima facie assumptions, arguments and classical
logic, and the combination of support and attack.

Argument specificity An early theme in the formal study of argumentation
was that of ‘argument specificity’ in relation to the resolution of a conflict between
arguments. The key idea connecting arguments and specificity is that when two
arguments are conflicting, with one of them being based on more specific information,
the more specific argument wins the conflict, and defeats the more general argument.

Guillermo Simari and Ronald Loui [1992] have provided a mathematical for-
malization of this connection between arguments and specificity, taking inspiration
from Poole’s [1985] work in non-monotonic logic, and connecting to Pollock’s work
on argumentative warrant. In their proposal, an argument is a pair (T, h), with
T being a set of defeasible rules that are applied to arrive at the argument’s con-
clusion h given the argument’s premises (formalized in the background knowledge).
Arguments are assumed to be consistent, in the sense that no contradiction can be
derived (not even defeasibly). Also arguments are assumed to be minimal, in the
sense that all rules are needed to arrive at the conclusion. Formally, for an argu-
ment (T, h), it holds that when T ′ is the result of omitting one or more rules in
T , the pair (T ′, h) is not an argument. Two arguments (T, h) and (T ′, h′) disagree
when h and h′ are logically incompatible, given the background knowledge. An argu-
ment (T, h) counter-argues an argument (T ′, h′) if (T, h) disagrees with an argument
(T ′′, h′′) that is a sub-argument of (T ′, h′), i.e., T ′′ is a subset of T ′. An argument
(T, h) defeats an argument (T ′, h′) when (T, h) disagrees with a sub-argument of
(T ′, h′) that is strictly less specific. Simari and Loui’s approach has been developed
further—with applications in artificial intelligence, multi-agent systems, and logic
by the Bahia Blanca group, led by Simari (e.g., [García & Simari, 2004; Chesñevar
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et al., 2004; Falappa et al., 2002]). García and Simari [2004] show the close connec-
tion between argumentation and logic programming that was also an inspiration for
Dung [1995].

Conclusive force A second theme connected to arguments and their structure is
conclusive force. Arguments that have more conclusive force will survive a conflict
more easily than arguments with less conclusive force. One idea that connects
conclusive force with argument defeat is the weakest link principle, which Pollock
characterizes as follows:

The degree of support of the conclusion of a deductive argument is the minimum
of the degrees of support of its premises [1995, p. 99].

Pollock presents the weakest link principle as an alternative to a Bayesian ap-
proach, which he rejects. Gerard Vreeswijk [1997] has proposed an abstract model
of argumentation with defeasible arguments that focuses on the comparison of the
conclusive force of arguments. In his model, conclusive force is not modelled directly
but as an abstract comparison relation that expresses which arguments have more
conclusive force than which other arguments. Vreeswijk defines an abstract argu-
mentation system as a triple (L,R,≤), where L is a set of sentences expressing the
claims made in an argument, R is a set of defeasible rules allowing the construction
of arguments, and ≤ represents the conclusive force relation between arguments.
The rules come in two flavours: strict and defeasible. Arguments are constructed
by chaining rules. A set of arguments Σ is a defeater of an argument α if Σ and
α are incompatible (i.e., imply an inconsistency), and α is not an underminer of Σ.
An argument α is an underminer of a set of arguments Σ if Σ contains an argument
β that has strictly lower conclusive force than α. Whereas Dung’s [1995] system is
abstract by its focus on argument attack, Vreeswijk’s proposal is abstract in par-
ticular also because the conclusive force relation is left unspecified. Vreeswijk gives
the following examples of conclusive force relations:

1. Basic order. In this order, a strict argument has more conclusive force than a
defeasible argument. In a strict argument, no defeasible rule is used.

2. Number of defeasible steps. An argument has more conclusive force than an-
other argument if it uses less defeasible steps. Vreeswijk remarks that this is
not a very natural criterion, but it can be used to give formal examples and
counterexamples.

3. Weakest link. Here the conclusive force relation on arguments is derived from
an ordering relation on the rules. An argument has more conclusive force than
another if its weakest link is stronger than the weakest link of the other.
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4. Preferring the most specific argument. Of two defeasible arguments, one has
more conclusive force than the other if the first has the premises of the second
among its conclusions.

Prima facie assumptions A third theme related to arguments and their struc-
ture is arguments with prima facie assumptions. In particular, the defeat of argu-
ments can be the result of prima facie assumptions that are successfully attacked. In
their abstract, argumentation-theoretic approach to default reasoning, Bondarenko,
Dung, Kowalski, and Toni [1997] use such an approach. Using a given deductive
system (L,R) that consists of a language L and a set of rules R, so-called ‘deduc-
tions’ are built by the application of rules. Given a deductive system (L,R), an
assumption-based framework is then a triple (T,Ab, Contrary), where T is a set of
sentences expressing the current beliefs, Ab expresses assumptions that can be used
to extend T, and Contrary is a mapping from the language to itself that expresses
which sentences are contraries of which other sentences. Bondarenko and colleagues
define a number of semantics (similar to Dung’s 1995 in the context of abstract ar-
gumentation). For instance, a stable extension is a set of assumptions ∆ such that
the following properties hold:

1. ∆ is closed, meaning that ∆ contains all assumptions that are logical conse-
quences of the beliefs in T and ∆ itself.

2. ∆ does not attack itself, meaning that there is no deduction from the beliefs
in T and ∆ with a contrary of an element of ∆ as conclusion.

3. ∆ attacks each assumption not in ∆, meaning that, for every assumption out-
side ∆, there is a deduction from T and ∆ with a contrary of that assumption
as conclusion.

Verheij [2003a] has also developed an assumption-based model of defeasible argu-
mentation. In contrast with Bondarenko et al. [1997], in Verheij’s system, the rules
from which arguments are constructed are part of the prima facie assumptions.
Technically, the rules have become conditionals of the underlying language. As a re-
sult, it can be the issue of an argument whether some proposition supports another
proposition. In this way, Pollock’s undercutting defeaters can be modelled as an
attack on a conditional. Pollock’s example of an object that looks red (Section 3.4)
is formalized using two conditional sentences:

looks_red ; is_red
red_light ; ×(looks_red ; is_red)

2128



Argumentation Theory in Formal and Computational Perspective

The first expresses the conditional prima facie assumption that if something looks
red, it is red. The second expresses an attack on this prima facie assumption: when
there is a red light illuminating the object, it no longer holds that if the object looks
red, it is red. The sentences illustrate the two connectives of the language: one to
express the conditional (;), the other to express what is called dialectical negation
(×). The two conditional sentences correspond exactly to two graphical elements
in Figure 1: the first to the arrow connecting the reason and the conclusion, the
second, nested, conditional to the arrow (ending in a diamond) that expresses the
attack on the first conditional. This isomorphism between formal structures of the
language and graphical elements has been used for the diagrams supported by the
argumentation software ArguMed [Verheij, 2005b; see Section 4.5]).

The use of assumptions raises the question how they are related to an argument’s
ordinary premises. Assumptions can be thought of as the defeasible premises of an
argument, and as such they are akin to defeasible rules35 with an empty antecedent.
The Carneades framework [Gordon et al., 2007] distinguishes three kinds of argument
premises: ordinary premises, presumptions (much like the prima facie assumptions
discussed here) and exceptions (which are like the contraries of assumptions).

Arguments and classical logic A fourth theme connected to arguments and
their structure is how they are related to classical logic. In particular, the relation
between classical logic and defeasible argumentation remains a puzzle. Above we
already saw different attempts at combining elements of classical logic and defea-
sible argumentation. In Pollock’s system, classical logic is one source of reasons.
Often conditional sentences (‘rules’) are used to construct arguments by chaining
them (e.g., [Vreeswijk, 1997]). Chaining rule applications is closely related to the
inference rule modus ponens of classical logic. Verheij’s [2003a] system gives con-
ditionals which validate modus ponens a central place. Bondarenko et al. [1997]
allow generalized rules of inference by their use of a contingent deductive system as
starting point.

Besnard and Hunter [2008] have proposed to formalize arguments in classical
logic entirely. For them, an argument is a pair (Φ, α), such that Φ is a set of
sentences and α is a sentence, and such that Φ is logically consistent, Φ logically

35Some would object to the use of the term rules here. Rules are here thought of in analogy
with the inference rules of classical logic. An issue is then that, as such, they are not expressed
in the logical object language, but in a meta-language. In the context of defeasible reasoning and
argumentation (and also in non-monotonic logic), this distinction becomes less clear. Often there
is one logical language to express ordinary sentences, a second formal language (with less structure
and/or less semantics, and therefore not usually referred to as ‘logical’) used to express the rules,
and the actual meta-language that is used to define the formal system.
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entails α (in the classical sense), and Φ is a minimal such set. (Note the analogy
with the proposal by Simari and Loui [1992], discussed earlier.) Φ is the support of
the argument, and α the claim. They define defeaters as arguments that refute the
support of another argument. More formally, a defeater for an argument (Φ, α) is
an argument (Ψ, β), such that β logically entails the negation of the conjunction of
some of the elements of Φ. An undercut for an argument (Φ, α) is an argument (Ψ,
β) where β is equal to (and not just entails) the negation of the conjunction of some
of the elements of Φ. A rebuttal for an argument (Φ, α) is an argument (Ψ, β) such
that β ↔ ¬α is a tautology. Besnard and Hunter give the following example [2008,
p. 46]:

p Simon Jones is a Member of Parliament.

p → ¬q If Simon Jones is a Member of Parliament,
then we need not keep quiet about details of his private life.

r Simon Jones just resigned from the House of Commons.

r → ¬p If Simon Jones just resigned from the House of Commons,
then he is not a Member of Parliament.

¬p → q If Simon Jones is not a Member of Parliament,
then we need to keep quiet about details of his private life.

Then ({p, p → ¬q}, ¬q) is an argument with the argument (r, r → ¬p, ¬p) as an
undercut and the argument (r, r → ¬p, ¬p → q, q) as a rebuttal.

Besnard and Hunter focus on structural properties of arguments, in part because
of the diversity of proposals for semantics (see Section 4.1). For instance, when they
discuss these systems, they note that the semantic conceptualization of such systems
is not as clear as the semantics of classical logic, which is the basis of their framework
[p. 221, also p. 226]. At the same time, they note that knowledge representation
can be simpler in systems based on defeasible logic (see below) or inference rules.

Combining support and attack A fifth and final theme discussed here in con-
nection with arguments and their structure is how support and attack are combined.
In several proposals, support and attack are combined in separated steps. In the
first step, argumentative support is established by constructing arguments for con-
clusions from a given set of possible reasons or rules (of inference). The second step
determines argumentative attack. Attack is, for instance, based on defeaters or on
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Figure 5: Supporting arguments that attack each other

the structure of the supporting arguments in combination with a preference relation
on arguments. In the third and final step, it is determined which arguments are war-
ranted or undefeated. We already saw that several criteria have been proposed (e.g.,
Pollock’s gradual development of criteria for argumentative warrant, and Dung’s
abstract argumentation semantics).

An example of this modelling style is depicted in Figure 5. Three supporting
arguments are shown. The first on the left shows that A supports B, which in turn
supports C. In the middle of the figure, this argument is attacked by a second
argument, which reasons from A′ for Not-B (hence against B). This argument is
in turn attacked by a third argument, which reasons from A′′ against the support
relation R between A′ and Not-B. Using the terminology of Section 3.4, the first
subargument of the first argument is rebutted by the second, which is undercut
by the third. The arguments are marked with a + sign when they are warranted,
and a – sign when they are defeated (which can be thought of as a variant of the
labelling approaches of Section 4.1). The argument on the right is warranted, since
it is not attacked. As a result, the middle argument is defeated, since it is attacked
by a warranted argument. The left argument is then also warranted, since its only
attacker is defeated. (See the procedure for computing the grounded extension of
an argumentation framework discussed in Section 4.1.)

In this approach, the relation with Dung’s abstract argumentation is that we can
abstract from the structure of the supporting arguments resulting in an abstract
argumentation framework. For the three arguments in Figure 5, we obtain the
abstract framework shown in Figure 6. In this example, the argumentation semantics
is unproblematic at the abstract argument attack level since the grounded extension
coincides with the unique preferred extension that is also stable. Special care is
needed to handle parts of arguments. For instance, the middle argument has the
premise A′, which is not attacked, and should therefore remain undefeated.
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Figure 6: The abstract argumentation framework associated with the example of
Figure 5

Figure 7: Arguments supporting and attacking conclusions

This type of combining support and attack is used in the ASPIC+ model
[Prakken, 2010]. A second approach does not separate support and attack when
combining them. Arguments are constructed from reasons for and against con-
clusions, which in turn determine whether a conclusion follows or not. Figure 7
models the same argumentative information as Figure 5, but now using this second
approach.

Here the reason A′′ undercuts the argument from A′ to Not-B, so Not-B is not
supported (indicated by the open circle). As a result, Not-B does not actually attack
B, which is therefore justified by A and in turn justifies C.

In this approach, for instance, conditional sentences are used to express which
reasons support or attack which conclusions. An example is Nute’s defeasible logic
[Nute, 1994; Antoniou et al., 2001], which uses conditional sentences for the repre-
sentation of strict rules and defeasible rules, and for defeater rules, which can block
an inference based on a defeasible rule. Algorithms for defeasible logic have been
designed with good computational properties. Another example of the approach is
Verheij’s DefLog [2003a], in which a conditional for the representation of support
is combined with a negation operator for the representation of attack. A related
proposal extending Dung’s abstract argumentation frameworks by expressing both
support and attack is bipolar argumentation [Cayrol & Lagasquie-Schiex, 2005; Am-
goud et al., 2008]. For DefLog and bipolar argumentation, generalisations of Dung’s
stable and preferred semantics are presented. DefLog has been used to formalize
Toulmin’s argument model [Verheij, 2005a].

A special case of the combination of support and attack occurs when the support
and attack relations can themselves be supported or attacked. Indeed it can be at
issue whether a reason supports or attacks a conclusion. The four ways of arguing
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Figure 8: The four ways of arguing about support and attack

about support and attack are illustrated in Figure 8, from left to right: support of
a support relation, attack of a support relation, support of an attack relation, and
attack of an attack relation, respectively.

For instance, Pollock’s undercutting defeaters can be thought of as attacks of
a support relation (second from the left in Figure 8). In Verheij’s DefLog [2003a;
2005b], the four ways are expressed using nested conditional sentences, in a way that
extends the expressiveness of Dung’s frameworks. Modgil [2009] has studied attacks
of attacks (rightmost in 11) in a system that also extends Dung’s expressiveness.

4.3 Formalizing argument schemes
Argumentation formalisms can only come to life when arguments are built from
meaningful reasons. We already mentioned that Pollock made explicit which kinds of
reasons he considered: deductive reasons, perception, memory, statistical syllogism,
and induction.

An approach to the specification of meaningful kinds of reasons to construct
arguments from is that of argument schemes, as they have been studied in argu-
mentation theory. Argument schemes were already distinguished by Perelman and
Olbrechts-Tyteca [1969].36 In today’s artificial intelligence research on argumenta-
tion, Douglas Walton’s approach to argumentation schemes (his terminology) has
been widely adopted (e.g., [Walton et al., 2008].

Argument schemes can be thought of as analogues of the rules of inference of
classical logic. An example of a rule of inference is, for instance, the following version
of modus ponens:

P
If P , then Q
Therefore: Q

36Although the term schème argumentative [argumentative scheme] was already used by Perel-
man and Olbrechts-Tyteca, according to Garssen [2001], van Eemeren et al. [1978; 1984] used the
notion of argument(ation) scheme for the first time in its present sense. See also [van Eemeren and
Grootendorst, 1992; Kienpointner, 1992; Walton, 1996; Walton et al., 2008].
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Whereas logical rules of inference, such as modus ponens, are abstract, strict, and
(usually) considered to have universal validity, argumentation schemes are concrete,
defeasible, and context-dependent. An example is the following scheme for witness
testimony:

Witness A has testified that P .
Therefore: P

The use of this scheme is defeasible, as can be made explicit by asking critical
questions, for instance:

Wasn’t A mistaken?
Wasn’t A lying?

A key reason why argument schemes have been taken up in artificial intelligence
is that the critical questions associated with them correspond to defeating circum-
stances. For instance, the question whether A was mistaken gives rise to the defeater
‘A was mistaken’.

Bex, Prakken, Reed and Walton [2003] applied the concept of ‘argumentation
schemes’ to the formalization of legal reasoning from evidence. An example of a
scheme in that paper (taken from [Walton, 1996]) is the following.

Argument from expert opinion
Source E is an expert in domain D.
E asserts that proposition A is known to be true (false).
A is within D.
Therefore, A may plausibly be taken to be true (false).

This scheme has the following critical questions:

1. Expertise question: How credible is E as an expert source?
2. Field question: Is E an expert in D?
3. Opinion question: What did E assert that implies A?
4. Trustworthiness question: Is E personally reliable as a source?
5. Consistency question: Is A consistent with what other experts assert?
6. Backup evidence question: Is E’s assertion based on evidence?

The authors elaborate on how these and other argumentation schemes related to
evidential reasoning can be formalized.

From the perspective of artificial intelligence, the work on argumentation schemes
of Walton and his colleagues can be regarded as contributions to the theory of
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knowledge representation. Gradually, a collection of argumentation schemes is being
developed. When appropriate, a scheme is added, and existing schemes are adapted,
for instance, by refining the scheme’s premises or critical questions. This knowledge
representation point of view is developed by Verheij [2003b], who like Bex et al.
[2003] formalizes argumentation schemes as defeasible rules of inference. He notes
that in Walton’s work argumentation schemes sometimes take the form of small
derivations, or sequences of argumentation schemes; or even of a small prototypical
dialogue. To streamline the work on knowledge representation, Verheij proposes to
treat argumentation schemes as consisting of four elements: Conclusion, Premises,
Conditions of use, and Exceptions. The Exceptions correspond to answers to the
critical questions of an argumentation scheme. By this representation format, it
is also possible to consider different roles of critical questions: critical questions
concerning a conclusion, a premise, a condition of use, or an exception.

Reed and Rowe [2004) have incorporated argumentation schemes in their Arau-
caria tool for the analysis of argumentative texts. Rahwan et al. [2007] have pro-
posed formats for the integration of argumentation schemes in what is called the
Semantic Web. The vision underlying the Semantic Web is that, when information
on the Internet is properly tagged, it becomes possible to add meaning to such in-
formation that can be handled by a machine. For instance, when the Conclusion,
Premises, Conditions of use, and Exceptions of an argumentation scheme are marked
as such, software can be built that can handle these different elements of a scheme
appropriately. Gordon, Prakken and Walton [2007] have integrated argumentation
schemes in their Carneades model.

A fundamental issue concerning argumentation schemes is how to evaluate a
scheme or set of schemes. When is a scheme good, under which circumstances?
When is an adaptation appropriate? This issue is, for instance, discussed in Reed
and Tindale [2010].

4.4 Formalizing argumentation dialogues

One reason why Toulmin’s [2003] The uses of argument remains a thought-provoking
study is his starting point that argument should be considered in its natural, crit-
ical, and procedural context. This starting point led him to propose that logic,
in the sense of the theory of good argument, should be treated as ‘generalized ju-
risprudence,’ where a critical and procedural perspective on good argument is the
norm. The critical and procedural sides of arguments come together in the study of
argumentation dialogues.

The following is a fragment, taken from McBurney and Parsons [2002a], of an
argumentation dialogue concerning the sale of a used car between a buyer (B) and
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seller (S), illustrating the study of argumentative dialogue in a computational set-
ting:

S: BEGIN(PERSUASION(Make);
PERSUASION(Condition_of_Engine);
PERSUASION(Number_of_Owners))
S requests a sequence of three Persuasion dialogues over the purchase
criteria Make, Condition of the Engine, and Number of Owners.
B:
AGREE(PERSUASION(Make);PERSUASION(Condition_of_Engine);
PERSUASION(Number_of_Owners)) PERSUASION Dialogue 1 in
the sequence of three opens.
S: Argues that ‘Make’ is the most important purchase criterion, within
any budget, because a typical car of one Make may remain in better
condition than a typical car of another Make, even though older.
B: Accepts this argument.
PERSUASION Dialogue 1 closes upon acceptance of the proposition by
B. PERSUASION Dialogue 2 opens.
S: Argues that that ‘Condition_of_Engine’ is the next most important
purchase criterion.
B: Does not accept this. Argues that he cannot tell the engine
condition of any car without pulling it apart. Only S, as the Seller, is
able to tell this. Hence, B must use ‘Mileage’ as a surrogate for
‘Condition_of_Engine.’
PERSUASION Dialogue 2 closes with neither side changing its views:
B does not accept ‘Condition_of_Engine’ as the second criterion, and
S does not accept ‘Mileage’ as the second criterion. PERSUASION
Dialogue 3 opens.

The fragment shows how dialogues about certain topics are opened and closed in
relation to the arguments provided.

The formal and computational study of argumentation dialogues has primarily
been performed in the fields of AI and law and of multi-agent systems, as addressed
below.

In the field of AI and law, argumentation dialogues have been studied extensively
(see [Bench-Capon et al., 2004; 2009]). Ashley’s [1990] HYPO, to be discussed more
extensively in Section 5.2, takes a 3–ply dialogue model as starting point, in which a
proponent makes a claim, which can be attacked by an opponent, and then defended
by the proponent. An early AI and law conception of argumentation dialogue is
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Thomas Gordon’s [1993; 1995] Pleadings game. Gordon formalizes the pleading in
a US-style civil law process, which is aimed at determining the legal and factual
issues of a case. In the Pleadings Game, a proponent and opponent (in this setting
referred to as ‘plaintiff’ and ‘defendant’) can concede, deny and defend claims, and
also declare defeasible rules. Players can discuss the validity of a defeasible rule.
Players are committed to the consequences of their claims, as prescribed by a non-
monotonic logic underlying the Pleadings Game.

Other dialogue models of argumentation in AI and law have been proposed by
Prakken and Sartor [1996; 1998], Hage et al. [1993], and Lodder [1999]. In Prakken
and Sartor’s approach [1996; 1998], dialogue models are presented as a kind of proof
theory for their argumentation model. Prakken and Sartor interpret a proof as a
dialogue between a proponent and opponent. An argument is justified when there is
a winning strategy for the proponent of the argument. Hage et al. [1993] and Lodder
[1999] propose a model of argumentation dialogues with the purpose of establishing
the law in a concrete case. They are inspired by the idea of law as a pure procedure
(though not endorsing it): when the law is purely procedural, there is no criterion
for a good outcome of a legal procedure other than the procedure itself.

Some models emphasize that the rules of argumentative dialogue can themselves
be the subject of debate. An actual example is a parliamentary discussion about
the way in which legislation is to be discussed. In philosophy, Suber has taken
the idea of self-amending games to its extreme by proposing the game of Nomic,
in which the players can gradually change the rules.37 Proposals to formalize such
meta-argumentation include Vreeswijk [2000] and Brewka [2001], who have proposed
formal models of argumentative dialogues allowing self-amendments.38

In an attempt to clarify how logic, defeasibility, dialogue and procedure are
related, Henry Prakken [1997, p. 270f.] proposed to distinguish four layers of argu-
mentation models. The first is the logical layer, which determines contradiction and
support. The second layer is dialectical, which defines what counts as attack, coun-
terargument, and also when an argument is defeated. The third layer is procedural
and contains the rules constraining a dialogue, for instance, which moves parties can
make, when parties can make a move, and when the dialogue is finished. The fourth
and final layer is strategic. At this layer, one finds the strategies and heuristics used
by a good, effective arguer.

Jaap Hage [2000] addresses the question of why dialogue models of argumenta-
tion became popular in the field of AI and law. He gives two reasons. The first
is that legal reasoning is defeasible, and dialogue models are a good tool to study

37http://en.wikipedia.org/wiki/Nomic. See also Hofstadter [1996, chapter 4].
38See also the study of Nomic by Vreeswijk [1995a].
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defeasibility. The second reason is that dialogue models are useful when investigat-
ing the process of establishing the law in a concrete case. Hage recalls the legal
theoretic discussion about the law as an open system, in the sense that there can be
disagreement about the starting points of legal arguments. As a result, the outcome
of a legal procedure is indeterminate. A better understanding of this predicament
can be achieved by considering the legal procedure as an argumentative dialogue.

Hage [2000] then discusses three functions of dialogue models of argumentation
in AI and law. The first function is to define argument justification, in analogy with
dialogical definitions of logical validity as can be found in the work by Lorenzen and
Lorenz [1978]. In this connection, Hage refers to Barth and Krabbe’s notion of the
‘dialectical garb’ of a logic as opposed to an axiomatic, inferential or model-theoretic
garb [Barth & Krabbe, 1982, pp. 7–8]. Hage generalizes the idea of dialectical garb
to what he refers to as battle of argument models of defeasible reasoning in which
arguments attack each other, such as Loui’s [1987], Pollock’s [1987; 1994], Vreeswijk’s
[1993], Dung’s [1995], and Prakken and Sartor’s [1996]. Battle of argument models
can or cannot be presented in a dialectical garb. In their dialectical garb, such
models define the justification of an argument in terms of the existence of a winning
strategy in an argumentative dialogue game.

The second function of dialogue models of argumentation that is distinguished
by Hage is to establish shared premises. Proponent and opponent enter into a dia-
logue that leads to a shared set of premises. The conclusions that follow from these
shared premises can be regarded as justified. In this category, Hage discusses Gor-
don’s Pleadings Game, which we discussed above. Hage makes connections to legal
theory, in particular to Alexy’s [1978] procedural approach to legal justification, and
the philosophy of truth and justification, in particular Habermas’s [1973] consensus
theory of truth, and Schwemmer’s approach to justification, in which the basis of
justification is only assumed as long as it is not actually questioned [Schwemmer &
Lorenzen, 1973].

As a third and final function of dialogue models of argumentation in AI and
law, Hage discusses the procedural establishment of law in a concrete case. In
this connection, he discusses mediating systems, which are systems that support
dialogues, instead of evaluating them. He uses Zeno [Gordon & Karacapilidis, 1997],
Room 5 [Loui et al., 1997] (see also Section 4.5) and DiaLaw [Lodder, 1999] as
examples. Hage argues that regarding the law as purely procedural is somewhat
counterintuitive, since there exist cases in which there is a clear answer, which can
be known even without actually going through the whole procedure. Hage speaks
therefore of the law as an imperfect procedure, in which the correctness of the
outcome is not guaranteed.

Outside the field of AI and law, one further function of dialogue models of argu-
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mentation has been emphasized, namely that a dialogue perspective on argumenta-
tion can have computational advantages. For instance, argumentative dialogue can
be used to optimize search, for instance, by cutting off dead ends or focusing on the
most relevant issues. Vreeswijk [1995b] takes this assumption as the starting point
of a paper:

If dialectical concepts like argument, debate, and resolution of dispute
are seemingly so important in practical reasoning, there must be some
reason as to why these techniques survived as rulers of commonsense
argument. Perhaps the reason is that they are just most suited for the
job [Vreeswijk, 1995b, p. 307].

Vreeswijk takes inspiration from a paper by Loui [1998], which circulated in an ear-
lier version since 1992. Loui emphasises the relevance of protocol, the assignment of
burdens to parties, termination conditions, and strategy. A key idea is that argu-
mentation dialogues are well-suited for reasoning in a setting of bounded resources
(see also [Loui & Norman, 1995]).

Inspired by the computational perspective on argumentation, approaches to ar-
gumentative dialogue have been taken up in the field of multi-agent systems.39 The
focus in that field is on the interaction between autonomous software agents that
pursue their own goals or goals shared with other agents. Since the actions of one
agent can affect those of another, beyond control of an individual agent or the sys-
tem as a whole, the kinds of problems when designing multi-agent software systems
are of a different nature than those in the design of software where control can be
assumed to be centralized. Computational models of argumentation have inspired
the development of interaction protocols for the resolution of conflicts among agents
and for belief formation. The typology of argumentative dialogue that has been pro-
posed by Douglas Walton and Erik Krabbe [1995] has been especially influential.40

In this typology, seven dialogue types are distinguished:

1. Persuasion, aimed at resolving or clarifying an issue;

2. Inquiry, aimed at proving (or disproving) a hypothesis;

3. Discovery, aimed at choosing the best hypothesis for testing;

4. Negotiation, aimed at a reasonable settlement all parties can live with;
39For an overview of the field of multi-agent systems see the textbook by Wooldridge [2009],

which contains a chapter entitled ‘Arguing.’
40The 2000 Symposium on Argument and Computation at Bonskeid House Perthshire, Scotland,

organized by Reed and Norman, has been a causal factor. See Reed and Norman [2004].
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5. Information-seeking, aimed at the exchange of information;

6. Deliberation, aimed at deciding the best available course of action;

7. Eristic, aimed at revealing a deeper basis of conflict.

In particular, the persuasion dialogue, starting with a conflict of opinion and aimed
at resolving the issue by persuading a participant, has been extensively studied. An
early persuasion system—focusing on persuasion in a negotition setting—is Sycara’s
Persuader system [1989]. Persuader, developed in the field of what was then called
Distributed AI, uses the domain of labour negotiation as an illustration. An agent
forms a model of another agent’s beliefs and goals, and determines its actions in
such a way that it influences the other agent. For instance, agents can choose a so-
called ‘threatening argument,’ i.e., an argument that is aimed at persuading another
agent to give up a goal. Here it is notable that in Walton and Krabbe’s typology
negotiation is a dialogue type different from persuasion.

Prakken [2006; 2009] gives an overview and analysis of dialogue models of per-
suasion. In a dialogue system, dialogues have a goal and participants. It is specified
which kinds of moves participants can make, for instance, making claims or con-
ceding. Participants can have specific roles, for instance, Proponent or Opponent.
The actual flow of a dialogue is constrained by a protocol, consisting of rules for
turn-taking and termination. Effect rules determine how the commitments of par-
ticipants change after each dialogue move. Outcome rules define the outcome of
the dialogue, by determining, for instance, in persuasion dialogues who wins the
dialogue. These elements are common to all dialogue types. By specifying or con-
straining the elements, one generates a system of persuasion dialogue. In particular,
the dialogue goal of persuasion dialogue consists of a set of propositions that are at
issue and need to be resolved. Prakken formalizes these elements and then uses his
analytic model to discuss several extant persuasion systems, among them Macken-
zie’s [1979] proposals, and Walton and Krabbe’s [1995] model of what they call
Permissive persuasion dialogue.

Sycara’s Persuader system [1989] is a persuasion system applied to labour nego-
tiation. Parsons, Sierra and Jennings [1998] also speak of negotiation as involving
persuasion. Their model uses the Belief-Desire-Intention model of agents [Rao &
Georgeff, 1995] and specifies logically how the beliefs, desires and intentions of the
agents influence the process of negotiation.41 Dignum, Dunin-Kęplicz and Verbrugge
[2001] have studied the role of argumentative dialogue for the forming of coalitions

41A systematic overview of argumentation dialogue models of negotiation has been provided by
Rahwan et al. [2003].
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of agents that create collective intentions. Argumentation about what to do rather
than about what is the case has been studied in a dialogue setting by Atkinson and
colleagues [Atkinson et al., 2005; 2006; Atkinson & Bench-Capon, 2007]. In this
connection, it is noteworthy that Pollock’s OSCAR model [1995] is an attempt to
combine theoretical reasoning—about what to believe—with practical reasoning—
about what to do—, though in a single agent, non-dialogical setting. Amgoud [2009]
discusses the application of dialogical argumentation to decision making (see also
[Girle et al., 2004]). Deliberation has been studied by McBurney et al. [2007].

Several attempts have been made to systematize the extensive work on argumen-
tation dialogue. Bench-Capon et al. [2000], for instance, propose a formal method
for modelling argumentation dialogue. Prakken [2005b] provides a formal framework
that can be used to study argumentation dialogue models with different choices of
underlying argument model and reply structures. McBurney and Parsons [2002a;
2002b; 2009] have developed an abstract theory of argumentative dialogue in which
syntactic, semantic, and pragmatic elements are considered.

4.5 Argumentation support software
When studying argumentation from an artificial intelligence perspective, it can be
investigated how software tools can perform or support argumentative tasks. Some
researchers in the field of argumentation in AI have openly addressed themselves to
building an artificial arguer. The most prominent among them is John Pollock (see
also Section 3.4), who titled one of his books about his OSCAR project ambitiously
How to build a person [Pollock, 1989].42 Most researchers however have not aimed at
realizing the grand task of addressing the so-called ‘strong AI’ problem of building an
intelligent artefact that can perform any intellectual task a human being can. Instead
of building software mimicking human argumentative behaviour, the more modest
aim of supporting humans performing argumentative tasks was chosen. A great deal
of research has been aimed at the construction of argumentation support software.
Here we discuss three recurring themes: argument diagramming in software, the
integration of rules and argument schemes, and argument evaluation.43

Argument diagramming in software The first theme discussed is argument di-
agramming in software. In the literature on argumentation support software, much
attention has been paid to argument diagramming. Different kinds of argument dia-
gramming styles have been proposed, many inspired by non-computational research

42The book’s subtitle adds modestly: A Prolegomenon.
43The reviews by Kirschner et al. [2003], Verheij [2005b], and Scheuer et al. [2010] provide

further detail about argumentation support software.
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on argument diagrams. We shall discuss three styles: boxes and arrows, boxes and
lines, and nested boxes.

The first style of argument diagramming uses boxes and arrows. Argumentative
statements are enclosed in boxes, and their relations indicated by arrows. A common
use of arrows is to indicate the support relation between a reason and a conclusion.
An example of a software tool that uses boxes and arrows diagrams is the Arau-
caria tool by Chris Reed and Glenn Rowe [2004] (Figure 944). The Araucaria tool
has been designed for the analysis of written arguments. Vertical arrows indicate
reasons and their conclusions, and horizontal bi-directional arrows indicate conflicts
between statements. The Araucaria software was one step in the development by the
Dundee Argumentation Research Group, led by Reed, of open source argumentation
software. For this purpose, a representation format, called the Argument mark-up
language (AML), has been developed that allows for the exchange of arguments and
their analyses using contemporary Internet technology. The format also allows for
the exchange of sets of argument schemes (see Section 4.3) that can be used for ar-
gument analysis. Connected developments concerning machine-readable argument
representation formats are the Argument interchange format [Chesñevar et al., 2006]
and ArgDF, a proposal for a language allowing for a World wide argument web [Rah-
wan et al., 2007]. One aim of the latter work is to develop classification systems for
arguments, using ontology development techniques in Artificial Intelligence. In AI,
an ‘ontology’ is a systematic conceptualization of a domain, often taking the form
of a hierarchical system of concepts and their relations.

Another example of a system using boxes and arrows is the Hermes system
[Karacapilidis & Papadias, 2001], an extension of the Zeno system [Gordon & Kara-
capilidis, 1997]. Both Hermes and Zeno have been inspired by the IBIS approach.
In IBIS, an abbreviation of Issue-Based Information Systems [Kunz & Rittel, 1970],
problems are analysed in terms of issues, questions of fact, positions, and arguments.
The focus is on what Rittel and Webber [1973] call wicked problems: problems with
no definitive formulation, and no definitive solutions. Hence a goal of IBIS and
systems such as Hermes and Zeno is to support the identification, structuring and
settling of issues.

The second style of argument diagramming uses boxes and lines. In a boxes
and lines style of argument diagramming, argumentative statements are depicted in
boxes and their relations are indicated by (undirected) lines between them. This di-
agramming style abstracts from the directionality between statements, for instance,
from a reason to a conclusion, or from a cause to an event. An example of a tool
using the boxes and lines style is the Belvedere system [Suthers et al., 1995; Suthers,

44Source: http://staff.computing.dundee.ac.uk/creed/araucaria/.
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Figure 9: Boxes and arrows diagramming: The Araucaria system

1999]. A goal of the system was to stimulate the critical discussion of science and
public policy issues by middle school and high-school students, taking the cognitive
limitations of the intended users into account. Such limitations include difficulty in
focusing attention, lack of domain knowledge, and lack of motivation. In early ver-
sions, the diagrams were richly structured: there were links for support, explanation,
causation, conjunction, conflict, justification, and undercutting. Link types could be
distinguished graphically and by label. To prevent unproductive discussions about
which structure to use, the graphical representation was significantly simplified in
later versions [Suthers, 1999]. Two types of statements were distinguished: data
and hypotheses; and two link types: expressing a consistency and an inconsistency
relation between statements. Figure 1045 shows an example of a Belvedere screen
using an even further simplified format with one statement type and one link type.

The third style of argument diagramming uses nested boxes. In this style, too,
the argumentative statements are enclosed in boxes, but their relationships are indi-

45Source: http://belvedere.sourceforge.net/.
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Figure 10: Boxes and lines diagramming: the Belvedere 4.1 system

cated by the use of nesting. An example of the use of nested boxes is the Room 5 tool
designed by Loui, Norman and a group of students [Loui et al., 1997]. The Room
5 system aimed at the collaborative public discussion of pending Supreme Court
cases. It was web-based, which is noteworthy as the proposal predates Google and
Wikipedia. In its argument-diagramming format, a box inside a box expresses sup-
port, and a box next to a box indicates attack. In the argument depicted in the
Room 5 screen shown in Figure 1146, for instance, the punishability of John is sup-
ported by the reason that he has stolen a CD, and attacked by the reason that he
is a minor first offender.

The integration of rules and argument schemes A second theme concern-
ing the design of argumentation support software is the integration of rules and
argument schemes. The integration of rules and argument schemes in argument di-
agramming software has been addressed in different ways: by the use of schematic

46Screenshot of Room 5, as shown in Verheij [2005b]. See also Bench-Capon et al. [2012].
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Figure 11: Nested boxes diagramming: the Room 5 system

Figure 12: An elementary argument step as an instance of a schematic argument

arguments, conditional sentences, nested arrows and rule nodes. Consider, for in-
stance, the elementary argument that Harry is a British subject because he is born
in Bermuda (borrowed from Toulmin), and its underlying rule (or ‘warrant’ in Toul-
min’s terminology) that people born in Bermuda are British subjects.

A first approach is to consider such an argument as an instance of a scheme
that abstracts from the person Harry in the argument. In Figure 12, an associated
schematic argument is shown to the right of the argument about Harry. In the
schematic argument, X appears as a variable that serves as the placeholder of some-
one’s name. In software, the schematic argument is normally not shown graphically.

A second approach uses conditional sentences. The conditional sentence that ex-
presses the connection between reason and conclusion is made explicit as an auxiliary
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Figure 13: Using a conditional sentence

Figure 14: Nested arrows

premise. This conditional sentence can then be supported by further arguments, such
as a warrant (as in Figure 13) or a backing. This approach is, for instance, proposed
in the user-friendly Rationale47 tool developed by van Gelder and his collaborators
[van Gelder, 2007].

A third approach uses nested arrows. The arrows are treated as graphical ex-
pressions of the connection between the reason and conclusion, and can hence be
argued about. In Figure 14, for instance, the warrant has been supplied as support
for the connection between reason and conclusion. This approach has a straight-
forward generalisation when support and attack are combined (Section 4.2). The
ArguMed tool developed by Verheij [2005b] uses this approach.

A variation of the nested arrows approach uses rule nodes (Figure 15), instead
of nested arrows. The AVERs tool [van den Braak et al., 2007] uses this approach.

47http://rationale.austhink.com/.
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Figure 15: Rule nodes

Argument evaluation The third and final theme that we discuss in connec-
tion with the design of argumentation support software is argument evaluation. In
argumentation software, different strategies for argument evaluation have been im-
plemented. Some tools choose to leave argument evaluation as a task for the user of
the system. For instance, in the Rationale system [van Gelder, 2007] a user can indi-
cate which claims follow or do not follow given the reasons in the diagram. Specific
graphical elements are used to show the user’s evaluative actions.

In several other systems, some form of automatic evaluation has been imple-
mented. Automatic evaluation algorithms can be logical, or numeric.

Logical evaluation algorithms in argumentation support tools have been
grounded in versions of argumentation semantics (see Section 4.1). For instance,
ArguMed [Verheij, 2005b] computes a version of stable semantics. Consider, for
instance, Pollock’s example of an undercutting defeater about red lights (see Sec-
tion 3.4). ArguMed’s evaluation algorithm behaves as expected: when the reason
that the object looks red is assumed, the conclusion that the object is red will be
justified, but that will no longer be the case when the defeater is added that the ob-
ject is illuminated by a red light. A typical property of logical evaluation algorithms
is reinstatement: when a defeating attacker of an initial argument is successfully
attacked, the initial argument will no longer count as defeated and therefore be
reinstated.

Numeric evaluation algorithms have been based on the numeric weights of the
reasons supporting and attacking conclusions. A weight-based numeric evaluation
algorithm has, for instance, been implemented in the Hermes system [Karacapilidis &
Papadias, 2001]. In Hermes, positions can be assigned a numeric score by adding the
weights of active pro-positions and subtracting the weights of active con-positions.
A proof standard can be used to determine an activation label of a position. In the
proof standard called Preponderance of evidence, for instance, a position is active
when the active pro-positions outweigh the active con-positions.

A numeric evaluation algorithm of a different kind has been implemented in the
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so-called ‘Convince me’ system [Schank, 1995]. It uses ECHO, which is a connec-
tionist version of Thagard’s [1992] theory of explanatory coherence. In Convince me,
statements are assigned numerical values by a step-wise constraint satisfaction algo-
rithm. In the algorithm, incremental changes of the default weights of a statement
are made by considering the excitatory and inhibitory links connected to a state-
ment. When changes become too small to be taken into account (or computation is
taking too long), the algorithm stops.

5 Specific kinds of argumentation in formal and com-
putational perspective

In this section, we discuss specific kinds of argumentation using rules, cases, values
and evidence. We end the section with applications and case studies.

5.1 Reasoning with rules
We already saw examples showing the close connections between argumentation re-
search in artificial intelligence and legal applications. Since argumentation is an
everyday task of professional lawyers this is not unexpected. An institutional reason
however is that there exists an interdisciplinary research field, called artificial intel-
ligence and law,48 in which because of the nature of law the topic of argumentation
has been given a great deal of attention. Early work in that field (e.g., [McCarty,
1977; Gardner, 1987]) already showed the intricacies and special characteristics of
legal argumentation. Thorne McCarty [1977] attempted to formalize the detailed
reasoning underlying a US Supreme Court case. Anne Gardner [1987] proposed a
system aimed at what she called issue spotting. In a legal case, there is an issue when
no rule applies or when conflicting rules apply and the conflict cannot be resolved.
In this section, we pay special attention to the work inspired by developments in
non-monotonic logic that has been carried out, mostly in the mid-1990s, regarding
reasoning with (legal) rules.

Henry Prakken’s [1997] book Logical tools for modelling legal argument pro-
vides an extensive and careful treatment of the contributions of techniques from
non-monotonic logic to the formal modelling of legal reasoning.49 The formal tools
presented by Prakken have gradually evolved into the ASPIC+ model already men-
tioned [Prakken, 2010]. Parts of the material were developed in close collaboration

48The primary journal of the field of AI & law is Artifical Intelligence and Law, with the biennial
ICAIL and annual JURIX as the main conferences.

49The book is based on Prakken’s [1993] doctoral dissertation.
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with Sartor (e.g., [Prakken & Sartor, 1996; 1998]; see also the excellent resource
[Sartor, 2005]).

The following example shows how Prakken models a case in contract law [1997,
p. 171]. The example concerns the defeasible rule that contracts only bind the
contracting parties (d1), and a defeasible, possibly contravening, rule specifically for
contracts that concern the lease of a house, saying that such contracts also bind
future owners of the house (d2). Another exception is added by a defeasible rule
saying that, even in the case of a house lease, when a tenant agrees to make such a
stipulation only the contracting parties are bound (d3). The factual statements f1
and f2 say respectively (1) that a house lease is a special kind of contract and (2)
that binding only the contracting parties and binding also future owners of a house
do not go together.

d1 : x is a contract ⇒ x only binds its parties
d2 : x is a lease of house y ⇒ x binds all owners of y
d3 : x is a lease of house y∧ tenant has agreed in x that x only binds its
parties ⇒ x only binds its parties
f1 : ∀x∀y (x is a lease of a house y → x is a contract)50

f2 : ∀x∀y¬ (x only binds its parties ∧x binds all owners of y)

When there is a contract about the lease of a house, there is an apparent conflict,
since both d1 and d2 seem to apply. In the system, the application of d2 blocks the
application of d2, using a mechanism of specificity defeat (see Section 4.2). In a
case where also the condition of d3 is fulfilled, namely when the tenant has agreed
that the lease contract only binds the contracting parties, the application of rule
d3 blocks the application of rule d2, which in that case does no longer block the
application of d1.

Prakken uses elements from classical logic (for instance, classical connectives and
quantifiers) and non-monotonic logic (defeasible rules and their names), and shows
how they can be used to model rules with exceptions, as they occur prominently
in the law. He treats, for instance, the handling of explicit exceptions, preferring
the most specific argument, reasoning with inconsistent information, and reasoning
about priority relations.

In the same period, Hage developed Reason-based logic ([Hage, 1997]; see also
[Hage, 2005)].51 Hage presents Reason-based logic as an extension of first-order
predicate logic in which reasons play a central role. Reasons are the result of the

50‘∀x...’ stands for ‘for every entity x it holds that ...’. Similarly, for ‘∀y...’
51Reason-based logic exists in a series of versions, some introduced in collaboration with Verheij

(e.g., [Verheij, 1996a]).
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application of rules.52 Treating them as individuals allows the expression of proper-
ties of rules. Whether a rule applies depends on the rule’s conditions being satisfied,
but also on possible other reasons for or against applying the rule. Consider, for
instance, the rule that thieves are punishable:

punishable: thief(x)⇒ punishable(x)

Here ‘punishable’ before the colon is the rule’s name. When John is a thief (expressed
as thief(john)), the rule’s applicability can follow:

Applicable(thief(john) ⇒ punishable(john))

This gives a reason that the rule ought to be applied. If there are no reasons against
the rule’s application, this leads to the obligation to apply the rule. From this it
will follow that John is punishable.

A characteristic aspect of Reason-based logic is that it models the weighing of
reasons. In this system, there is no numerical mechanism for weighing; rather it can
be explicitly represented that certain reasons for a conclusion outweigh the reasons
against the conclusion. When there is no weighing information the conflict remains
unresolved and no conclusion follows.

Like Prakken, Hage uses elements from classical logic and non-monotonic logic.
In his theory, because of the emphasis on philosophical and legal considerations,
the flavour of Reason-based logic is less that of pure logic, but comes closer to
representing the ways of reasoning in the domain of law. Where Prakken’s book
remains closer to the field of AI, Hage’s book reads more like a theoretical essay in
philosophy or law.

Reason-based logic has been applied, for instance, to a well-known distinction
made by the legal theorist Dworkin [1978]: whereas legal rules seem to lead directly
to their conclusion when they are applied, legal principles are not as direct, and
merely give rise to a reason for their conclusion. Only a subsequent weighing of
possibly competing reasons leads to a conclusion. Different models of the distinction
between rules and principles in Reason-based logic have been proposed. Hage [1997]
follows Dworkin and makes a strict formal distinction, whereas Verheij et al. [1998]
show how the distinction can be softened by presenting a model in which rules and
principles are the extremes of a spectrum.

Loui and Norman [1995] have argued that there is a calculus associated with
what they call the compression of rationales, i.e., the combination and adaptation

52We shall simplify Hage’s formalism a bit by omitting the explicit distinction between rules and
principles.
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of the rules underlying arguments which are akin to Toulmin’s warrants. They give
the following example of a compression of rules (rationales). When there is a rule
‘vehicles used for private transportation are not allowed in the park’ and also a rule
‘vehicles are normally for private transportation,’ then a two-step argument based
on these two rules can be shortened when the so-called compression rationale ‘no
vehicles in the park,’ based on these two rules, is used.

5.2 Case-based reasoning
Reasoning with rules (Section 5.1) is often contrasted with case-based reasoning.
Whereas the former is about following rules that describe existing conditional pat-
terns, the latter is about finding relevantly similar examples that, by analogy, can
suggest possible conclusions in new situations. In the domain of law, rule-based rea-
soning is associated with the application of legal statutes, and case-based reasoning
with the following of precedents. The contrast can be appreciated by looking at the
following two examples.

Art. 300 of the Dutch Criminal Code
1. Inflicting bodily harm is punishable with up to two years of impris-
onment or a fine of the fourth category.
2. When the fact causes grievous bodily harm, the accused is punished
with up to four years of imprisonment or a fine of the fourth category.
3. [...]

Dutch Supreme Court July 9, 2002, NJ 2002, 499
Theft requires the taking away of a good. Can one steal an already stolen
car? The Supreme Court’s answer is: yes.

The first example is an excerpt from a statutory article expressing a material rule of
Dutch criminal law, stating the kinds of punishment associated with inflicting bodily
harm. The levels of punishment depend on specific conditions, with more severe
bodily harm being punishable with longer imprisonment. The second example is a
(very) brief summary of a Supreme Court decision. In this case, an already stolen
car was stolen from the thief. One of the statutory requirements of the crime theft is
that a good is taken away, and here the car was already taken away from the original
owner of the car. The new legal question was addressed whether stealing from the
original thief can count as theft from the car’s owner. In other words, can an already
stolen car still be taken away from the original owner? Here the Supreme Court
decided that stealing a stolen car can count as theft since the original ownership is
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the deciding criterion; it does not matter whether a good is actually in the control
of the owner at the time of theft. When used as a precedent, this Supreme Court
decision has the effect that similar cases are decided alike.

In case-based reasoning, the stare decisis doctrine is leading: when deciding a
new case one should not depart from an earlier, relevantly similar decision, but
decide analogously. In the field of AI and law, Kevin Ashley’s HYPO system [1990]
counts as a milestone in the study of case-based reasoning.53 In HYPO, cases are
treated as sets of factors, where factors are generalised facts pleading for or against
a case. Consider the following example about an employee who has been dismissed
by his employer, and aims to void (i.e., cancel) the dismissal.54

Issue:
Can a dismissal be voided?

Precedent case:
+ The employee’s behaviour was always good.
- There was a serious act of violence.
Outcome:
+ (voided)

Current case:
+ The employee’s behaviour was always good.
- There was a serious act of violence.
+ The working atmosphere was not affected.
Outcome:
?

There is a precedent case with one factor pleading for voidance (the good behaviour),
and one pleading against voidance (the violence). In this precedent case, it was
decided that voidance was in place. In the current case, the same factors apply, but
there is also one additional factor pleading for voidance, namely that the working
atmosphere was not affected. One could say that the decision taken in the precedent
case is even more strongly supported in the current case. As a result, in HYPO and
similar systems the suggested conclusion is that also in the current case voidance of
the dismissal would be called for.

53See also Rissland and Ashley [1987], Ashley [1989], and Rissland and Ashley [2002].
54The example is inspired by the case material used by Roth [2003].
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Figure 16: Factors in two precedent cases and the current case

The example in Figure 16 shows that factors can be handled formally without
knowing what they are about. There is a first precedent with pro-factors F1 and F2
and a con-factor F4. The second precedent has as additional factors a con-factor F5
and a pro-factor F6. The current case has all these factors and one more pro-factor
F3. The domain also contains con-factor F7 and pro-factor F8 which do not apply
to these cases.

Assume now that the first precedent was decided negatively, and the second
positively. The second precedent is more on point, in the sense that it shares more
factors with the current case than the first precedent. Since the current case even
has an additional pro-factor, it is suggested that the current case should be decided
positively, in analogy with precedent 2. Precedents do not always determine the
outcome of the current case. For instance, if the second precedent had been decided
negatively, there would be no suggested outcome for the current case, since pro-factor
F3 may be or may not be strong enough to turn the case.

Another formal example is shown in Figure 17. When both precedents have
been decided positively, the suggested outcome for the current case is also positive.
Precedent 1 can be followed because its support for a positive decision is weaker
than that of the current case: the precedent has an additional con-factor, and the
current case an additional pro-factor. Precedent 2 cannot be followed since F8 may
be or may not be a stronger pro-factor than F3.

HYPO’s aim is to form arguments about the current case, without determining
a decision. This is made explicit in its model of 3–ply arguments. In HYPO’s 3–ply
model, the first argument move (‘ply’), by the Proponent, is the citing of a precedent
case in analogy with the current case. The analogy is based on the shared factors.
The second argument move, by the Opponent, responds to the analogy, for instance,
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Figure 17: A different constellation of precedents

by distinguishing between the cited precedent case and the current case, pointing
out differences in relevant factors, or by citing counterexamples. The third argument
move, again by the Proponent, responds to the counterexamples, for instance, by
making further distinctions.

HYPO’s factors not only have a side (pro or con) associated with them, but can
also come with a dimension pertaining in some way to the strength of the factor.
This allows the citation of cases that share a certain factor, but have this factor with
a different strength. For instance, by the use of dimensions, the good behaviour of
the employee (of the first informal example) can come in gradations, say from good,
via very good to excellent.

Vincent Aleven extended the HYPO model by the use of a factor hierarchy that
allowed modelling of factors with hierarchical dependencies [Aleven, 1997; Aleven &
Ashley, 1997a; 1997b]. For instance, the factor that one has a family to maintain
is a special case of the factor that one has a substantial interest in keeping one’s
job. Inspired by Verheij’s DefLog model [2003a], which allowed for reasoning about
support and attack (Section 4.2), Roth [2003] developed case-based reasoning based
on what he referred to as an entangled factor hierarchy, in order to expand the
possible argumentative moves (Figure 18). For instance, the relevance of the factor
that one has a family to maintain is strengthened by one’s having children that go
to university and weakened by one’s having a wife with a good income. A factor
hierarchy allows new kinds of argument moves by making it possible to downplay
or emphasize a distinction. For instance, the factor of having a family to maintain
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Figure 18: An entangled factor hierarchy [Roth, 2003]

can be downplayed by pointing out that one has a partner with a good income, or
emphasized by mentioning that one has children going to university.

Proposals have been made to combine case-based and rule-based reasoning. For
instance, Branting’s GREBE model [1991; 2000] aims to generate explanations of
decisions in terms of rules and cases. Both rules and cases can serve as warrants
for a decision. Branting extends Toulmin’s approach to warrants by using a so-
called warrant reduction graph, in which warrants can be special cases of other
warrants. Prakken and Sartor [1998] have applied their model of rule-based rea-
soning ([Prakken & Sartor, 1996]; see also Section 5.1) to the setting of case-based
reasoning. Analogizing and distinguishing are connected to the deletion and addition
of rule conditions that describe past decisions.

5.3 Values and audiences
Trevor Bench-Capon [2003] has developed a model of the values underlying ar-
guments.55 In this endeavour he refers to Perelman and Olbrechts-Tyteca’s new
rhetoric:

55In AI and law, the importance of the modelling of the values and goals underlying legal decisions
was already acknowledged by Berman and Hafner [1993].
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If men oppose each other concerning a decision to be taken, it is not
because they commit some error of logic or calculation. They discuss
apropos the applicable rule, the ends to be considered, the meaning
to be given to values, the interpretation and characterisation of facts
[Perelman & Olbrechts-Tyteca, 1969, p. 150].

Because of the character of real-life argumentation, it is not to be expected that
cases will be conclusively decided. Bench-Capon therefore aims to extend formal
argumentation models by the inclusion of the values of the audiences addressed.
This allows him to model the persuasion of an audience by means of argument.

Bench-Capon [2003] uses Dung’s [1995] abstract argumentation frameworks as a
starting point. He defines a value-based argumentation framework as a framework
in which each argument has an associated (abstract) value. The idea is that values
associated with an argument are promoted by accepting the argument. For instance,
in a parliamentary debate about a tax raise it can be argued that accepting the raise
will promote the value of social equality, while the value of enterprise is demoted. In
an audience-specific argumentation framework, the preference ordering of the values
can depend on an audience. For instance, the Labour Party may prefer the value of
social equality, and the Conservative Party that of enterprise.

Bench-Capon continues to model defeat for an audience: an argument A defeats
an argument B for audience a if A attacks B and the value associated with B
is not preferred to the value associated with A for audience a. In his model, an
attack succeeds, for instance, when the arguments promote the same value, or when
there is no preference between the values. Dung’s notions of argument acceptability,
admissibility and preferred extension are then redefined relative to audience attack.

Bench-Capon uses a value-based argumentation framework with two values ‘red’
and ‘blue’ as an example (Figure 19). The underlying abstract argumentation frame-
work is the same as that in Figure 6. In its unique preferred extension (which is also
grounded and stable), A and C are accepted and B is rejected. For an audience pre-
ferring ‘red,’ defeat for the audience coincides with the underlying attack relation.
In the preferred extension for an audience preferring ‘red,’ therefore, A and C are
accepted and B is rejected. However, for an audience preferring ‘blue,’ A does not
defeat B. But for such an audience B still defeats C. For a ‘blue’-preferring audience,
A and B are accepted and C is not.

Bench-Capon illustrates value-based argumentation by considering the case of
a diabetic who almost collapses into a coma by lack of insulin, and therefore takes
another diabetic’s insulin after entering her house. He analyses the case by discussing
the roles of the value of property right infringement as opposed to that of saving
one’s life.
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Figure 19: A value-based argumentation framework with two values (adapted from
[Bench-Capon, 2003])

Bench-Capon and Sartor [2003] have used the value-based perspective in a treat-
ment of legal reasoning that combines rule-based and case-based reasoning (see Sec-
tions 5.1 and 5.2). Legal reasoning takes the form of constructing and using a theory
that explains a decision in terms of the values promoted and demoted by the de-
cision. Precedent decisions have the role of revealing preferences holding between
factors. This is similar to the role of precedents in HYPO that reveal how the factors
in a precedent case are weighed. In Bench-Capon and Sartor’s approach, the factor
preferences in turn reveal preferences between values. The resulting preferences can
then be used to decide new cases.

5.4 Burden of proof, evidence, and argument strength
Some arguments are more successful than others. An argument can meet or not
meet the burden of proof fitting the circumstances of the debate. An argument can
be founded on better evidence than another. An argument can also be stronger
than another. In this section, we address the topics of burden of proof, evidence and
argument strength.

Burden of proof and evidence The topic of burden of proof is strongly con-
nected to the dialogical setting of argumentation. A burden of proof is assigned to
a party in an argumentative dialogue when the quality of the arguments produced
in the dialogue depends in part on whether the arguments produced by that party
during the dialogue meet certain constraints. Such constraints can be procedural,
for instance, requiring that a counterargument is met by a counterattack, or mate-
rial, for instance, requiring that an argument is sufficiently strong in the light of the
other arguments. Constraints of the latter, material, non-procedural type are also
referred to as proof standards.

The topic of burden of proof is especially relevant in the law, as argumentation
in court is often constrained by burden of proof constraints. As a result, in legal
theory the topic has been studied extensively. The topic has also been addressed in
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AI approaches to argumentation, in particular by researchers connected to the field
of AI and law (see also Section 4.4). In the Carneades argumentation model [Gordon
et al., 2007], for instance, statements are categorized using three proof standards:

SE (Scintilla of Evidence). A statement meets this standard if and only
if it is supported by at least one defensible pro argument.
BA (Best Argument). A statement meets this standard if and only if
it is supported by some defensible pro argument with priority over all
defensible con arguments.
DV (Dialectical Validity). A statement meets this standard if and only
if it is supported by at least one defensible pro argument and none of its
con arguments are defensible.

A theme related to proof standards is argument accrual. What happens when there
are several arguments for a conclusion? See Section 4.2, where research addressing
the relation between argument defeat and accrual is discussed.

AI models of argumentation have been helpful in clarifying distinctions made in
legal theory. Prakken and Sartor in particular have in a series of articles [Prakken
& Sartor, 2007; 2009] contributed to the explication of different forms of burden
of proof. They distinguish a burden of persuasion, a burden of production, and a
tactical burden. A burden of persuasion requires that a party proves a statement
to a specified degree (the standard of proof) or runs the risk of losing on the issue
at the end of the debate. A burden of production has been assigned to a party
when the party is required by law to provide evidence for a certain claim. Burdens
of persuasion and burdens of production are assigned by the applicable law. The
tactical burden of proof depends on a party’s own assessment of whether sufficient
grounds have been adduced about a claim made by the party. Prakken and Sartor
connect these different notions to a formal dialogue model of argumentation.

Probability and other quantitative approaches to argument strength Ar-
gument strength can be considered by using quantitative approaches. For instance,
a conditional probability p(H|E), expressing the probability of a hypothesis H given
the evidence E, can be interpreted as a measure of the strength of the argument for
the hypothesis based on the evidence. The idea is that higher values of p(H|E) make
H more strongly supported when given E. This interpretation of argument strength
is associated with what is called Bayesian epistemology [Talbott, 2011]. Bayesian
epistemology provides in the following way an interpretation of the relevance of ad-
ditional evidence, say E′: additional evidence E′ strengthens the argument E for H
when p(H|E ∧ E′) > p(H|E). In this interpretation, Bayes’ theorem:
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p(H|E) = p(E|H)× p(H)/p(E)

connects the strength of the argument from E to H and that of the argument from
H to E, thereby reversing the direction of the arrow. This relation is helpful, when
the values of p(E|H), p(H) and p(E) are available, or when they are more easily
established than p(H|E) itself. Bayesian epistemology also provides a perspective
on the comparison of hypotheses given additional evidence. When there are two
hypotheses H and H ′, the odds form of Bayes’ theorem can be used to update the
odds of the hypotheses in light of new evidence E. The following relation shows how
the prior odds p(H)/p(H ′) is connected to the posterior odds p(H|E)/p(H ′|E):

p(H|E)/p(H ′|E) = (p(H)/p(H ′))× (p(E|H)/p(E|H ′))

This formal relation is helpful when the prior odds p(H)/p(H ′), and the values of
p(E|H) and p(E|H ′) are available.

Pollock has argued against a probabilistic account of argument strength (e.g.,
[Pollock, 1995; 2006; 2010]), referring to this position as ‘generic Bayesianism’ or
‘probabilism.’ Pollock argues that in a probabilistic account we would be justified in
believing a mathematical theorem even before it is proven. This is especially absurd
in cases such as Fermat’s last theorem, which remained a conjecture for centuries
before Wiles finally could complete a proof in the 1990s. Fitelson [2010] defends a
probabilistic account against this and other criticisms advanced by Pollock.

Zukerman, McConachy and Korb [1998] have discussed the possibility of gener-
ating arguments from Bayesian networks, which are a widely studied tool for the
representation of probabilistic information. Riveret et al. [2007] consider success
in argument games in connection with probability. Dung and Thang [2010] have
presented an approach to probabilistic argumentation in the setting of dispute reso-
lution. Verheij [2012; 2017] has proposed a formal theory of defeasible argumentation
in which logical and probabilistic properties are connected. Hunter [2013] discusses
a model of deductive argumentation with uncertain premises. Verheij et al. [2016]
discuss connections between arguments, scenarios and probabilities as normative
tools in forensic reasoning with evidence.

Evidence and inference to the best explanation When an argument is aimed
at establishing the truth, empirical evidence can be used to support alleged facts. For
instance, a witness’s testimony can provide evidence for the claim that the suspect
was at the scene of a crime, a clinical test can provide evidence against a medical
diagnosis, and the outcome of a laboratory experiment can be evidence confirming
(or falsifying) a psychological phenomenon. The conclusions based on the available
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evidence can be regarded as hypothetical explanations for the occurrence of the
evidence. As a result, reasoning on the basis of evidence is a specimen of what Peirce
referred to as abductive reasoning, or inference to the best explanation: reasoning
that goes from data describing something to a hypothesis that best explains or
accounts for the data [Josephson & Josephson, 1996, p. 5]. Josephson and Josephson
conceive of inference to the best explanation as a kind of argument scheme (see
Section 4.3):

D is a collection of data (facts, observations, givens).
H explains D (would, if true, explain D).
No other hypothesis can explain D as well as H does.
Therefore, H is probably true.
[Josephson & Josephson, 1996, p. 5]

The explanatory connection between D and H is often regarded as going against
the causal direction. For instance, a causal, expectation-evoking rule ‘If there is
a fire, then there is smoke’ can be used to infer, or argue for, the effect ‘there is
smoke’ after observing the cause ‘there is fire.’ The causal rule has an evidential,
explanation-evoking counterpart, ‘If there is smoke, then there is a fire,’ that can
be used to infer (argue for) the explanation ‘there is a fire’ after observing ‘there is
smoke.’ Arguments based on causal or evidential rules are typically defeasible: not
all fires generate smoke, and not all smoke stems from a fire.

In artificial intelligence, the distinction between causal and evidential rules has
been emphasized by Pearl [1988, p. 499f.]. He argues that special care is needed
when mixing causal and evidential reasoning. To make his point, Pearl uses the
following examples:

Bill showed slight difficulties standing up, so I believed he was injured.
Harry seemed injured, so I believed he would be unable to stand up.

The former uses the evidential pathway from the observation of Bill’s difficulties in
standing up to the explanation that he is injured, and the latter the reverse causal
pathway from the observation of Harry’s injuries to the effect that he is unable to
stand up. The question is then addressed whether it is likely that Bill or Harry are
likely to be drunk, drunkenness being a second cause for difficulties in standing up,
independent from injury. Both Bill’s and Harry’s intoxicated state could be argued
for using the evidential rule ‘If someone has difficulties standing up, then he may
be drunk.’ However, for Bill the conclusion that he may be drunk seems more likely
than for Harry, since for Bill both explanations for his difficulties in standing up,
namely injury or being drunk, seem to be reasonable, whereas for Harry drunkenness

2160



Argumentation Theory in Formal and Computational Perspective

is a less likely hypothesis now that an injury has been observed. The distinction
between causal and evidential rules has played a central role in Pearl’s thinking
about causality [Pearl, 2000/2009], which relates to the probabilistic modelling tool
of Bayesian Networks (see [Jensen & Nielsen, 2007; Kjaerulff & Madsen, 2008]).
Bayesian Networks have been connected to the modelling of argumentation with
legal evidence by Hepler et al. [2007] and by Fenton et al. [2012] (see also [Taroni
et al., 2006]). Vlek et al. [2014; 2016] discuss the design and understanding of
Bayesian Networks for evidential reasoning using scenarios. Timmer et al. [2017]
discuss an algorithm to extract argumentative information from a Bayesian Network
modeling hypotheses and evidence. Verheij [2017] investigates connections between
arguments, scenarios and probabilities in one formal model.

The distinction between causal and evidential rules has also been used in the
formalized hybrid argumentative-narrative model of reasoning with evidence devel-
oped by Bex and his colleagues [Bex et al., 2010; Bex, 2011]. In this model, the
elements of a scenario, or narrative, describing how a crime may have been com-
mitted, can be supported by arguments grounded in the available evidence. Causal
connections between the elements of a scenario contribute to its coherence. It is pos-
sible that more than one scenario is available, each scenario with different evidential
support and a different kind of coherence. Bex and Verheij [2012] have developed the
argumentative-narrative model in terms of argument schemes and their associated
critical questions (see Section 4.3).

5.5 Applications and case studies

A first reason for the popularity of argumentation research in the field of artificial
intelligence is that it has led to theoretical advances. A second reason is that the
theoretical advances have been corroborated by a variety of interesting applications
and case studies, including advances in natural language processing. We give some
examples.

Fox and Das [2000] provided a book-length study of AI technology in medical
diagnosis and decision making, with much emphasis on the argumentative aspects
(see also Fox and Modgil, 2006, where argumentation-based decision making is used
to extend the Toulmin model). Aleven and Ashley [1997a; 1997b] developed a case-
based argumentation tool that was empirically tested for its effects on learning.
Buckingham Shum and Hammond [1994] approached the design of artefacts such as
software as an argumentation problem. Grasso et al. [2000] worked on argumentative
conflict resolution in the context of health promotion. Teufel [1999] has worked on
the problem of automatically estimating a sentence’s role in argumentation, using
a model of seven text categories called argumentative zones. Mochales Palau and
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Moens [2009] developed software for the mining of argumentative elements in legal
texts. Hunter and Williams [2010] investigated the aggregation of evidence in a
healthcare setting. Grasso [2002] and Crosswhite et al. [2004] have worked on the
computational modelling of rhetorical aspects of argument. Reed and Grasso [2007]
have collected argumentation-oriented research using natural language techniques.
They discuss, for instance, the generation of argumentative texts as studied by
Elhadad [1995], Reed [1999], Zukerman et al. [1998], and Green [2007].

Rahwan and McBurney [2007] edited a special issue on argumentation technology
of the journal IEEE Intelligent Systems. Application areas addressed in the issue are
medical decision-making, emotional strategies to persuade people to follow a healthy
diet, ontology engineering, discussion mediation, and web services. In the 2012 edi-
tion of the COMMA conference proceedings series on the computational modelling
of argument, a separate section was devoted to innovative applications. The topics
included: automatic mining of arguments in opinions, a learning environment for
scientific argumentation, semi-automatic analysis of online product reviews, argu-
mentation with preferences in the setting of eco-efficient biodegradable packaging,
hypothesis generation from cancer databases, sense making in policy deliberation,
music recommendation, and argumentation about firewall policy. For applications
focusing on argumentation support and facilitation, the reader is referred to Sec-
tion 4.5.

In the domain of AI and law theories and systems were developed and tested
by the use of case studies. For instance, McCarty [1977; 1995] analysed a seminal
case in US tax law (Eisner v. Macomber, 252 U.S. 189 [1920]). In that case, the
US Supreme Court decided that a federal rule of tax law was invalid. McCarty’s
aims were set high, namely to build a software implementation that could handle
a number of elusive, argumentative aspects of legal reasoning, illustrated in the
majority opinion and dissenting opinions concerning the issues in this case. Quoting
McCarty [1995]:

1. Legal concepts cannot be adequately represented by definitions that state nec-
essary and sufficient conditions. Instead, legal concepts are incurably ‘open-
textured’.

2. Legal rules are not static, but dynamic. As they are applied to new situations,
they are constantly modified to ‘fit’ the new ‘facts’. Thus the important process
in legal reasoning is not theory application, but theory construction.

3. In this process of theory construction, there is no single ‘right answer’. How-
ever, there are plausible arguments, of varying degrees of persuasiveness, for
each alternative version of the rule in each new factual situation.
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Berman and Hafner [1993] studied the 1805 Pierson v. Post case concerning the
ownership of a dead fox chased by Post, but killed and taken by Pierson. They
emphasize the teleological aspects of legal argumentation, in which the goals of legal
rules and decisions are taken into account. Bex [2011] used the Anjum case, a Dutch
high media profile murder case, to test his proposal for a hybrid argumentative-
narrative model of reasoning with evidence. Atkinson [2012] edited an issue of the
journal Artificial Intelligence and Law on the modelling of a 2002 case about the
ownership of a baseball, representing possibly value in the order of a million dollars,
being the one that Barry Bonds hit when he broke the record of home-runs in one
season (Popov v. Hayashi).

6 Conclusion

In the previous sections, we have introduced argumentation and argumentation the-
ory as a field of study that goes back to classical times, passing through a neo-
classical and anti-formal period in the second half of the 20nd century, and since the
final decade of the 2nd millenium going through a formal and computational turn.

In Section 2, we discussed crucial concepts that have been indispensable in the
study of argumentation before the recent formal and computational turn: stand-
points, unexpressed premises, argument schemes, argumentation structures, and
fallacies. All of these also played—and still play—a significant role in current for-
mal and computational approaches to argumentation.

Standpoints occur in formal and computational work as the conclusions of
arguments—possibly intermediate—and as the commitments of the players in a
computational dialogue game. Recently we see a move towards standpoints with
a complex structure, in work that allows a complex hypothesis (such as a plan or a
scenario) as the conclusion of an argument.

Unexpressed premises have been studied in the context of manually analyzing
argumentative texts in software tools. In today’s research on argument mining,
attempts are made to automatically understand argumentative texts, and we see
that the ubiquity of unexpressed elements in argumentative discourse provides a
significant hurdle.

Argument schemes have been the source of much interaction between the non-
formal and formal/computational research communities. This is not a coincidence
as argument schemes can be regarded as being intermediate between non-formal and
the formal: argument schemes are formal in the sense that they have a well-organized
structure, including elements such as premises, conclusions and critical questions;
and argument schemes are non-formal in the sense that they handle just about every
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Artificial systems Natural settings

Theoretical models
Figure 20: Perspectives on argumentation

area of human reasoning, whether legal, medical, or common-sense. Because of their
intermediate position, argument schemes have been referred to as semi-formal.

Argumentation structures have been extensively studied both in non-formal and
in formal research into argumentation theory. Today’s argumentation logics and
argumentation diagramming tools provide carefully designed structuring tools that
fit the non-formal theory well, and that have been applied to argument analysis and
design. In the study of argumentation structures, we see perhaps most convincingly
that the anti-logical period in argumentation theory of the second half of the 20nd

century is now superseded by a fruitful interaction between formal and non-formal
methods.

Fallacies have received mostly indirect attention in the formal and computational
study of argumentation, in particular because the mirror image of fallacies—correct
argumentation—is and always has been in the center of formal attention. Much
progress has been made in the characterization of typically argumentative versions
of validity, initially distancing from classical formal theories, and nowadays gradually
returning to an integration with classical logic and standard probability theory, this
time while engaging with the needs of actual human argumentation as uncovered in
argumentation theory.

We hope that it has become clear that there are a great many issues that can be
fruitfully researched if argumentation and artificial intelligence scholars cooperate
(cf. the research programme initiated by Reed & Norman [2004]). The distinction
between non-formal and formal argumentation theory becomes ever more blurred,
and argumentation theory is ever further turning into an interdisciplinary enterprise,
integrating insights from different perspectives (see Figure 20).

In the theoretical models perspective, the focus is on theoretical (possibly non-
formal) and formal models of argumentation, for instance, extending the long tra-
dition of philosophical and formal logic. In the artificial systems perspective, the
aim is to build computer programmes that model or support argumentative tasks,

2164



Argumentation Theory in Formal and Computational Perspective

for instance, in online dialogue games or in knowledge-based systems (computer
programmes that reproduce the reasoning of an expert, for instance, in the law or
in medicine). The natural settings perspective helps to ground research by concen-
trating on argumentation in its natural form, for instance, in the human mind or
in an actual debate. We are curious where the continuing synergy between these
perspectives will bring our understanding of argumentation, this utterly human char-
acteristic of civilized coexistence.
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Abstract
This article gives an overview of the history of formal argumentation in terms

of a distinction between argumentation-based inference and argumentation-
based dialogue. Systems for argumentation-based inference are about which
conclusions can be drawn from a given body of possibly incomplete, inconsistent
of uncertain information. They ultimately define a nonmonotonic notion of log-
ical consequence, in terms of the intermediate notions of argument construction,
argument attack and argument evaluation, where arguments are seen as con-
stellations of premises, conclusions and inferences. Systems for argumentation-
based dialogue model argumentation as a kind of verbal interaction aimed at
resolving conflicts of opinion. They define argumentation protocols, that is,
the rules of the argumentation game, and address matters of strategy, that is,
how to play the game well. For both aspects of argumentation the main formal
and computational models are reviewed and their main historical influences are
sketched. Then some main applications areas are briefly discussed.

1 Introduction
This article gives an overview of the history of formal argumentation. There are
two ways to write such an overview. One is to describe all significant research that
has been done, while another is to give insight into the historical developments
underlying the current state of the art. In this article I will do the latter. This will
inevitably lead to a stronger focus on the early developments and a less detailed
description of later research.

The historical overview is given in terms of a distinction between argumentation-
based inference and argumentation-based dialogue. Systems for argumentation-
based inference are about which conclusions can be drawn from a given body of
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possibly incomplete, inconsistent of uncertain information. They ultimately define
a nonmonotonic notion of logical consequence, in terms of the intermediate notions
of argument construction, argument attack and argument evaluation, where argu-
ments are seen as constellations of premises, conclusions and inferences. Systems for
argumentation-based dialogue model argumentation as a kind of verbal interaction
aimed at resolving conflicts of opinion. They define argumentation protocols (the
rules of the argumentation game) and address matters of strategy (how to play the
game well). While accounts of argumentation as inference assume a single static and
global body of information from which the arguments and attacks are constructed,
in studies of argumentation as dialogue this information is dynamic (it can change
during a dialogue) and distributed over the dialogue’s participants. Models of argu-
mentation as inference can be embedded in models of argumentation as dialogue in
two complementary ways: at each stage of a dialogue they can be ‘globally’ applied
to the ‘current’ body of information; and within each dialogue participant they can
be ‘locally’ applied as the participant’s internal reasoning model.

Like all informal distinctions, the distinction between argumentation as inference
and argumentation as dialogue breaks down at some point, and therefore I will also
discuss work that cannot easily be classified as belonging to either inference or dia-
logue, especially work on argumentation dynamics that abstracts from agent-related
and dialogical aspects. Another way in which a strict distinction between inference
and dialogue causes problems for a historical overview is that some historical in-
fluences cannot clearly be described as influencing just models of inference or just
models of dialogue. Some work has instead more generally promoted the idea of
dialectics as constructing, criticising and comparing arguments, whether in an infer-
ential or in a dialogical setting. One such historical influence was the development
of dialogue logic [Lorenzen and Lorenz, 1978], which gives a game-theoretic formula-
tion of the semantics of logical constants in terms of a dispute between a proponent
and an opponent of a claim, plus a game-theoretic notion of logical consequence
as the existence of a winning strategy for the proponent. This predates modern
argument games for argumentation-based inference and also influenced the devel-
opment of formal dialogue systems for argumentation. Having said so, in dialogue
logic these ideas were only used to reformulate existing monotonic notions of logical
consequence, so dialogue logic cannot be said to model genuine argumentation.

Another historical influence that is not confined to either inference or dialogue
is early AI & Law work on the computational modelling of legal argument. Among
the earliest work in AI and law on legal argument was the TAXMAN II project of
[McCarty, 1977; McCarty, 1995]). According to McCarty [1995], p. 285 “The task for
a lawyer or a judge in a “hard case” is to construct a theory of the disputed rules that
produces the desired legal result, and then to persuade the relevant audience that
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this theory is preferable to any theories offered by an opponent". Other influential
early systems were the HYPO system [Rissland and Ashley, 1987; Ashley, 1990] and
its successor the CATO system [Aleven and Ashley, 1991; Aleven, 2003]. These
systems were meant to model how lawyers in common-law jurisdictions make use of
past decisions when arguing a case. They did not compute an ‘outcome’ or ‘winner’
of a dispute; instead they were meant to generate debates as they could take place
between ‘good’ common-law lawyers. Several researchers who later contributed to
the general formal study of argumentation originate from AI & Law, such as Trevor
Bench-Capon, Tom Gordon, Giovanni Sartor, Bart Verheij and myself.

The remainder of this article is divided into two main sections on, respectively,
argumentation-based inference (Section 2) and dialogue (Section 3). Then some
main applications areas are briefly discussed in Section 4 and some concluding re-
marks are made in Section 5.

2 Formal and computational models of argumentation-
based inference

Nowadays, many systematic introductions to argumentation start with Dung’s [1995]
theory of abstract argumentation frameworks, which takes the notions of argument
and attack as primitive, i.e., nothing is assumed about about the structure of ar-
guments or the nature of attack. Yet there had been quite some formal work on
argumentation-based inference before Dung’s landmark 1995 paper, and all this early
work specified the structure of arguments and the nature of attack. The seminal
paper in this respect was [Pollock, 1987]. Many ideas developed in this early body
of work are still important today. The focus in this early work on structured ar-
gumentation agrees with the usual approaches in informal argumentation, which do
not have arguments as the primitive notion but concepts like claims, reasons and
grounds. For example, Walton [2006a], p. 285 defines the term ‘argument’ as “the
giving of reasons to support or criticize a claim that is questionable, or open to
doubt”.

In this section first the three main historical sources of influence are sketched,
namely, philosophy, nonmonotonic logic & logic programming, and informal logic &
argumentation theory. Then the two seminal bodies of work are discussed in more
more detail, John Pollock’s argumentation-based system for defeasible reasoning
and Phan Minh Dung’s theory of abstract argumentation frameworks. Their works
have inspired much research on, respectively, structured and abstract approaches to
argumentation-based inference, which will subsequently be discussed.
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2.1 Main historical influences
The formal and computational study of argumentation-based inference is generally
regarded as a subfield of AI, originating from the study of nonmonotonic logic.
However, there are two main other historical influences.

2.1.1 Philosophy

Arguably, the first mature formal system for argumentation-based inference was
proposed by Pollock [1987]1. John Pollock (1940-2009) was an influential American
philosopher who made important contributions to various fields, including episte-
mology and cognitive science. In the last 25 years of his life he also contributed to
artificial intelligence, starting with his classic 1987 paper on defeasible reasoning.
Many important topics in the formal study of argumentation-based inference were
first studied by Pollock, or first studied in detail, such as argument structure, the
nature of defeasible reasons, the interplay between deductive and defeasible rea-
sons, rebutting versus undercutting defeat, argument strength, argument labellings,
self-defeat, and resource-bounded argumentation.

Pollock’s work on formal argumentation was heavily influenced by the idea of
defeasible reasons as developed in moral philosophy by Ross [1930] in his notion
of prima facie moral rules, in epistemology by Chisholm [1957], Rescher [1977] and
Pollock himself [1970, 1974], and as applied to practical reasoning by Raz [1975]. The
term ‘defeasibility’ originates from legal philosophy, in particular from Hart [1949]
(see the historical discussion in Loui [1995]). Hart observed that legal concepts are
defeasible in that the conditions for when a fact situation classifies as an instance of
a legal concept (such as ‘contract’), are only ordinarily, or presumptively, sufficient.
If a party in a law suit succeeds in proving these conditions, this does not have the
effect that the case is settled; instead, legal procedure is such that the burden of
proof shifts to the opponent, whose turn it then is to prove exceptional facts which,
despite the facts proven by the proponent, nevertheless prevent the claim from being
granted. For instance, insanity of one of the contracting parties is an exception to the
legal rule that an offer and an acceptance constitute a binding contract. The notion
of burden of proof was also studied by [Rescher, 1977], in the context of epistemology.
Among other things, Rescher claimed that a dialectical model of scientific reasoning
can explain the rational force of inductive arguments: they must be accepted if they
cannot be successfully challenged in a properly conducted scientific dispute.

Pollock’s work on formal argumentation originated as an attempt to make formal

1Several paragraphs in this subsection are, some with minor modifications, taken from Prakken
and Horty [2012].
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sense of the intuitive notion of defeasible reasoning that seemed to be at work in
these papers and books. In fact, the task had been attempted before. There is an
early paper by Chisholm [1974], a heroic effort whose failure is no surprise given the
limited tools available at the time. Still, in spite of the blossoming of philosophical
logic in the 1960’s and 1970’s, the logical study of defeasible reasoning had received
almost no attention at all. It is fair to say that Pollock, working in isolation, was the
first philosopher working in the field of philosophy, as opposed to computer science,
to outline an adequate framework for defeasible reasoning.

2.1.2 Nonmonotonic logic and logic programming

The first AI systems for argumentation-based inference were not influenced by the
above-discussed philosophical developments. Instead, they were presented as new
ways to do nonmonotonic logic. Nonmonotonic logic had become fashionable around
1980 and a variety of approaches was being pursued. By the late 1980’s, the field
of nonmonotonic logic had been recognized as an important subfield of artificial in-
telligence. The field was motivated by the fact that commonsense reasoning often
involves incomplete or inconsistent information, in which cases logical deduction
is not a useful reasoning model. If information is incomplete, then nothing useful
can be deductively derived, while if it is inconsistent, then anything is deductively
implied. Nonmonotonic logics allow ‘jumping to conclusions’ in the absence of in-
formation to the contrary. The canonical example is ‘birds typically fly, Tweety is
bird, therefore (presumably) Tweety can fly’. This inference holds as long as no
information is available that Tweety is not a typical bird with respect to flying, such
as a penguin. Nonmonotonic logic can also model the derivation of useful conclu-
sions from inconsistent information, namely, by focusing on consistent subsets of
the inconsistent information. Several years after the first nonmonotonic logics were
proposed in the now famous special issue on nonmonotonic logic of the Artificial
Intelligence journal [Bobrow, 1980], the idea arose in this field that nonmonotonic
inference can be modelled as the competition between arguments.

The earliest nonmonotonic reasoning systems with an argumentation flavour
include the work of Touretzky [1984; 1986] on inheritance systems, later developed
along with several collaborators [Horty et al., 1990]. Inheritance systems model
reasoning about how objects inherit properties from the classes to which they belong.
They are nonmonotonic since the inheritance of properties of classes by subclasses
can be blocked by exceptions. For example, penguins do not inherit from birds the
property of being able to fly. Although the work on inheritance systems did not use
argumentation terms, such systems still have all the characteristics of argumentation
systems. To start with, inheritance paths effectively are arguments. For example,
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the conclusion that Tweety the penguin can fly can be drawn via the path ‘Penguins
are birds and birds can fly’ while the conclusion that Tweety the Penguin cannot fly
can be drawn via the inheritance path ‘Penguins cannot fly’. Inheritance systems
also have various notions of conflict between inheritance plus definitions of whether a
path is ‘permitted’ given its conflict relations with other paths. While the technical
solutions devised in this work are now somewhat outdated, the work on inheritance
paths has clearly influenced the development of the first AI argumentation systems.
Among other things, the publications in inheritance are great sources of relevant
examples.

An influential figure in the early days was Ron Loui. His [1987] paper was,
although technically still preliminary, influential in promoting the idea of formulating
nonmonotonic logic as argumentation. With Guillermo Simari he developed a a
technically mature version of his ideas [Simari and Loui, 1992]. Several other of
his papers more generally promoted the idea of computational dialectics and were
thus also relevant for dialogue models of argumentation. The fullest exposé of these
ideas is [Loui, 1998], which circulated among researchers for several years until it
was finally published in 1998.

Other relevant early work was the work of Nute [1988], later developed into
so-called Defeasible Logic [Nute, 1994]. This approach is in spirit very close to
argumentation but while in argumentation approaches conflict and defeat happen
between arguments, in Defeasible Logic they happen between rules. For this reason
the work on Defeasible Logic has diverged somewhat from the field of computational
argument, although some work on the former has studied the formal relation with
argumentation approaches. In particular, [Governatori et al., 2004] studied to which
extent defeasible logics can be reformulated in terms of Dung’s theory of abstract
argumentation frameworks.

Finally, the field of logic programming was influential since the idea arose to
give semantics to negation as failure in argumentation-theoretic terms. If not P
is assumed to hold because of the failure to derive P , then a derivation of P can
be regarded as an attack on any derivation using not P . In other words, a logic-
programming derivation can be regarded as a competition between arguments and
counterarguments. Work on this idea of e.g. Geffner [1991] and Kakas et al. [1992]
was a main source of inspiration of Dung’s landmark [1995] paper on abstract argu-
mentation frameworks.

2.1.3 Informal logic and informal argumentation theory

One would expect that the fields of informal logic and argumentation theory (which
are often regarded as a single field) were also important historical influences on
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argumentation-based models of inference. However, in fact their influence has been
relatively modest. In particular, the work of Toulmin [1958] and the resulting work
on argumentation schemes was until around 2000 hardly linked to computational
argument. An important event here was the 2000 Bonskeid Symposium on Argument
and Computation in the Scottish mountains, organised by Tim Norman and Chris
Reed, at which researchers from various formal and informal fields met in an informal
setting. Various interdisciplinary collaborations resulted from this event, partly
reported in [Reed and Norman, 2003].

Yet these fields originated from similar concerns about deductive logic as those
that gave rise to the field of nonmonotonic logic in AI, namely, the inadequacy of
deductive logic as a model of ‘ordinary’ reasoning. Stephen Toulmin, whose 1958
book The Uses of Argument is generally regarded as the origin of informal logic
and argumentation theory, criticised the logicians of his days for neglecting many
features of ordinary reasoning. In his well-known pictorial scheme for arguments (see
Figure 1) he left room for “rebuttals” of an argument on the basis of exceptions to
the “warrant” connecting the arguments “data” to its “claim”. The idea of rebuttals
is clearly related to Hart’s [1949] ideas on exceptional circumstances that can defeat
the application of a legal concept.

Figure 1: Toulmin argument scheme and an instance

Toulmin’s notion of a warrant was in informal logic and argumentation theory
generalised into rich classifications of argument schemes for presumptive forms of
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reasoning, while his notion of a rebuttal was generalised into lists of critical questions
attached to argument schemes [Walton, 1996]. The idea of argumentation schemes
with critical questions has since the above-mentioned Bonskeid 2000 event often
been used in formal and computational models of argumentation-based inference
and dialogue.

Toulmin also argued that outside mathematics the validity of an argument does
not depend on its syntactic form but on whether it can be defended in a properly
conducted dispute, and that the task of logicians is to study the criteria for properly
conducted disputes. This became an important and very influential idea, as further
discussed below in Section 3 on argumentation-based dialogue. However, it also had
an unfortunate effect. For decades, informal logic and argumentation theory rejected
any use of formal methods in the study of ordinary reasoning, based on a mistaken
equation of formal methods with deductive logic. As we now know after more than
35 years of research on nonmonotonic logic, belief revision and computational argu-
ment, many features of non-mathematical reasoning that Toulmin and his successors
analysed can be formalised. For example, the AI work on argumentation schemes
since 2000 has shown that reasoning with such schemes can to a large extent be
formalised in modern argumentation logics.

2.2 Seminal work
I now discuss the two seminal contributions in the field, the ones of Pollock [1987]
and Dung [1995]. These two papers successively introduced the two key ideas of the
formal study of argumentation-based inference. Pollock introduced the notion of a
defeasible reason, while Dung showed that argument evaluation can be formalised by
assuming just two primitive notions of argument and attack. Neither of these ideas
on their own define the field; it is their combination that makes the argumentation
way of doing nonmonotonic logic so powerful.

2.2.1 Pollock’s work

As said above, arguably, the first mature formal system for argumentation-based
inference was proposed by Pollock [1987]2. In fact, this work became close to being
one of the first nonmonotonic logics at all. Concerning his 1987 paper, Pollock
later wrote that he first developed the idea in 1979, but that he did not initially
publish it because, as he says, “being ignorant of AI, I did not think anyone would
be interested.” [Pollock, 2007b, p. 469]. If Pollock had published this idea when

2Several parts of this subsection are reused or adapted from Prakken and Horty [2012].
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it first occurred to him, the result would have been not only the first argument-
based theory of defeasible reasoning, but one of the first systems of any kind for
nonmonotonic reasoning.

I now discuss Pollock’s system in some more detail, to illustrate that it intro-
duced several fundamental ideas into our field. As usual in logic, arguments in
Pollock’s approach are inference graphs, in which a final conclusion is inferred from
the premises via intermediate conclusions. Noe that when an argument uses no
premise more than once, the graph is a tree. What is unusual is Pollock’s ideas on
how conclusions can be supported by premises. The ‘classic’ logicians’ view attacked
by Toulmin [1958] had been that all arguments should be deductively valid, that is,
the truth of their premises should guarantee the truth of their conclusion, and that
the only source of fallibility of good arguments is their premises. Influenced by Toul-
min, the fields of informal logic and argumentation theory had already questioned
this view and argued that arguments that fail to meet this standard of inferential
perfection can still be good, as long as they withstand critical scrutiny. Pollock
[1987] gave us the tools to formalise this new account, with his notion of a defeasible
reason.

In Pollock’s approach, the inference rules (in his terminology “reasons”) used to
construct arguments come in two kinds: deductive and defeasible reasons (in his early
work called “conclusive’ and “prima facie” reasons). An argument can be defeated
on its applications of defeasible reasons, which can happen in two ways. Rebutting
defeaters attack the conclusion of a defeasible inference by supporting a conflicting
conclusion. For example, ‘Tweety can fly since it is a bird and birds typically fly’ can
be attacked by ‘Tweety cannot fly since Tweety is a penguin and penguins cannot
fly’. Undercutting defeaters instead attack the defeasible inference itself, without
supporting a conflicting conclusion. For example: if the object looks red, this is
a reason for concluding, defeasibly, that the object is red; but the presence of red
illumination interrupts the reason relation without suggesting any conflicting con-
clusion. Pollock formalized several defeasible reasons that he found important in
human cognition, such as reasons for perception, memory, induction, the statisti-
cal syllogism and temporal persistence, as well as undercutting defeaters for these
reasons.

Pollock’s notion of a defeasible reason is clearly related to argumentation theory’s
notion of an argumentation scheme: such schemes are defeasible reasons while many
of their critical questions can be regarded as pointers to undercutting defeaters and
other questions as pointers to rebutting defeaters or premise attacks.

Consider by way of example of Pollock’s notions of reason, argument and con-
flict the following version of the Tweety example. Figure 2 contains two rebutting
arguments for the conclusions that Tweety flies, respectively, does not fly, and an
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undercutting argument defeating the argument that Tweety flies. In this figure, de-

Figure 2: An example

ductive, respectively defeasible inferences are visualized with, respectively, solid and
dotted lines without arrow heads, while defeat relations are displayed with arrows.
The figure assumes four defeasible inference rules, informally paraphrased as follows:

r1: That an object looks like having property P is a defeasible reason
for believing that the object has property P

r2: That n/m observed P ’s are Q’s (where n/m > 0, 5) is a defeasible
reason for believing that most P ’s are Q’s

r3: That most P ’s are Q’s and x is a P is a defeasible reason for
believing that x is a Q

r4: That an ornithologist says ϕ about birds is a defeasible reason for
believing ϕ

Rule r1 expresses that perceptions yield a defeasible reason for believing that what
is perceived to be the case is indeed the case, rule r2 captures enumerative induction,
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while r3 expresses the statistical syllogism. Rule r4 can be seen as a special case of
the argumentation scheme from expert testimony; cf. [Walton, 1996].

Moreover, the figure assumes an obvious strict inference rule plus an undercutting
defeater for r3:

r5: That P ’s are a subclass of Q’s and a is a P is a deductive reason
for believing that a is a Q

r6: That x is an R, most R’s are not Q’s and R’s are a subclass of P ’s
is a deductive reason for believing ¬r3

Rule r6 is a special case of Pollock’s “subproperty defeater” of the statistical syllo-
gism, which says that conflicting statistical information about a subclass undercuts
the statistical syllogism for the superclass.

Defeasible reasons should not be confused with nonmonotonic consequence no-
tions. It is possible to design argumentation logics with nonmonotonic consequence
notions in which nevertheless all arguments have to be deductively valid. For ex-
ample, in classical argumentation arguments are classical implication relations from
consistent subsets of a possibly inconsistent body of information and the only source
of fallibility of arguments is their premises. Recent portrayals of Pollock’s approach
as ‘deductive’ [Hunter and Woltran, 2013] do no justice to his approach, given that
Pollock strongly emphasised that “It is logically impossible to reason successfully
about the world around us using only deductive reasoning. All interesting reasoning
outside mathematics involves defeasible steps.” [Pollock, 1995, p.41]. Pollock thus
clearly rejected the conventional view that all arguments have to be deductively
valid.

Defeasible reasons should also not be confused with deductive inference rules
with assumption-type premises. Thinking otherwise would have the odd consequence
that even the classically valid rules of inference become defeasible when applied to
assumptions.

Once arguments can employ defeasible reasons, the support relation between
their premises and conclusion can have varying strength. Pollock’s 1987 system did
not yet include a notion of strength but Pollock later took the notion of strength
of arguments very seriously. Since his systems were meant for epistemic reasoning,
he always formulated strength of reasons in terms of numerical degrees of belief. In
his 1994 system, rebutting and undercutting arguments only succeed in defeating
their target if the degree of belief of their conclusions is not lower than that of the
attacked argument.

Finally, Pollock was well aware that just defining notions of argument and de-
feat are not enough and he spent much effort in designing well-behaved notions of
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argument acceptability. His two earliest definitions predate much current work on
argumentation-based semantics. His 1987 proposal was by Dung [1995] proven to be
an instance of Dung’s grounded semantics, while his 1994 labelling definition pre-
dates the currently popular labeling approach to abstract argumentation and was
by Jakobovits [2000] proven to be an instance of Dung’s preferred semantics.

2.2.2 Dung’s abstract argumentation frameworks

Dung’s landmark 1995 paper is the origin of the second main idea of our field, namely,
that argument evaluation can be formalised by assuming just two primitive notions
of argument and attack. With just these two notions, Dung was able to develop
an extremely rich and elegant abstract theory of argument evaluation. As apparent
from this historic overview, Dung was not the first to study argument evaluation
nor the first to provide well-behaved definitions. His great contribution was twofold:
he showed that particular definitions of argument evaluation conformed to simple
abstract patterns, and he showed that the same patterns are also implicit in other
nonmonotonic logics, in logic programming and even in cooperative game theory.
Exaggerating a little, one could say that while Pollock arguably was the father
of argumentation in AI, Dung was the midwife, who smoothened its delivery into
mainstream AI. His 1995 AI Journal paper was not the first work on argumentation-
based inference, but its influence has been enormous, now being the de facto standard
in the field. It is fair to say that Dung [1995] has made argumentation respectable
in mainstream AI.

Nevertheless, the historic roots of Dung’s 1995 paper should not be forgotten. As
mentioned in the introduction to Section 2, all early work on argumentation-based
inference specified the structure of arguments and the nature of attack (often called
‘defeat’). Even Dung in his landmark 1995 paper stood in this tradition. Dung did
two things: he developed the new idea of abstract argumentation frameworks, and
he used this idea to reconstruct and compare a number of then mainstream non-
monotonic logics and logic-programming formalisms, namely, default logic [Reiter,
1980], Pollock’s [1987] argumentation system and several logic-programming seman-
tics. However, these days the second part of his paper, and also the third part on
relations with cooperative game theory, is largely forgotten and his paper is almost
exclusively cited for its general theory of abstract argumentation frameworks.

A historic overview of work on argumentation-based inference would not be com-
plete without listing Dung’s simple and elegant basic notions. An abstract argumen-
tation framework (AF ) is a pair 〈AR, attacks〉, where AR is a set arguments and
attacks ⊆ AR × AR is a binary relation. The theory of AFs then addresses how sets
of arguments (called extensions) can be identified which are internally coherent and
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defend themselves against attack. A key notion here is that of an argument being
acceptable with respect to a set of arguments: A ∈ AR is acceptable with respect
to S ⊆ AR if for all A ∈ S: if B ∈ AR attacks A, then some C ∈ S attacks B
(nowadays it is more usual to say that A ∈ AR is defended by S ⊆ AR). Then
relative to a given AF various types of extensions can be defined as follows (here E
is conflict-free if no argument in E attacks an argument in E):

• E is admissible if E is conflict-free and each argument in E is acceptable with
respect to E;

• E is a complete extension if E is admissible and each argument that is accept-
able with respect to E belongs to E;

• E is a preferred extension if E is a maximal (with respect to set inclusion)
admissible set;

• E is a stable extension if E is conflict-free and attacks all arguments outside
it;

• E is a grounded extension if E is the least fixpoint of operator F , where F (S)
returns all arguments acceptable to S.

Dung showed that the grounded extension is always unique but that there can be
multiple extensions of the other types. Dung also showed that every stable extension
is preferred but not vice versa, that the grounded extension is contained in every
other extension, and that all extensions of any type are complete.

To illustrate how abstract argumentation frameworks can be instantiated, con-
sider again Figure 2. There are three arguments. In fact, there are more arguments,
since each of the three arguments we consider has several subarguments. However,
none of these is attacked, so they can be ignored for simplicity. The two rebutting
arguments for the conclusions that Tweety can fly, respectively, cannot fly attack
each other, while the undercutting argument attacks the argument that Tweety flies.
The resulting argumentation framework is shown in Figure 3. In this case the four
semantics coincide: the set with the undercutting argument and the argument that
Tweety cannot fly is the grounded extension, while it is also the unique complete,
stable and preferred extension (the grey colourings indicate extension membership).
To see why it is preferred, observe that the undercutting argument defends the
argument that Tweety cannot fly against its rebutting attacker that Tweety can fly.

To illustrate that argumentation frameworks can have multiple extensions, con-
sider the simpler example in Figure 4 where the undercutting argument has been
deleted from the AF of Figure 3. In grounded semantics the extension is empty
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Figure 3: An abstract argumentation framework

(case a) but in preferred and stable semantics there are two extensions, depending
on whether the argument that Tweety can (case b) or cannot fly (case c) is accepted.
Finally, all three extensions are complete.

Figure 4: A simpler abstract argumentation framework and three extensions

These examples point at a minor source of terminological confusion, since they
use Dung’s term ‘attack’ while Pollock always used ‘defeat’. When Dung’s 1995 paper
appeared, ‘defeat’ was the standard term, not just in Pollock’s work but essentially
in all early work on argumentation-based inference. Current work on the ASPIC+

framework [Prakken, 2010; Modgil and Prakken, 2013; Modgil and Prakken, 2014]
also uses ‘defeat’ and reserves the term ‘attack’ for more basic, purely syntactical
forms of conflicts between arguments. Defeat is then successful attack according to
some notion of argument strength or preference, an idea present in much early work
on argumentation-based inference, although usually not employing the term ‘attack’.
Thus it is not ASPIC+’s attack relation but its defeat relation which instantiates
Dung’s notion of attack.

2.3 Other early work

Initial ideas In the same year in which Pollock published his seminal paper, Loui
[1987] appeared as arguably the first AI paper that explicitly proposed to design

2196



Historical Overview of Formal Argumentation

nonmonotonic logics in the argumentation way. In 1992, Simari and Loui fully
formalized Loui’s [1987] initial ideas, which work in turn led to the development of
Defeasible Logic Programming [Garcia et al., 1998; Garcia and Simari, 2004]. One
year later, Konolige [1988] proposed an argumentation approach as a solution to
the famous Yale Shooting problem in logic-based specifications of dynamic systems
[Hanks and McDermott, 1986]. Although his formalism was still rather rudimentary,
Konolige’s discussion anticipates many issues and distinctions of later work, so that
his paper can be regarded as one of the forerunners of the study of argumentation-
based inference.

Argumentation as a proof theory for preferential entailment Around 1990,
some papers proposed argumentation as a proof theory for model-theoretic notions
of nonmonotonic consequence (preferential entailment). Baker and Ginsberg [1989]
did this for a minimal-model semantics of prioritised circumscription, while Geffner
[1992] and Geffner and Pearl [1992] did the same for their ‘conditional entailment’
semantics for default reasoning. The basic idea is that (1) given a propositional or
first-order theory, an argument is a set or conjunction of assumptions consistent with
the theory and that combined with the theory yields conclusions; and (2) arguments
can be attacked by arguments for the negation of the attacked argument or one of its
assumptions. This idea later became the basis for assumption-based argumentation
[Bondarenko et al., 1997], to be discussed in Section 2.4. Although the idea to found
argumentation-based inference on preferential entailment is very interesting, it has
since then not been further pursued.

Abstract argumentation systems Lin and Shoham [1989] were the first to pro-
pose the idea of abstraction in structured argumentation. They developed the no-
tion of abstract argumentation structures with strict and defeasible rules and they
showed how a number of existing nonmonotonic logics could be reconstructed as
such structures. Gerard Vreeswijk further developed these ideas into his abstract
argumentation systems [Vreeswijk, 1991; Vreeswijk, 1993b; Vreeswijk, 1997]. Since
several of Vreeswijk’s ideas are included in today’s ASPIC+ framework, it is worth-
while summarising some of his definitions. Like Lin & Shoham, Vreeswijk defined
arguments in terms of an unspecified logical language L, only assumed to contain the
symbol ⊥, denoting ‘falsum’ or ‘contradiction,’ and two unspecified sets of strict (→)
and defeasible (⇒) inference rules defined over L. In addition, he defined the main
elements that are missing in Lin & Shoham’s system, namely, notions of conflict and
defeat between arguments. Vreeswijk defined arguments as follows:
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Definition 2.1. An argument σ is:

1. ϕ if ϕ ∈ L; in that case: Prem(σ) = {ϕ}, Conc(σ) = ϕ, Sent(σ) = {ϕ};

2. σ1, . . . σn → ϕ where σ1, . . . , σn is a finite, possibly empty sequence of ar-
guments such that Conc(σ1) = ϕ1, . . . , Conc(σn) = ϕn for some strict rule
ϕ1, . . . , ϕn → ϕ, and ϕ 6∈ Sent(σ1) ∪ . . . ∪ Sent(σn); in this case:
Prem(σ) = Prem(σ1)∪ . . .∪Prem(σn), Conc(σ) = ψ, Sent(σ) = Sent(σ1)∪ . . .∪
Sent(σn) ∪ {ϕ};

3. σ1, . . . σn ⇒ ϕ where σ1, . . . , σn is a finite, possibly empty sequence of argu-
ments such that Conc(σ1) = ϕ1, . . . , Conc(σn) = ϕn for some defeasible rule
ϕ1, . . . , ϕn ⇒ ϕ, and ϕ 6∈ Sent(σ1)∪ . . .∪Sent(σn); with the further attributes
defined as in (2).

Note that this definition, unlike most other definitions of arguments in the formal
literature, excludes circular arguments.

Vreeswijk’s notion of conflicts between arguments is unusual in that a counterar-
gument is a set of arguments: a set Σ of arguments is incompatible with an argument
τ iff the conclusions of Σ ∪ {τ} give rise to a strict argument for ⊥. While unusual,
there is nothing obviously wrong with this kind of definition. The reason why cur-
rently conflict is usually defined as a relation between individual arguments is prob-
ably that such definitions better fit with Dung’s theory of abstract argumentation
frameworks. Vreeswijk’s approach might fit better with generalisations of Dung’s
theory that allow attacks from sets of arguments to arguments [Bochman, 2003;
Nielsen and Parsons, 2007b]. Recently, Baroni et al. [2015] have combined the
ASPIC+ framework with a Vreeswijk-style definition of conflict.

Conflicts can in Vreeswijk’s approach be resolved with any reflexive and transi-
tive ordering on arguments that the user likes to adopt. A set of arguments Σ is
undermined by an argument τ if σ < τ for some σ ∈ Σ. Then a set of arguments Σ
is a defeater of σ if Σ is incompatible with σ and not undermined by it.

Finally, Vreeswijk defined argument acceptability (“warrant”) with a definition
that is close but not equivalent to Dung’s [1995] stable semantics. In light of the
modern theory of abstract argumentation frameworks, Vreeswijk’s definition of war-
rant is, unlike the rest of his approach, somewhat premature. This is understandable,
since Vreeswijk developed his approach before 1995.

Logic-programming approaches The work on argumentation semantics for
logic-programming’s negation as failure did not only inspire Dung to develop his the-
ory of abstract argumentation frameworks but also gave rise to logic-programming
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systems for argumentation with explicit negation. Two early papers here were Dung
[1993] and Dimopoulos and Kakas [1995]. The first of these papers was in turn a
source of inspiration for Prakken and Sartor’s [Prakken and Sartor, 1997] argument-
based logic programming system with defeasible priorities. Theirs was arguably the
first system that was explicitly designed as an instance of Dung’s [1995] approach.
Strictly speaking, it was technically based not on Dung [1995] but on Dung [1993],
but a reformulation in terms of abstract argumentation is trivial. Like all other work
reviewed so far, it distinguished between strict and defeasible inference rules. Unlike
Dimopoulos and Kakas [1995] but like Dung [1995], its language had both explicit
negation and negation as failure, with corresponding “rebutting” attacks on defeasi-
bly derived conclusions and “undercutting” attacks on negation-as-failure premises.
One innovative feature was that it allowed argumentation about preferences inside
the argumentation system, while another innovative feature was that the system
had the first published argument game meant as a proof theory for the semantics of
abstract argumentation frameworks (for more on argument games see Section 2.5.2
below).

Defeasible vs. plausible reasoning As apparent from the overview so far, until
1993 almost all accounts of argumentation-based inference made a distinction be-
tween deductive (or ‘strict’) and defeasible inference rules, introduced in philosophy
by Pollock [1970; 1974] and in AI by Pollock [1987] and Touretzky [1984]. This
approach is still being pursued today, notably in Defeasible Logic Programming,
Defeasible Logic and the ASPIC+ framework. In this approach a special definition
of arguments is needed that regulates the interplay between strict and defeasible
reasons (such as the above one of Vreeswijk [1993b; 1997]), since with two kinds of
inference rules one cannot rely on a single given logical consequence notion to specify
how conclusions are supported by premises. Around 1993 an alternative approach to
structured argumentation emerged, according to which arguments are constructed
in a single given deductive logic, obviating the need of a separate definition of an
argument beyond being a premises-conclusion pair. In understanding and relating
the two approaches, the philosophical distinction between plausible and defeasible
reasoning is relevant; cf. Rescher [1976; 1977] and Vreeswijk [1993b], Ch. 8. Fol-
lowing Rescher, Vreeswijk described plausible reasoning as sound (i.e., deductive)
reasoning on an uncertain basis and defeasible reasoning as unsound (but still ratio-
nal) reasoning on a solid basis. In other words, argumentation models of plausible
reasoning locate all fallibility of an argument in its premises, while argumentation
models of defeasible reasoning locate all fallibility in its defeasible inferences. Thus
plausible-reasoning approaches effectively view argumentation as a kind of inconsis-
tency handling, since in these approaches conflicts between arguments can only arise
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if the knowledge base is inconsistent. By contrast, in defeasible-reasoning approaches
conflicts can arise from consistent knowledge bases, since in those approaches it is
the application of defeasible rules that makes an argument fallible.

Two groups in particular initiated the plausible-reasoning approach to argu-
mentation, respectively at Queen Mary’s University in London and at INRIA in
Toulouse. Elvang-Göransson et al. [1993] conceived of arguments as premise-
conclusion pairs (δ, p) where δ is a subset of a possibly inconsistent database ∆
and there exists a natural-deduction proof of p from δ. Arguments can be attacked
in two ways: an argument (δ′, q) rebuts (δ, p) if q is logically equivalent to ¬p and
it undercuts it if q is logically equivalent to ¬r for some r ∈ δ. Note that Elvang-
Göransson et al. thus introduced a terminological confusion into the literature that
exists until today. While they fully adopted Pollock’s [1974; 1987] terminology,
they only partly adopted its meaning, since Pollock used the term ‘undercutter’
not for premise attack but for attack on the application of a defeasible inference
rule. Today, Pollock’s meaning of the term ‘undercutter’ is adopted in the ASPIC+

framework and Dung’s recent work on structured argumentation frameworks, while
Elvang-Göransson et al.’s meaning is fashionable in work on classical and Tarskian
argumentation.

Elvang-Göransson et al. classified arguments into five classes of increasing degrees
of acceptability: arguments, consistent arguments (i.e., arguments with consistent
premises), non-rebutted consistent arguments, non-rebutted and non-undercut con-
sistent arguments, and “tautological” arguments (i.e., arguments with an empty set
of premises). In light of modern work this definition of argument acceptability seems
somewhat ad-hoc. Among other things, it does not model the notions of defense
and admissibility that are so beautifully modelled by Dung [1995]. The ideas of
Elvang-Göransson et al. were further developed by Krause et al. [1995], replacing
classical logic by intuitionistic logic as the underlying logic and adding notions of
argument structure and argument strength.

Around the same time as Elvang-Göransson et al., Benferhat et al. [1993] pro-
posed a similar system, containing what now is the standard definition of an argu-
ment in this approach, adding to Elvang-Göransson et al.’s definition the require-
ments that the set of premises is consistent and subset-minimal:

Definition 2.2. Given a database Σ, a set Σi ⊆ Σ is an argument for a formula ϕ
iff:

1. Σi 6` ⊥; and

2. Σi ` ϕ; and

3. for all ψ ∈ Σi: Σi \ {ψ} 6` ϕ
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Here, ` denotes classical propositional consequence. Benferhat et al. did not
define explicit notions of attack. Instead they defined ϕ to be an argumentative
consequence of Σ if given Σ there exists an argument for ϕ but not for ¬ϕ. They also
studied alternative consequence notions and their relations, and refined their system
with a preference relation on the database. Their approach was related to abstract
argumentation by Cayrol [1995], who among other things proved that with Elvang-
Göransson et al.’s undercutting relation as the attack relation, the stable extensions
given a database are in a one-to-one correspondence with the database’s maximal
consistent subsets. This result was later generalised by Amgoud and Besnard [2013]
for any abstract Tarskian logic and by Modgil and Prakken [2013] in the context of
the ASPIC+ framework.

The ideas of Elvang-Göransson et al. and Benferhat et al. were picked up by e.g.
Amgoud and Cayrol [1998] and Besnard and Hunter [2001] and evolved into clas-
sical, or classical-logic argumentation e.g. [Besnard and Hunter, 2008; Gorogiannis
and Hunter, 2011] and its generalisations to deductive [Besnard and Hunter, 2014]
and abstract Tarskian argumentation [Amgoud and Besnard, 2013], to be further
discussed below.

2.4 Structured argumentation: developments until now

While until 1995 work on structured argumentation had specific and sometimes
ad-hoc definitions of argument evaluation, since 1995 most work on structured ar-
gumentation adopts Dung’s approach or at least explicates the relation with it.
Work that adopts Dung’s approach does so by giving definitions of the structure
of arguments and the nature of attack. Thus abstract argumentation frameworks
are generated, so that arguments can be evaluated according to one of the abstract
argumentation semantics and their acceptability status can be used to define non-
monotonic consequence notions for their statements. However, there is also work
that deviates from Dung’s approach. In this section I will give an overview of these
research strands.

2.4.1 Argumentation models of plausible reasoning

Current argumentation models of plausible reasoning are essentially of two kinds.

Assumption-based argumentation Around the same time as argumentation
was proposed as a way of inconsistency handling in classical logic, assumption-based
argumentation (ABA) emerged from attempts to give an argumentation-theoretic
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semantics to logic-programming’s negation as failure [Bondarenko et al., 1993; Bon-
darenko et al., 1997]. Like the classical-logic approaches, ABA also assumes a unique
‘base logic’, which in ABA is called a “deductive system”, consisting of set of infer-
ence rules defined over some logical language. Given a set of so-called ‘assumptions’
formulated in the logical language, arguments are then deductions of claims using
rules and supported by sets of assumptions. Contrary to in classical and abstract
argumentation, the premises of ABA arguments, i.e., its assumptions, do not have
to be consistent. ABA leaves both the logical language and set of inference rules
unspecified in general, so it is like Vreeswijk’s [1993b; 1997] approach and the later
ASPIC+ framework, an abstract framework for structured argumentation. However,
unlike these approaches, ABA only allows attacks on an argument’s assumptions,
so that ABA’s rules are effectively equivalent to Vreeswijk’s and ASPIC+’s strict
inference rules (as formally confirmed in [Prakken, 2010]).

In order to express conflicts between arguments, ABA makes like Vreeswijk a
minimum assumption on the logical language, which in ABA is that each assumption
in the logical language has a contrary. That b is a contrary of a, written as b = a,
informally means that b contradicts a. An argument using an assumption a is then
attacked by any argument for conclusion a. Contrary relations do not have to be
symmetric. This feature allows an argumentation-theoretic semantics for negation
as failure (not) by for every formula not p letting p = not p but not vice versa.
However, ABA’s application is not limited to logic programming; in the landmark
ABA paper [Bondarenko et al., 1997], it is instantiated with various nonmonotonic
logics, including default logic, circumscription and Poole’s [1989] Theorist system.

Although ABA and Dung’s approach clearly have commonalities, ABA as orig-
inally formulated by Bondarenko et al. [1997] does not generate abstract argumen-
tation frameworks. Instead, its extensions are (in some sense maximal) sets of
assumptions, induced by transforming attack relations between arguments to at-
tack relations between sets of assumptions. Only ten years later was ABA given an
explicit Dungean formulation by Dung et al. [2007]. Currently, there is some contro-
versy about whether the correspondence holds for all current abstract argumentation
semantics or not; cf. Gabbay [2015] and Caminada [2015].

ABA was originally used theoretically as a framework for nonmonotonic logic.
Over the years, the focus has shifted somewhat to developing algorithms and imple-
mentations and to applying these to a wide range of reasoning and decision problems.

An interesting variant of assumption-based argumentation is Verheij’s [2003]
DefLog system. Verheij assumes a logical language with just two connectives, a
unary connective × which informally stands for ‘it is defeated that’ and a binary
connective ; for expressing defeasible conditionals. Verheij then assumes a single
inference scheme for this language, namely, modus ponens for ;. A set of sentences
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T is said to support a sentence ϕ if ϕ is in T or follows from T by repeated application
of ;-modus ponens. Moreover, T is said to attack ϕ if T supports ×ϕ. Verheij
then considers partitions (J,D) of sets of sentences ∆ such that J (the “justified”
sentences) is conflict-free and attacks every sentence in D (the “defeated” sentences).
As observed by Verheij, DefLog can be encoded as an ABA instance with stable
semantics by setting ABA’s assumptions to ∆, defining the ABA ABF contrary
mapping as ×ϕ = ϕ for any ϕ and letting ABA’s set of rules be generated by the
modus scheme for ;.

Classical, deductive and Tarskian argumentation The initial work of
Elvang-Göransson et al. [1993] and Benferhat et al. [1993] led to a family of ap-
proaches usually called ‘classical’ or ‘deductive’ argumentation [Amgoud and Cay-
rol, 2002; Besnard and Hunter, 2001; Kaci et al., 2007; Besnard and Hunter, 2008;
Amgoud and Vesic, 2010; Kaci, 2010]. The first name refers to instances with as
base logic classical propositional or first-order logic, while the term ‘deductive ar-
gumentation’ is used for approaches that abstract from particular base logics, as
long as they are “deductive”. Often the term ‘deductive’ is here used in an informal
sense. For example, Besnard and Hunter [2014] describe a deductive inference as an
inference that is “infallible in the sense that it does not introduce uncertainty”. This
agrees with Pollock’s notion of a deductive reason. Recently Amgoud and Besnard
[2010; 2013] gave a precise interpretation by assuming that the base logic satisfies
the properties of a so-called Tarskian abstract logic.

In all these approaches arguments are, as in Benferhat et al. [1993] for the special
case of classical propositional logic, premises-conclusion pairs such that the premises
are, according to the base logic, consistent and subset-minimal sets logically implying
their conclusion. Unlike in many other approaches, these approaches do not commit
to specific definitions of argument attack but explore the consequences of various
definitions, all exhibiting some form of premise- and/or conclusion attack. Given
that these approaches locate all fallibility of arguments in their premises, one might
expect that definitions that only allow premise attack are the best-behaved. This
was formally confirmed by Gorogiannis and Hunter [2011] and Amgoud and Besnard
[2013] who, for respectively classical and Tarskian argumentation, showed that when
abstract argumentation frameworks are generated, only particular forms of premise
attack fully guarantee the consistency of the conclusion sets of extensions of abstract
argumentation frameworks.

Until these investigations, research in this strand was not much concerned with
argument evaluation. Instead, other properties were studied, such as relations be-
tween kinds of attack, and the formalisms were used as a tool for investigating
dialogue-related questions, such as enthymemes [Black and Hunter, 2012] and per-
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suasive force of arguments [Hunter, 2004]. See for further details e.g. Besnard and
Hunter [2008; 2014].

2.4.2 Argumentation models of defeasible reasoning

Defeasible Logic Programming Defeasible Logic Programming, or DeLP [Gar-
cia et al., 1998; Garcia and Simari, 2004] is a further development of Simari and
Loui’s [1992] argumentation system with strict and defeasible rules. While Simari
and Loui only allowed specificity as a source of preferences, DeLP allows any prefer-
ence ordering. DeLP’s logic-programming rules can contain both explicit negation
and negation as failure. It is noteworthy that while the consequence notion of Simari
and Loui’s system is equivalent to Dung’s [1995] grounded semantics, DeLP as de-
scribed by Garcia et al. [1998] and Garcia and Simari [2004] does not conform to any
of Dung’s semantics. Instead, it is based on the notion of a dialectical tree, which
essentially captures all ways in which a proponent and an opponent of a claim can
have a debate about the claim by defeating each other’s arguments. This notion is
very similar to the notion of an argument game as a proof theory for the semantics of
abstract argumentation frameworks (see further Section 2.5.2). However, while the
constraints on argument games are based on the semantics for abstract argumen-
tation frameworks, DeLP’s constraints on dialectical trees are based on intuitions
concerning concrete examples.

A unifying approach: the ASPIC+ framework The ASPIC+ framework
[Prakken, 2010; Modgil and Prakken, 2013; Modgil and Prakken, 2014] unifies plau-
sible and defeasible reasoning. Its main sources of inspiration are the systems of
Pollock [1987; 1994; 1995] and Vreeswijk [1993b; 1997], which model defeasible rea-
soning. However, ASPIC+ adds to these systems the possibility to attack an ar-
gument’s premises, which makes it also suitable for modelling plausible reasoning.
Apart from this, ASPIC+ adopts Pollock’s distinction between deductive (strict) and
defeasible inference rules, Vreeswijk’s definition of an argument and Pollock’s notions
of rebutting and undercutting attack, with the exception that in ASPIC+, unlike
in Pollock’s systems, undercutting attack succeeds as defeat irrespective of pref-
erences. Also, like Vreeswijk, ASPIC+ abstracts from particular logical languages,
sets of inference rules and argument orderings. Unlike Vreeswijk’s particular method
of argument evaluation, ASPIC+ generates abstract argumentation frameworks, so
that any semantics for such frameworks can be used to evaluate arguments.

A preliminary version of ASPIC+ was developed during the EC-sponsored AS-
PIC project, which ran from 2004 to 2007. This version was used by Caminada
and Amgoud [2007] as a vehicle for proposing the idea of rationality postulates for
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structured argumentation. The first publication focusing on ASPIC+ as a frame-
work for structured argumentation was Prakken [2010]. Modgil and Prakken [2013]
proposed some small modifications and variations and proved further results on the
framework and its relation with other work. Recently, several other variations of the
ASPIC+ framework have been studied.

Its abstract nature makes that ASPIC+ can be instantiated in many different
ways and captures a number of other approaches as special cases. For example,
Prakken [2010] proves that Dung et al.’s [2007] version of assumption-based argu-
mentation can be reconstructed as a special case of ASPIC+ with only strict infer-
ence rules, no unattackable premises and no preferences. And Modgil and Prakken
[2013] reconstruct two forms of classical argumentation as studied by Gorogiannis
and Hunter [2011] as the special case with only strict rules, being all valid classical
inferences from finite sets, no unattackable premises, no preferences and the con-
straint that an argument’s premises are classically consistent and subset-minimal.
They then generalise this reconstruction with a preference relation on the knowledge
base and prove that the resulting stable extensions are in a one-to-one correspon-
dence with Brewka’s [1989] preferred subtheories. Thus they also extend Cayrol’s
[1995] similar result without preferences for maximal consistent subsets.

Not only ASPIC+ but also assumption-based argumentation is an abstract model
of structured argumentation. Compared to ABA, ASPIC+ is more complex, with
its two kinds of inference rules, its three kinds of attack and its explicit preferences
to distinguish between attack and defeat. As stated by Toni [2014], the philosophy
behind ABA is instead to translate preferences and defeasible rules into ABA rules
plus ABA assumptions, so that rebutting and undercutting attack and the applica-
tion of preferences all reduce to premise attack. This approach has its merits but
it is an open question whether ASPIC+ can in its full generality be translated into
ABA. Currently there are only partial answers to this question. Dung and Thang
[2014] prove for the case without preferences that defeasible ASPIC+ rules can be
translated to ABA rules with assumption premises. Moreover, in an early paper,
Kowalski and Toni [1996] give a partial method for encoding rule preferences with
explicit assumption premises. However, it remains to be seen whether this can be
done for any argument ordering. Moreover, ASPIC+ representations of examples
are often arguably closer to natural-language than ABA presentations, in which ev-
ery conflict has to be translated to premise attack and every preference statement
to explicit exceptions. If the aim is to formalise modes of reasoning in a way that
corresponds with human modes of reasoning and debate, then there is some merit
in having a theory with explicit notions of rebutting and undercutting attack and
preference application.
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2.4.3 The study of rationality postulates

An important recent development is the introduction by Caminada and Amgoud
[2005; 2007] of the idea of rationality postulates for structured argumentation. Ac-
cording to Caminada and Amgoud, all systems of structured argumentation that
have notions of negation, strict rules and subarguments should satisfy the following
properties:

Sub-argument Closure: For any argument A in E, all sub-arguments of A
are in E.

Closure under Strict Rules: If E contains arguments with conclusions
α1, . . . .αn, then any arguments obtained by applying only strict inference rules
to these conclusions, are in E.

Direct Consistency: The set of conclusions of all arguments in E are directly
consistent, i.e., it contains no pair of formulas ϕ and ¬ϕ.

Indirect Consistency: The set of conclusions of all arguments in E are
indirectly consistent, i.e., its closure under strict rules is directly consistent.

ASPIC+ unconditionally satisfies closure under subarguments. Whether AS-
PIC+ satisfies closure under strict rules and the consistency postulates depends
on whether the non-attackable premises are consistent, on structural properties of
the strict rules and on properties of the argument ordering [Caminada and Am-
goud, 2007; Prakken, 2010; Modgil and Prakken, 2013]. These results on ASPIC+

directly generalise to systems that can be reconstructed within ASPIC+, such as
assumption-based argumentation and several forms of classical and deductive argu-
mentation with preferences. Recently, Dung and Thang [2014] identified alternative
and partly weaker sufficient conditions for satisfying strict closure and consistency.

Three further rationality postulates were proposed by Caminada et al. [2012] and
are about the extent to which contradictions can trivialise the set of conclusions.
These postulates have been further studied by Wu and Podlaszewski [2015].

Although Caminada and Amgoud defined their postulates for rule-based systems,
they can be straightforwardly adapted to systems that define argument structure
in terms of consequence notions instead of inference rules, such as classical and
deductive argumentation. In particular the consistency postulates have been studied
for these approaches [Gorogiannis and Hunter, 2011; Amgoud and Besnard, 2013].
One insight here (of which the core is already in Caminada and Amgoud [2007]) is
that satisfaction of the consistency postulates partly depends on the definitions of
attack and defeat. Building on this idea, Dung [2014; 2016] proposes several desirable
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properties for defeat relations (which in line with his 1995 paper he calls ‘attack’
relations) and studies their effect on satisfaction of the consistency postulates.

Finally, the recent research on rationality postulates is reminiscent of work in
other areas of nonmonotonic logic on general properties of nonmonotonic conse-
quence notions [Gabbay, 1985; Kraus et al., 1990; Makinson, 1994]. One much
discussed property in that body of work is cautious monotony. Informally, this
property is that if ϕ and ψ are implied by a knowledge base and ϕ is added to the
knowledge base, then ψ is still implied by the new knowledge base. Recently, Dung
[2014; 2016] has argued that this property should hold for credulous argumentation-
based inference, i.e., for membership of at least one extension. By contrast, Prakken
and Vreeswijk [2002], Section 4.4 argue that satisfaction of this property is not desir-
able in general, since strengthening a nonmonotonic conclusion to an indisputable
fact can give arguments using the fact the power to defeat other arguments that
they did not have before; and this may well result in the loss of the extension from
which the conclusion was promoted to an indisputable fact.

2.4.4 Preferences and argument strength

An important element in many argumentation systems is the use of some notion of
preference or strength to resolve conflicts between arguments. In Dungean terms,
this boils down to defining his attack relation in terms of a more basic, non-evaluative
notion of conflict between arguments and some binary preference relation on argu-
ments. As noted above, most work before Dung [1995] used the term ‘defeat’ instead
of ‘attack’ while much work after 1995 explicitly renamed Dung’s attack relation to
‘defeat’ in order be able to call the more basic, non-evaluative notion of conflict
‘attack’. This is what I will also do in this section. The use of preferences then
amounts to checking which attacks succeed as defeats.

Arguably the first systems embodying some form of argument preference were
the inheritance systems of Touretzky [1984] and Horty et al. [1990], which used
syntactic specificity checks on inheritance paths to let inheritance paths from more
specific classes defeat conflicting inheritance paths form more general classes. Loui
[1987] and Simari and Loui [1992] also used specificity for conflict resolution.

Although Pollock’s earliest system, from 1987, did not yet include a notion of
strength, Pollock later took the notion of strength of arguments very seriously. Since
his systems were meant for epistemic reasoning, he always formulated strength in
terms of numerical degrees of belief. His approach here was non-standard. Against
Bayesian approaches, he argued that degrees of belief and justification do not con-
form to the laws of probability theory. In his [1994, 1995], Pollock used a weakest-link
approach to compute the strength of arguments: given numerical strengths of rea-
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sons (where deductive reasons have infinite strength), the strength of an argument’s
conclusion is the minimum of the strengths of the reason with which the conclusion
is derived and the strengths of the intermediate conclusions to which this reason is
applied. While thus arguments can have various strengths, defeat is still an all-or-
nothing matter in that defeaters that are weaker than their target cannot affect the
status of their target at all. This allows a reconstruction of Pollock’s [1994, 1995]
approach in terms of Dung’s theory of abstract argumentation frameworks. Later,
in his [2002, 2007a, 2010] Pollock explored the idea that weaker defeaters can still
weaken the justification status of their stronger targets. To formalize this, he now
made the justification status of statements a matter of numerical degree, being a
function of the strengths of both supporting and defeating arguments. Thus in his
latest work he deviated from a Dungean approach.

Similar to Pollock’s [1994; 1995] way to use degrees of belief is Chesñevar et al.’s
[2004] use of possibilistic logic in the context of Defeasible Logic Programming. In
this paper, possibilistic strengths are added to rules, which are propagated through
arguments according to possibilistic logic. Then the propagated strengths are used
to resolve attacks into defeats.

Other early work resolved attacks with qualitative preference relations on
premises or inference rules. One of the first argumentation models of defeasible rea-
soning with rule preferences from arbitrary sources was Prakken [1993], developed
into Prakken and Sartor [1997]. One of the first argumentation models of plausible
reasoning with prioritized knowledge bases was Benferhat et al. [1993]. Amgoud and
Cayrol [1998; 2002] combined Benferhat et al.’s idea of prioritised knowledge bases
and Cayrol’s [1995] Dungean modelling of classical argumentation with Prakken and
Sartor’s way to distinguish between attack and defeat in Dung’s grounded seman-
tics and their argument game for it. Later papers included preferences in classical
argumentation in other ways; e.g. Amgoud and Vesic [2010] and Kaci [2010].

Vreeswijk [1993a; 1997] was the first to include a binary argument ordering as
primitive in his approach. The ASPIC+ framework adopts this idea and several
papers on ASPIC+ study instantiations with qualitative preference relations on
defeasible rules and attackable premises, building on the work of Benferhat et al.
[1993], Prakken and Sartor [1997] and their successors. Recently, Dung [2014; 2016]
has also contributed to this study.

Since there is not a unique kind of content of arguments, there is also not a unique
kind of argument preference. In epistemic reasoning, argument preferences are often
based on probabilistic considerations, degrees of belief, or on credibility estimates of
information sources. In argumentation as decision making they have been based on
preferences for decision outcomes. In normative (legal or moral reasoning) they have
been derived from hierarchical relations between elements of normative systems.
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In addition, some have modelled argumentation about preference relations within
argumentation logics. One of the first proposals of this kind was made by Prakken
and Sartor [1997]. Modgil [2009] extended abstract argumentation frameworks with
the possibility to attack attacks. Modgil then, among other things, showed that
Prakken and Sartor’s proposal can be reconstructed as an instance of his ‘extended
argumentation frameworks’.

One question here is whether preference relations logically behave the same re-
gardless of their source. Dung [2016] seems to answer this question affirmatively,
while Modgil and Prakken [2014] suggest that the right way to use preferences may
depend on the kind of content of arguments, for example, on whether the reasoning
is epistemic, normative or about decision making.

2.5 Abstract argumentation: developments into now

In the first years after publication of Dung’s landmark paper it gave rise to two
kinds of follow-up work. Some continued to use AFs as Dung did in his paper,
namely, to reconstruct and compare existing systems for structured argumentation
as instances of AFs. In line with this was work on developing new systems for
structured argumentation as instances of AF s. Others further developed the theory
of abstract argumentation frameworks in the form of proof of properties (such as
complexity results), reformulations (e.g. in terms of labellings), argument games
as a proof theory, and algorithms. Somewhat later a third kind of follow-up work
emerged, namely, extending AFs with new elements without specifying the structure
of arguments. I now briefly review these three bodies of work.

2.5.1 Instantiating abstract argumentation frameworks

Some continued Dung’s work on reconstructing and comparing existing systems
for structured argumentation as instances of AFs. For example, Jakobovits [2000]
and Jakobovits and Vermeir [1999b] showed that Pollock’s [1994; 1995] system for
defeasible reasoning has preferred semantics and Cayrol [1995] related various forms
of classical argumentation to Dung’s stable semantics and (with Amgoud in [Amgoud
and Cayrol, 2002]) to Dung’s grounded semantics for AFs. More recent work in this
vein is Gorogiannis and Hunter [2011] and Amgoud and Besnard [2013].

Others developed new systems for structured argumentation as an instantiation
of abstract argumentation frameworks. As described above, possibly the first system
developed in this way was Prakken and Sartor’s [1997] system for argumentation-
based logic programming. More recently, the ASPIC+ framework was designed in
this way.
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2.5.2 Developing the theory of abstract argumentation frameworks

Labellings A few years after Dung introduced his extension-based approach to
abstract argumentation, an alternative labelling-based approach became popular,
based on the following definition:

A labelling of an AF = 〈AR, attacks〉 assigns to zero or more members
of AR either the status in or out (but not both) such that:

1. an argument is in iff all arguments attacking it are out.
2. an argument is out iff it is attacked by an argument that is in.

Let In = {A ∈ AR | A is in} and Out = {A ∈ AR | A is out} and
Undecided = AR \ (In ∪Out). Then

1. A labelling is stable if Undecided = ∅.
2. A labelling is preferred if Undecided is minimal (wrt set inclusion)
3. A labelling is grounded if Undecided is maximal (wrt set inclusion)
4. Any labelling is complete.

These notions coincide with Dung’s extension-based definitions as follows. Let S ∈
{stable, preferred, grounded, complete}. Then (In,Out) is an S-labelling iff In is
an S-extension.

To illustrate the labelling definition, in Figure 3 the grey-white colourings cor-
respond to the in-out labels in the unique stable/preferred/grounded/complete la-
belling. In Figure 4(b,c) the grey-white colourings correspond to the in-out labels
of the two stable-and-preferred labellings but in Figure 4(b,c) both arguments are
undecided.

Actually, Pollock was a source of inspiration here too, since he used a labelling
definition in his [1994; 1995] system. Pollock was possibly in turn inspired by Doyle’s
[1979] justification-based truth maintenance systems. Pollock’s 1994 system was, as
just noted, by Jakobovits [2000] proved to be an instance of Dung’s preferred se-
mantics. Jakobovits’ PhD thesis contains an in-depth investigation of the labelling
approach, summarised by Jakobovits and Vermeir [1999b]. Other early work on
labellings was done by Verheij [1996] and the labelling approach was finally popu-
larised by Caminada [2006].

Argument games Both the extension- and the labelling-based approach can be
regarded as a semantics of argumentation-based inference in that the main focus is
on characterising properties of sets of arguments, without specifying procedures for
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determining whether a given argument is a member of the set. The proof theory of
argumentation-based inference amounts to specifying such procedures. An elegant
form of such a proof theory is that of an argument game between a proponent
and an opponent of an argument. The precise rules of the game depend on the
semantics the game is meant to capture. The rules should be chosen such that the
existence of a winning strategy (in the usual game-theoretic sense) for the proponent
of an argument corresponds to the investigated semantic status of the argument,
for example, ‘being in the grounded’ or ‘being in at least one (or in all) preferred
extensions’.

To give an idea, the following game is sound and complete for grounded semantics
in that the proponent of argument A has a winning strategy just in case A is in the
grounded extension. The proponent starts a game with an argument and then the
players take turns, trying to defeat the previous move of the other player. In doing
so, the proponent must strictly defeat the opponent’s arguments while he is not
allowed to repeat his own arguments. A game is terminated if it cannot be extended
with further moves. The player who moves last in a terminated game wins the game.
Thus the proponent has a winning strategy if he has a way to make the opponent
run out of moves (from the implicitly assumed AF ) whatever choice the opponent
makes.

The idea of argument games had been around since the beginning of the for-
mal study of argumentation (see e.g. Vreeswijk [1993a]) but they were not formally
linked to argumentation-based semantics until the mid 1990s. Dung [1995] refers
to a technical report [Dung, 1992] that was never formally published and in which
he proposed argument games for two logic-programming semantics. Prakken and
Sartor [1997] proposed an argument game for their logic-programming instantiation
of Dung’s grounded semantics. Arguably the first publication on argument games
for abstract argumentation semantics was Prakken [1999], who proposed the above
game for grounded semantics as an abstraction of the game of Prakken and Sartor.
Vreeswijk and Prakken [2000] proposed argument games for preferred semantics,
which were further developed and studied by Dunne and Bench-Capon [2003].

New semantics and general study of semantics While Dung [1995] origi-
nally proposed four semantics for abstract argumentation frameworks, in later years
several alternative semantics were proposed; cf. Baroni et al. [2011a]. A related
development is the study of general characterisations of types of semantics and
their properties and relations, initiated by Baroni and Giacomin [2007] and further
pursued by e.g. Dvorak and Woltran [2011] and Baroni et al. [2014]. Baroni and
Giacomin [2007] also had a normative aim, namely, to propose a set of principles
for the evaluation of semantics for abstract argumentation frameworks. Thus their
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work can be seen as an abstract counterpart of Caminada and Amgoud’s [2007]
introduction of rationality postulates for structured argumentation formalisms (see
Section 2.4.3 above).

Complexity results and algorithms The graph-based format of abstract argu-
mentation frameworks naturally lends itself to studies of computational complex-
ity. A leading figure here has been Paul Dunne [Dunne and Bench-Capon, 2002;
Dunne and Bench-Capon, 2003; Dunne, 2007].

Algorithms for proof theories for abstract argumentation frameworks were pro-
posed by e.g. [Cayrol et al., 2003; Vreeswijk, 2006; Verheij, 2007]. Early work on
algorithms for enumerating extensions or labellings is reviewed by [Modgil and Cam-
inada, 2009]. An interesting strategy for developing algorithms is encoding argumen-
tation frameworks in some other formalism and to utilise algorithms for the other
formalism. For example, [Besnard and Doutre, 2004] encoded abstract argumenta-
tion frameworks in propositional logic in order to apply model-checking and SAT
solver techniques. They also proposed an equation checking approach, which was
later further developed by [Gabbay, 2011]. Some other examples of this approach
are Grossi’s [2010] encoding of abstract argumentation frameworks in modal logic
and Egly et al.’s [2010] encoding in answer set programming.

2.5.3 Adding new elements to abstract argumentation frameworks

A third research strand in the abstract approach to argumentation is to extend AFs
with new elements without specifying the structure of arguments. In this subsection
I briefly discuss various ways in which this has been done.

Adding preferences or values [Amgoud and Cayrol, 1998] added to abstract
argumentation frameworks a a preference relation on AR, resulting in preference-
based argumentation frameworks (PAFs), which are a triple 〈AR, attacks,�〉. An
argument A then defeats an argument B if A attacks B and A 6≺ B. Thus each
PAF generates an AF of the form 〈AR, defeats〉, to which Dung’s theory of abstract
argumentation frameworks can be applied.

[Bench-Capon, 2003] proposed a variant of idea called value-based argumentation
frameworks (V AFs), in which each argument is said to promote some value. The
notion of value should be taken here not in a numerical sense but in the sense of, for
example, legal, moral or societal values, such as welfare, equality, fairness, certainty
of the law, freedom of speech, privacy, and so on. Attacks are in V AFs resolved in
terms of one or more orderings on the values. These value orderings are assumed to
be provided by an audience evaluating the arguments.
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Adding abstract support relations There have been several recent proposals to
extend Dung’s [1995] well-known abstract argumentation frameworks (AFs) with ab-
stract support relations, such as Cayrol and Lagasquire-Schiex’s [2005b; 2009; 2013]
Bipolar Argumentation Frameworks (BAFs), the work of [Martinez et al., 2006] and
Oren and Norman’s [2008] Evidential Argumentation Systems (EASs). Various se-
mantics for such frameworks have been defined, claimed to capture different notions
of support. For example, [Martinez et al., 2006] want to abstract from subargument
relations in systems for structured argumentation. [Boella et al., 2010a] study se-
mantics of what they call “deductive” support, which satisfies the constraint that if
A is acceptable and A is a deductive support of B, then B is acceptable. [Nouioua
and Risch, 2011] consider “necessary support”, which satisfies the constraint that if
B is acceptable and A is a necessary support of B, then A is acceptable.

Other additions Both [Bochman, 2003] and [Nielsen and Parsons, 2007b] gen-
eralised Dung’s attack relation to a relation from sets of arguments to arguments.
As noted above, [Modgil, 2009] extended abstract argumentation frameworks with
attacks on attacks, as an abstraction of earlier proposals to model reasoning about
priorities in nonmonotonic logics. [Coste-Marquis et al., 2006] added constraints to
argumentation frameworks in the form of propositional encodings of properties of
extensions. Finally, [Dunne et al., 2011] added weights to attacks, the idea being
that attacks that are of insufficient weight (modelled by a “weight budget”) can be
ignored.

A word of caution Although it is tempting to extend abstract argumentation
frameworks with additional elements, a word of caution is in order. One should
resist the temptation to think that for any given argumentation phenomenon the
most principled analysis is at the level of abstract argumentation frameworks. In
fact, it often is the other way around, since at the abstract level crucial notions like
claims, reasons and grounds are abstracted away.

An example where this leads to problems is the way preferences are used in PAFs
and V AFs to resolve attacks. As shown in work on structured argumentation with
preferences (e.g. Pollock’s or Vreeswijk’s system, ASPIC+ or DeLP), the structure
of arguments is crucial in determining how preferences must be applied to attacks.
Consider the following semi-formal example adapted from [Prakken, 2012; Modgil
and Prakken, 2013], which can easily be formalised in any of the above-mentioned
systems for structured argumentation.
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A = p
B1 = ¬p
B2 = ¬p, therefore, presumably, q

Here p and ¬p are default assumptions. Note that B1 is a subargument of B2, so B2
includes B1 as part of itself. The arguments with their internal structure and their
direct attack relations are displayed in Figure 5. In any of the above systems for

Figure 5: Argument structure and direct attack

structured argumentation we then have that A and B1 directly attack each other
while, moreover, A indirectly attacks B2, since it directly attacks B2’s subargument
B1. So we have the abstract argumentation framework displayed in Figure 6(a).

Figure 6: The abstract attack and defeat graphs

Assume next that A is preferred over B1 and B2 is preferred over A. Such
an ordering could, for instance, be the result of comparing arguments according to
their last fallible elements. A PAF modelling then generates the following single
defeat relation: A defeats B1; see Figure 6(b). Then we have a single extension (in
whatever semantics), namely, {A,B2}. So not only A but also B2 is justified.
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However, this violates Caminada and Amgoud’s [2007] rationality postulate of
subargument closure of extensions, since B2 is in the extension while its subargument
B1 is not. ([Prakken, 2012] also discusses examples in which the postulate of indirect
consistency is violated.) The cause of the problem is that the PAF modelling of this
example cannot recognise that the reason why A attacks B2 is that A directly attacks
B1, which is a subargument of B2. So the PAF modelling fails to capture that in
order to check whether A’s attack on B2 succeeds, we should compare A not with B2
but with B1. Now since B2 ≺ A we also have that A defeats B2; see Figure 6(c). So
the single extension (in whatever semantics) is {A}, so closure under subarguments
is respected.

This shows that PAFs (and also VAFs) only behave correctly under the assump-
tion that all attacks are direct. We can conclude that for a principled analysis of
the use of preferences to resolve attacks, the structure of arguments must be made
explicit.

More generally, this analysis shows that in proposing an abstract model of argu-
mentation, it is important to be aware what is abstracted from. Yet in the study of
abstract support relations there is, unlike with Dung’s original abstract frameworks,
hardly any formal study of the relation between the abstract and the structured
level. In consequence, it remains unclear what exactly is being modelled. One of
the few studies in this vein is my [Prakken, 2014], in which I studied to what extent
bipolar and evidential abstract frameworks can be interpreted as abstracting from
the inferential relations in structured argumentation, as captured in ASPIC+ by its
subargument relations. I obtained mixed results. A form of BAFs that by [Boella
et al., 2010a] was claimed to be suitable for “deductive support” turned out to have
no relation with classical-logic approaches to structured argumentation but Oren
and Norman’s [2008] evidential frameworks turned (for preferred semantics) out to
be a suitable abstraction of ASPIC+’s subargument relation. The same holds (for
all four of Dung’s [1995] semantics) for Dung and Thang’s [Dung and Thang, 2014]
proposal. They add a binary support relation to abstract argumentation frameworks
with the sole additional constraint that if B supports C and A attacks B then A
also attacks C, and they then evaluate arguments as in [Dung, 1995] by only taking
the thus constrained attack relation into account. The resulting system conforms to
Nouioua and Risch’s [2011] notion of “necessary support”. Apart from these results
it is still an open question what abstract models of argumentation with support
relations abstract from.

These discussions lead me to propose a (to some readers possibly controversial)
methodological guideline that every new proposal for extending abstract argumenta-
tion frameworks should in the same paper be accompanied by at least one non-trivial
instantiation in order to demonstrate the significance of the new extension. Work
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that respects this guideline, respects the historic origins of the abstract study of
argumentation, since the prime example of how this guideline can be applied is
[Dung, 1995], who instantiated his frameworks with four nonmonotonic logics. A
more recent example is [Modgil, 2009], who showed that his ‘extended argumenta-
tion frameworks’, which extend abstract argumentation frameworks with attacks on
attacks, can be instantiated with Prakken and Sortor’s [1997] modelling of reasoning
about preferences.

2.6 Further developments

I now briefly sketch some important further developments in the formal study of
argumentation as inference.

2.6.1 More recent graph-based approaches

Since 2007 several graph-based approaches have been proposed, in which not argu-
ments and their relations but statements and their relations are the main focus of
attention. This idea also goes back to the work of Pollock, since the system of [Pol-
lock, 1994] is strictly speaking not formalised in terms of arguments but in terms of
so-called ‘inference graphs’, in which nodes are connected either by inference links
(applications of inference rules) or by defeat links. The nodes are ‘lines of argument’,
which are propositions plus an encoding of the argument lines from which they are
derived. Nodes are evaluated in terms of the recursive structure of the graph. As
noted above, [Jakobovits and Vermeir, 1999b] proved that Pollock’s system can be
given an equivalent formulation as an instance of Dung’s abstract argumentation
frameworks with preferred semantics.

[Gordon et al., 2007] proposed the Carneades framework ‘of argument and burden
of proof’. Carneades’ main structure is that of an argument graph, which, despite
its name, is similar to Pollock’s inference graphs. Statement nodes are linked to
each other via argument nodes, which record the inferences from one or more nodes
to another. This notion of an argument does not have the usual recursive structure
in systems for structured argumentation but instead stands for a single inference
step. Unlike Pollock, Carneades does not express conflicts as a special type of
link between statement nodes. Instead, inferences (i.e., arguments) can be either
pro or con a statement. The evaluation of statements in an argument graph is,
as with Pollock’s inference graphs, defined in terms of the recursive structure of
the graph. Statements are acceptable if they satisfy their ‘proof standard’. The
general framework abstracts from their nature but [Gordon et al., 2007] give several
examples of proof standards.
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Inspired by Carneades, [Brewka and Woltran, 2010] proposed their Abstract
Dialectical Frameworks, which are directed graphs in which nodes are arguments,
statements or positions which can be accepted or not and the links represent de-
pendencies between arguments. The dialectical status (accepted or rejected) of a
node depends on the status of its parents as specified in an acceptance condition
for the node. [Brewka and Woltran, 2010] present ADFs as generalisations of ab-
stract argumentation frameworks. In a purely technical sense they are, but so are
assumption-based argumentation, Deflog and ASPIC+, which can all represent AFs
as a special case. For example, in assumption-based argumentation arguments from
the AF can be made assumptions and an assumption can be said to be a contrary
of another assumption if it attacks it in the AF. So far, applications of ADFs have
instead interpreted the nodes as statements, e.g. [Strass, 2013], thus making ADFs
more similar to Pollock’s inference graphs. Future research should shed more light
on the potential of ADFs as generalisations of abstract argumentation frameworks
in a conceptual sense also.

2.6.2 Decision making as argumentation

While most early work on argumentation-based inference was on epistemic reasoning
(what is the case?), in recent years there has been much attention for practical
reasoning (what should we do?). Among the first papers on this topic was [Fox and
Parsons, 1997], motivated by medical decision making.

One strand of work was initiated by Grasso et al.’s [2001] design for a nutrition
advice system and Bench-Capon’s [2003] formal work on value-based argumenta-
tion frameworks. Both works were influenced by Perelman and Olbrechts-Tyteca’s
[1969] idea (further discussed in Section 3.1) that whether an argument in ordi-
nary discourse is good does not depend on its logical form but on whether it is
capable of persuading the addressed audience, which in turn depends on the ex-
tent to which it takes the audience’s “values” into account. The work on value-
based argumentation frameworks was further developed by e.g. [Atkinson, 2005;
Atkinson and Bench-Capon, 2007], which instantiated value-based argumentation
frameworks with an argumentation scheme approach inspired by Walton’s [Walton,
2006b] schemes for practical reasoning. This work has among other things been
applied to legal interpretation [Atkinson et al., 2005a], seen as a decision problem in
which the various interpretation options promote or demote various legal or societal
values.

Another strand of work is the work of Amgoud and others, e.g. [Amgoud et
al., 2005; Amgoud, 2009; Amgoud and Prade, 2009], which combines argumentation
models of the inferential aspects of argumentation with models of qualitative decision
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theory for the choice aspects of decision making.
To compare and contrast the various bodies of work, note that decision making

has various aspects: identifying possible decision options in the form of possible ac-
tions, identifying the decision criteria (preferences, desires, goals, values), determin-
ing the consequences of actions with respect to these criteria and choosing between
the decision options. There is consensus that all these aspects up to the choice
problem can be modelled as argumentation as inference, but there is no consensus
whether they can be modelled as instantiating the above-discussed general models of
structured argumentation or whether special argumentation formats should be devel-
oped. Examples of the former approach are [Kakas and Moraitis, 2003], who model
decision-making arguments in Dimopoulos and Kakas’s [1995] logic-programming
system for argumentation, [van der Weide et al., 2011; van der Weide, 2011], who
model practical-reasoning arguments in a combination of ASPIC+ with Wooldridge
et al.’s [2006] formal model of meta-argumentation, and [Fan and Toni, 2013], who
model decision making in assumption-based argumentation. Examples of the latter
approach are [Amgoud, 2009], who proposes specific formats for decision-making ar-
guments, and [Atkinson, 2005; Atkinson and Bench-Capon, 2007], who define special
argument-schemes for practical-reasoning.

Another issue is whether argumentation-based decision-making can be fully mod-
elled as argumentation-based inference. [Amgoud, 2009, p. 318] claims that decision
making goes beyond inference when a choice has to be made between the decision
options; all argumentation can do according to her is generating the decision options
that have justified epistemic subarguments or assumptions. Accordingly, [Amgoud
and Prade, 2009] model the choice between epistemically justified decision options
outside their argumentation model in terms of models of qualitative decision theory.
By contrast, the above-mentioned work in ASPIC+ and assumption-based argumen-
tation tries to model choice through the general conflict-resolution mechanisms of
argumentation-based inference, such as ASPIC+’s argument ordering.

2.6.3 Argumentation combined with probability theory

A recent trend is the combination of argumentation-based inference with probability
theory. This is not surprising, since argumentation has from the early days on been
proposed as a model for reasoning under uncertainty. Yet systematic studies of the
combination of argumentation with probability were sparse until recently.

Argumentation has been combined with probability theory for three different
kinds of purposes. First, there has been some work in which probabilistic models
are the object of argumentative discourse, such as [Nielsen and Parsons, 2007a],
who model how Bayesian networks can be jointly constructed in an argumentation
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process. In all other work the uncertainty does not concern the probabilistic but the
argumentation model. Two approaches can be distinguished, depending on whether
the uncertainty is in or about the arguments. When the uncertainty is in the argu-
ments, probabilities are intrinsic to an argument in that they are used for capturing
the strength of an argument given uncertainty concerning the truth of its premises
or the reliability of its inferences. An example is default reasoning with probabilistic
generalisations, as in The large majority of Belgian people speak French, Mathieu is
Belgian, therefore (presumably) Mathieu speaks French. Clearly, if all premises of an
argument are certain and it only makes deductive inferences, the argument should
be given maximum probabilistic strength. [Hunter, 2013] calls this use of probability
the epistemic approach.

When the uncertainty is about the arguments, probabilities are extrinsic to an
argument in that they are used for expressing uncertainty about whether arguments
are accepted as existing by some arguing agent. [Hunter, 2014] gives the example of
a dialogue participant who utters an enthymeme and where the listener can imagine
two reasonable premises that the speaker had in mind: the listener can then assign
probabilities to these options, which translate into probabilities on which argument
the speaker meant to construct. This uncertainty has nothing to do with the intrinsic
strengths of the two candidate completed arguments: one might be stronger than
the other while yet the other is more likely the argument that the speaker had in
mind. [Hunter, 2013] calls this use of probability the constellations approach. Note
that in this approach even deductive arguments from certain premises can have less
than maximal strength.

The intrinsic, or epistemic approach can be applied in two ways: by simply
computing probability values of conclusions or by using such probabilities to re-
solve attacks into defeats. Computing probability values of conclusions is done in
early work by [Haenni et al., 2000]. Their argumentation model is a rather spe-
cific one for diagnosis and has no clear relations with more general structured and
abstract models of argumentation. More recent work in this vein is [Dung and
Thang, 2010], who within assumption-based argumentation allow rules to be labelled
with probabilities. As noted above in Section 2.4.4 [Pollock, 2002; Pollock, 2007a;
Pollock, 2010] (using a non-standard account of probability) made the justification
status of statements a matter of numerical degree, being a function of the strengths
of both supporting and defeating arguments.

Other examples of the intrinsic/epistemic approach are methods for extracting
arguments from (qualitative or quantitative) Bayesian networks. Older work in
this vein is [Parsons, 1998a; Parsons, 1998b], using a logic similar to the one of
[Krause et al., 1995] and [Williams andWilliamson, 2006], using the logic of [Prakken
and Sartor, 1997]. In this work no probability values of conclusions are computed:
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Parsons just generates arguments while Williams & Williamson generate abstract
argumentation frameworks using rebutting attack without preferences. Recent work
is of [Timmer et al., 2017], who generates arguments in ASPIC+ and resolves their
rebutting attacks with probabilistic strengths of arguments. The latter is also done
in two pieces of work using alternatives for standard probability theory, viz. Pollock’s
[1994; 1995] use of degrees of belief and Chesñevar et al.’s [2004] use of possibilistic
logic (both discussed above in Section 2.4.4).

The extrinsic/constellations approach has been largely applied to abstract argu-
mentation frameworks, as in [Li et al., 2012] and [Hunter, 2014] (but see the early
work of [Riveret et al., 2007; Riveret et al., 2008] using the logic of [Prakken and Sar-
tor, 1997]). For a recent overview see [Hunter and Thimm, 2016]. In this approach,
probabilities can unlike in the intrinsic approach, also be attached to, for instance,
legal rules or moral value judgements. Another difference is that the extrinsic use
of probability is defined on top of a separate model of argumentation existing inde-
pendently of the probabilistic model, while in the second use probability is part of
the argumentation model itself.

Assigning probabilities to arguments in the abstract is problematic, since in prob-
ability theory probabilities are assigned to the truth of statements or to outcomes
of events, and an argument is neither a statement nor an event. What is required
here is a precise specification of what the probability of an argument means. If it
corresponds to the degree of justification of the argument’s justification, then this
should arguably be specified at the level of structured argumentation. For a prelim-
inary attempt to do so in the context of classical-logic argumentation see [Hunter,
2013]. If the probability of an argument corresponds to the probability of a state-
ment about the argument, then the nature of that statement should be made clear.
More generally, here too the need arises to be explicit about what is abstracted from,
in this case in abstract models of probabilistic argumentation.

2.6.4 Argumentation dynamics

A development that is in the border area of inference and dialogue is the logical
study of the dynamics of argumentation, insofar as it abstracts from agent aspects
and the dialogical setting. For example, [Coste-Marquis et al., 2007] study the
merging of abstract argumentation frameworks, with attention for the resolution
of conflicts between the merged frameworks. Also, much work has recently been
done on the nature and effects of change operations on a given argumentation state
[Modgil, 2006; Rotstein et al., 2008; Baumann and Brewka, 2010; Baroni et al.,
2011b]. Among other things, enforcing and preservation properties are studied.
Enforcement concerns the extent to which desirable outcomes can or will be obtained
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by changing an argumentation state, while preservation is about the extent to which
the current status of arguments is preserved under change. Quite recently, the
revision of argumentation frameworks has been studied analogously to revising belief
sets or bases in belief revision, i.e. as incorporating new or deleting old elements
while keeping the changes minimal [Coste-Marquis et al., 2014].

Almost all current work on argumentation dynamics concerns abstract argu-
mentation frameworks. In particular the following operations have been studied:
addition or deletion of (sets of) arguments (e.g. [Baumann and Brewka, 2010;
Cayrol et al., 2010; Baumann, 2012b; Baumann, 2012a]) and addition or deletion of
(sets of) attack relations (e.g. [Modgil, 2006; Boella et al., 2010b; Baroni et al., 2011b;
Bisquert et al., 2013]). Deleting attacks can be seen as an abstraction from the use
of preferences to resolve attacks into defeats.

This current abstract work on argumentation dynamics abstracts from the struc-
ture of arguments and the nature of their conflicts, which is a significant limitation.
See e.g. [Modgil and Prakken, 2012], who for this reason propose a model of pref-
erence dynamics in ASPIC+. For example, abstract models of argumentation dy-
namics do not recognise that some arguments are not attackable (such as deductive
arguments with certain premises) or that some attacks cannot be deleted (for ex-
ample between arguments that were determined to be equally strong), or that the
deletion of one argument implies the deletion of other arguments (when the deleted
argument is a subargument of another, as in Figure 6 above), or that the deletion or
addition of one attack implies the deletion or addition of other attacks (for example,
attacking an argument implies that all arguments of which the attacked argument
is a subargument are also attacked; in Figure 6 above attacking B1 implies attack-
ing B2). All this means that formal results about the abstract model may only be
relevant for specific cases and may fail to cover many realistic situations in argu-
mentation. To give a very simple example, in models that allow the addition of
arguments and attacks, any non-selfattacking argument can be made a member of
every extension by simply adding non-attacked attackers of all its attackers. How-
ever, this result at the abstract level does not carry over to instantiations in which
not all arguments are attackable. Here, too, the importance shows of being aware
what the model abstracts from.

2.6.5 Other work

I end this section on argumentation-based inference with a very brief review of some
other relevant work (without any hope of being complete).

[Wooldridge et al., 2006] proposed a formalism for meta-argumentation, sup-
porting a hierarchical formalisation of logic-based arguments. At each level of the
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hierarchy, arguments, statements and positions can refer to arguments, statements
and positions at lower levels. This is achieved by using a hierarchical first-order
meta-logic, a type of first-order logic in which individual terms in the logic can refer
to terms in another language. One application of this formalism is van der Weide’s
[2011] model of reasoning about preferences in argumentation about decision mak-
ing.

Finally, a recent trend is to develop gradual notions of argument acceptability
in terms of structural properties of abstract argumentation frameworks [Cayrol and
Lagasquie-Schiex, 2005a; Grossi and Modgil, 2015].

3 Formal and computational models of argumentation-
based dialogue

So far we have discussed argumentation as a form of (nonmonotonic) inference.
However, argumentation can also be seen as a form of dialogue, in which two or more
agents aim to resolve a conflict of opinion by verbal means. When argumentation
is viewed as a kind of dialogue between ‘real’ agents (whether human or artificial),
new issues arise, namely, the distributed nature of information (over the agents), the
dynamic nature of information, since agents do not reveal everything they believe
from the start and since they can learn from each other, and strategic issues, since
agents will have their internal preferences, desires and goals. At first sight, it might
be thought that the argument games for argumentation-based semantics discussed
above in Section 2.5.2 are dialogical models of argumentation. However, this is
not the case, since they are not meant for discussions between real agents but as a
proof theory. There is no dynamics, no distributed information and the notions of a
proponent and an opponent are just proof-theoretic metaphors, not real agents with
preferences, desires and goals.

Research on argumentation-based dialogue divides into research on communica-
tion languages and protocols (their formal definition and study of their properties)
and research on agent behaviour in argumentation dialogues (strategies, tactics,
heuristics). Some work studies the combination of a protocol and agent behaviour
within that protocol. The main idea of work on argumentation protocols is that
such protocols should promote fair and effective resolution of conflicts of opinion.
In work on argumentative agent design the agents are assumed to adhere to this
purpose of the dialogue but within the rules of the protocol they can pursue their
own interests and objectives.

Research on argumentation-based dialogue is often done against the background
of Walton’s [1984] classification of dialogues into six types according to their goal
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(see also e.g. [Walton and Krabbe, 1995]). Persuasion aims to resolve a difference
of opinion, negotiation tries to resolve a conflict of interest by reaching a deal,
information seeking aims at transferring information, deliberation wants to reach
a decision on a course of action, inquiry is aimed at “growth of knowledge and
agreement” and quarrel is the verbal substitute of a fight. This classification is not
meant to be exhaustive and leaves room for dialogues of mixed type. Persuasion can,
given its purpose, be seen as ‘pure’ argumentation and is often embedded in other
dialogue types in that dialogues of other types may shift to persuasion if a conflict
of opinion arises. For example, in information-seeking a conflict of opinion could
arise on the credibility of a source of information, in deliberation the participants
may disagree about likely effects of plans or actions and in negotiation they may
disagree about the reasons why a proposal is in one’s interest; also, in all three cases
the participants may disagree about relevant factual matters.

The formal study of argumentation-based dialogue is less substantial and less
advanced than the formal study of argumentation-based inference. Unlike with in-
ference, it largely consists of a variety of different approaches and individual systems,
with few unifying accounts or general frameworks. For these reasons this section is
shorter than Section 2 on argumentation-based inference.

3.1 Main historical influences

As noted in Section 2.1.3, [Toulmin, 1958] claimed that outside mathematics the
validity of an argument does not depend on its syntactic form but on whether it
can be defended in a properly conducted dispute. It might be argued that Toulmin
thus anticipated argumentation-based inference, especially in argument-game form.
However, more importantly, he thus planted the seed of an idea that later became
prominent in informal logic and argumentation theory, namely, that arguments can
only be evaluated in the context of a dialogue. Toulmin’s call to logicians of his days
to study the criteria for properly conducted disputes can be regarded as a call to
study dialogue protocols for argumentation.

The Belgian philosopher Chaïm Perelman also emphasised the dialogical nature
of argument evaluation. However, he did not address protocol but strategy, in argu-
ing that arguments in ordinary discourse should not be evaluated in terms of their
syntactic form but on their rhetorical potential to persuade an audience [Perelman
and Olbrechts-Tyteca, 1969]. In particular, an argument is more persuasive the
more it takes the audience’s “values” into account. For example, an argument that
governments should not tap internet communications of their citizens since this in-
fringes on their privacy is not very persuasive to an audience that values security
over privacy. While initially Perelman’s work was only influential in informal logic

2223



Prakken

and argumentation theory, it was around 2000 taken up by AI researchers in both
inferential and dialogical models of argumentation about action selection, starting
with Grasso et al.’s [2001] design of a nutrition advice system and Bench-Capon’s
[2003] formal work on value-based argumentation frameworks (the latter was dis-
cussed above in Section 2.6.2). Other work more generally aimed at characterising
the persuasive force of arguments in terms of the similarity of an argument with the
beliefs of a typical audience [Hunter, 2004].

While argumentation logics define notions of consequence from a given body
of information, dialogue systems for argumentation regulate disputes between real
agents. Systems for persuasion dialogues were already studied in medieval times
[Angelelli, 1970]. The modern study of formal dialogue systems for persuasion prob-
ably started with two publications by Charles Hamblin [1970, 1971], who coined the
term ‘formal dialectic’, and was also inspired by speech act theory in philosophy
[Searle, 1969] and dialogue logic [Lorenzen and Lorenz, 1978]. It should be noted
that formal systems for persuasion dialogue differ from dialogue logics in one crucial
respect. Dialogue logic aims to define the semantics of logical operators in terms
of rules of attack and defence. Accordingly the purpose of a dialogue is to deter-
mine whether a proposition is implied by a given set of propositions and the roles of
proponent and opponent are just logical metaphors, just as in the logical argument
games discussed above in Section 2.5.2. By contrast, the purpose of a persuasion
dialogue is to resolve a conflict of opinion between real agents, who can ask for and
provide substantive reasons for their claims.

Initially, formal systems for argumentation as dialogue were studied only within
philosophical logic and argumentation theory; see, for example, [Mackenzie, 1979;
Mackenzie, 1990; Woods and Walton, 1978; Walton and Krabbe, 1995]. From the
early nineties the study of argumentation dialogues was taken up in several fields
of computer science. In Artificial Intelligence logical models of commonsense rea-
soning have been extended with formal models of persuasion dialogue as a way to
deal with resource-bounded reasoning [Loui, 1998; Brewka, 2001]. Persuasion dia-
logues have also been used in the design of intelligent tutoring systems [Moore, 1993;
Yuan, 2004] and were proposed as an element of computer-supported collaborative
argumentation [Maudet and Moore, 1999]. In AI & law formal dialogue systems for
persuasion were developed as a model of procedural justice in the sense of e.g. [Alexy,
1978]. See, for example, [Gordon, 1994; Hage et al., 1993; Bench-Capon, 1998;
Bench-Capon et al., 2000; Lodder, 1999; Prakken, 2001a; Prakken, 2008]. Finally,
in the field of multi-agent systems dialogue systems have been incorporated into
models of rational agent interaction based on the observation that many kinds of
agent interaction (such as negotiation and group decision making) involve argu-
mentation. Accordingly, interaction protocols for various dialogue types involving
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argumentation have been designed [Parsons and Jennings, 1996; Kraus et al., 1998;
Parsons et al., 1998; Amgoud et al., 2000a; McBurney and Parsons, 2002; Parsons
et al., 2002; Parsons et al., 2003].

Most dialogue systems for argumentation are formulated in an informal mathe-
matical metalanguage, but some have studied the full formalisation of protocols in
logical action languages, such as [Brewka, 2001] in the situation calculus, [Bodenstaff
et al., 2006] in the event calculus and [Artikis et al., 2007] in C++.

3.2 General remarks on dialogue systems for argumentation
Persuasion is usually modelled as a two-party dialogue between a proponent and an
opponent of an initial claim. Essentially, dialogue systems define a communication
language (the well-formed utterances) and a protocol (when a well-formed utterance
may be made and when the dialogue terminates). The communication language
consists of a set of locutions applied to statements or arguments expressed in a
logical language according to some adopted monotonic or nonmonotonic logic. If
this logic is nonmonotonic, it can but need not be an argumentation logic.

Dialogue systems define the principles of coherent dialogue. [Carlson, 1983]
defined coherence in terms of the purpose of a dialogue. According to him, whereas
logic defines the conditions under which a proposition is true, dialogue systems define
the conditions under which an utterance is appropriate, and this is the case if the
utterance furthers the purpose of the dialogue in which it is made. Thus according
to Carlson the principles governing the meaning and use of utterances should not be
defined at the level of individual speech acts but at the level of the dialogue in which
the utterance is made. This justifies why most work on argumentation dialogues,
like Carlson, takes a game-theoretic approach to dialogues, where speech acts are
viewed as moves in a game and rules for their appropriateness are formulated as
rules of the game. [Loui, 1998] distinguished between effectiveness and fairness
of dialogue systems. Effectiveness means that the protocol furthers the purpose
of the dialogue (in the case of persuasion that the conflict of opinion is resolved).
Some aspects of effectiveness are efficiency (how long are dialogues and is there a
guarantee of termination?) and relevance (is every move relevant to the dialogue
topic?). Fairness means that the participants have a fair opportunity to argue their
case. Some aspects of fairness are that the participants always have the opportunity
to move relevant moves and that the outcome of a dialogue agrees with the parties’
commitments.

Communication language Here are some common speech acts that can be found
in the literature on persuasion dialogues, with their informal meaning and the various
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terms with which they have been denoted in the literature.

• claim ϕ (assert, statement, ...). The speaker asserts that ϕ is the case.

• why ϕ (challenge, deny, question, ...) The speaker challenges that ϕ is the case
and asks for reasons why it would be the case.

• concede ϕ (accept, admit, ...). The speaker admits that ϕ is the case.

• retract ϕ (withdraw, no commitment, ..) The speaker declares that he is not
committed (any more) to ϕ. Retractions are ‘really’ retractions if the speaker
is committed to the retracted proposition, otherwise it is a mere declaration
of non-commitment (e.g. in reply to a question).

• ϕ since S (argue, argument, ...) The speaker provides reasons why ϕ is the
case. Some protocols do not have this move but require instead that reasons
be provided by a claim ϕ or claim S move in reply to a why ψ move (where
S is a set of propositions). Also, in some systems the reasons provided for ϕ
can have structure, for example, of a proof three or a deduction.

• question ϕ (...) The speaker asks another participant’s opinion on whether ϕ
is the case.

Structural degrees of freedom Dialogue systems can vary in their structural
properties in several ways [Loui, 1998]: whether players can reply just once to the
other player’s moves or may try alternative replies (unique- vs. multi-reply protocols);
whether players can make just one or may make several moves before the turn
shifts (unique- vs. multi-move protocols); and whether the turn shifts as soon as the
player-to-move has made himself the winning side or may shift later (immediate-
vs. non-immediate-reply protocols). According to [Loui, 1998], the desired degree of
structural ‘strictness’ of a dialogue system depends on the context of a dialogue. In
contexts with little time and resources a unique-move, unique- and immediate reply
protocol may be best, to force the participants not to waste resources, while in other
contexts with more time and resources it is better to allow the participants more
freedom to explore alternatives and return to earlier choices.

Commitments An important notion in systems for argumentation dialogue is
that of propositional commitments [Walton and Krabbe, 1995]. Commitments are
an agent’s publicly declared points of view about a proposition, which may or may
not agree or coincide with the agent’s internal beliefs. An example of where they
often do not agree is criminal trial, where the accused may very well publicly defend
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his innocence while he knows he is guilty. Commitments are typically incurred by
stating claims or arguments, while they are typically lost by retracting a claim or
argument. Commitments can serve several purposes in dialogue systems. One role
is in enforcing a participant’s dialogical consistency, for instance, by requiring him
to keep his commitments consistent at all times or to make them consistent upon
demand, or to defend one’s commitments when challenged or else give them up.
Another role of commitments is to determine termination and outcome of a dialogue.
For example, persuasion dialogues can be defined to terminate if the opponent is
committed to the proponent’s main claim or the proponent is not committed any
more to the main claim.

3.3 Some work on systems for persuasion dialogue

Since persuasion is ‘pure’ argumentation, I now review some historically important
work on systems for persuasion dialogue in more detail. Then I will more briefly
review work that embeds argumentation in systems for other kinds of dialogues.

3.3.1 Mackenzie [1979]

Mackenzie’s [1979] system has been historically influential especially for its set of
locutions. His system has the claim, why, concede and retract locutions. The log-
ical language is that of propositional logic but the logic is not full PL but instead
a restricted notion of “immediate consequence”, to capture resource-bounded rea-
soning (e.g. p, p → q and q → r immediately imply q but not r). Arguments are
moved implicitly, by replying to a why move with a claim. An argument may be
incomplete but its mover becomes committed to the material implication premises
→ conclusion. In addition, Mackenzie has a question speech act, which asks the
hearer to declare a standpoint with respect to a proposition, and a resolve speech
act for demanding resolution of conflicts in or logical implication by commitments.
Mackenzie does not define outcomes or termination of dialogues. This makes his
system underspecified as to the dialogue purpose, so that it can be extended to
various types of dialogues. The protocol is unique-move and unique-reply but it
nevertheless hardly enforces coherence of dialogues. Only the moves required after
why and question and the use of the resolve move are constrained; the participants
may freely exchange unrelated claims, and may freely challenge, retract or question.
For instance, the following dialogue is legal:

P : claim p, O: claim q, P : question r, O: claim ¬r, P : retract s.
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3.3.2 Walton & Krabbe [1995]

[Walton and Krabbe, 1995] developed the ideas of [Mackenzie, 1979] and also [Woods
and Walton, 1978] into a full system for persuasion dialogues. To Mackenzie’s locu-
tions they added an explicit since locution for moving arguments. In their system,
the only way to attack an argument is by challenging its premises, so the underlying
logic is monotonic. The dialogues allowed by [Walton and Krabbe, 1995] are much
more focused than Mackenzie’s, since moves in a new turn must reply to a move in
the previous turn of the other player. So, for instance, in the just-given example
dialogue in Mackenzie’s system, O’s claim q move is not allowed and O must instead
either concede or challenge p. This constraint also makes backtracking and post-
ponement of replies impossible. Apart from this, the protocol allows that more than
one move is made in one turn and alternative arguments for the same challenged
proposition are moved. However, each move from the last turn must be replied-to
(though other moves may be made as well),

Commitments are used by the protocol to enforce a participant’s dialogical co-
herence. For example, if a participant’s commitments logically imply an assertion of
the other participant but do not contain that assertion, then the initial participant
must either concede the assertion or retract one of the implying commitments.

The following example illustrates how the system deals with implicit premises:

P1: claim this car is safe O1: why is this car safe?; P2: this car is safe
since it has an airbag; P2: safe since airbag.

Now the opponent must either challenge or concede both the explicit premise that
the car has an airbag and the implicit premise ‘if the car has an airbag, then it is
safe’.

3.3.3 Gordon’s Pleadings Game

Gordon’s work on the Pleadings Game [Gordon, 1995] is seminal AI & Law work
on the modelling of legal procedures as dialogue games. The game was intended
as a normative model of civil pleading in Anglo-American legal systems, where the
participants aim to identify the issues to be decided in court. The underlying logic
is a nonmonotonic one, viz. Geffner and Pearl’s [1992] conditional entailment, which
as discussed above in Section 2.3 has a model-theoretic semantics and an argument-
based proof theory. The game contains speech acts for conceding and challenging a
claim, for stating and conceding arguments, and for challenging challenges of a claim.
The latter has the effect of leaving the claim for trial. The Pleadings Game can be
argued to have an implicit distinction between attacking and surrendering replies
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(as later made explicit in [Prakken, 2005]) in its distinction between three kinds of
moves that have been made during a dialogue: the open moves, which have not yet
been replied to, the conceded moves, which are the arguments and claims that have
been conceded, and the denied moves, which are the claims and challenges that have
been challenged and the arguments that have been attacked with counterarguments.
The protocol is multi-move but unique-reply. At each turn a player must respond
in some allowed way to every open move of the other player that is still ‘relevant’
(in a sense similar but not identical to that of [Prakken, 2005]), and may reply to
any other open move. If no allowed move can be made, the turn shifts to the other
player, except when this situation occurs at the beginning of a turn, in which case
the game terminates. Move legality is further defined by specific rules for the various
speech acts, which are mostly standard.

The result of a terminated game is twofold: a list of issues identified during the
game (i.e., the claims on which the players disagree), and a winner, if there is one.
Winning is defined relative to the background theory constructed during a game. If
issues remain, there is no winner and the case must be decided by the court. If no
issues remain, then the plaintiff wins iff his main claim is defeasibly implied by the
final background theory, while the defendant wins otherwise.

3.3.4 Deriving locutions from argument schemes

The Toulmin Diagram Game (TDG) of [Bench-Capon, 1998; Bench-Capon et al.,
2000] was intended to produce more natural dialogues than the “stilted” ones pro-
duced by systems such as those reviewed thus far. To this end, its speech acts are
based on an adapted version of Toulmin’s [1958] well-known argument scheme. In
this scheme a claim is supported by data, which support is warranted by an inference
license, which possibly has presuppositions, and which is backed by grounds for its
acceptance; finally, a claim can be attacked with a rebuttal, which itself is a claim
and thus the starting point of a counterargument. Arguments can be chained by
regarding data also as claims, for which further data can be provided.

The locutions of TDG’s communication language correspond to the elements of
this scheme, as shown in Table 1. For ease of comparison, this table has an explicit
reply structure as in [Prakken, 2005], to be discussed below, although the original
TDG system leaves this structure implicit in its protocol.

The idea to generate natural dialogues by defining the communication language
in terms of some argumentation scheme was later applied to practical reasoning
by [Atkinson et al., 2005b; Atkinson et al., 2006], who embedded Atkinson’s [2005]
argumentation scheme for practical reasoning in a dialogue system for persuasion
over action.
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Locutions Attacks Surrenders
claim ϕ why ϕ concede ϕ
why ϕ supply dataϕ ψ retract ϕ
concede ϕ
supply dataψ ϕ soψ ϕ concede ϕ

why ϕ
soψ ϕ supply warrant ψ ⇒ ϕ
supply warrant w presupposing w OK w

on account of w
presupposing w supply presuppositionw ϕ retract w
on account of w supply backingw b retract w
supply backingw b

Table 1: Attackers and surrenders in TDG

3.4 Later formal work

All systems reviewed so far are either philosophically motivated or geared towards
application domains, and none of them were formally investigated on their proper-
ties. This changed in later AI work on dialogue systems for argumentation, some of
which I will now discuss.

3.4.1 Parsons, Wooldridge & Amgoud [2003]

[Parsons et al., 2002; Parsons et al., 2003] were among the first to undertake a system-
atic formal study of argumentation as dialogue. They proposed dialogue systems for
various types of dialogues involving argumentation and formally investigated them
on various kinds of properties. In all of them the underlying logic is nonmonotonic,
namely, Amgoud and Cayrol’s [2002] system for classical-logic argumentation with
grounded semantics. In this section I discuss their system for persuasion dialogues.
Its communication language consists of claims, challenges, concessions and ques-
tions. Arguments are moved implicitly as claim replies to why moves (where sets of
propositions may be claimed). The protocol has a rigid, unique-move and unique-
reply nature, except that each premise of an argument may be responded to in turn.
Unlike the above work, [Parsons et al., 2003] make several assumptions on agent
behaviour. Participants have their own, possibly inconsistent belief base and they
are assumed to adopt an assertion and acceptance attitude, which they must respect
throughout the dialogue. Moreover, claims moved in support of other claims must
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be from the participant’s internal belief base.

[Parsons et al., 2003] distinguish the following assertion attitudes: a confident
agent can assert any proposition for which he can construct an argument, a careful
agent can do so only if he can construct such an argument and cannot construct a
stronger counterargument and a thoughtful agent can do so only if he can construct
an acceptable argument for the proposition (according to grounded semantics). The
corresponding acceptance attitudes also exist: a credulous agent concedes a propo-
sition if he can construct an argument for it, a cautious agent does so only if in
addition he cannot construct a stronger counterargument and a skeptical agent does
so only if he can construct an acceptable argument for the proposition. In verifying
these attitudes, each player must reason with its own beliefs and the commitments
of the other side.

Consider the following example, where the proponent P believes p and p → q,
the opponent believes r and r → ¬q and all formulas are of equal preference. If P
starts with claim q, then O must, depending on its dialogical attitudes, concede q if
possible, otherwise claim ¬q if possible, otherwise challenge q. If O is credulous or
cautious, then perhaps surprisingly she must concede, since she has to reason with
P ’s commitment p so she can construct a trivial argument for q, namely, {q} ` q. In
both cases the dialogue terminates with agreement. By contrast, if O is skeptical, she
has to challenge q. Then P has to move claim {p, p→ q}. Then O, being skeptical,
must challenge both p and p→ q. The proponent then has to reply with claim {p}
and claim {p→ q}, after which the dialogue terminates without agreement, because
the players are not allowed to repeat their moves, while O’s acceptance attitude tells
her to repeat her last two challenges.

[Parsons et al., 2003] investigate various properties of the protocols and their
outcomes. Some results are on whether termination of dialogues is guaranteed.
Other results are on the computational complexity of the various aspects. Yet other
results concern possible agent behaviours. For example, they studied the extent to
which one agent can mislead the other agent by making her concede a proposition
he himself does not believe. They thus were among the first to address issues of
trust in argumentation dialogue.

A very interesting aspect of this work is the definition of the various dialogical
attitudes. However, these notions are perhaps better seen as aspects of strategy than
of protocol, since if they are referred to by the protocol, an outside observer cannot
verify protocol compliance, which is often regarded as a drawback of communication
protocols.
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Locutions Attacks Surrenders
claim ϕ why ϕ concede ϕ
ϕ since S why ψ(ψ ∈ S) concede ψ

(ψ ∈ S)
ϕ′ since S′ concede ϕ
(ϕ′ since S′ defeats ϕ since S)

why ϕ ϕ since S retract ϕ
concede ϕ
retract ϕ

Table 2: An example communication language in Prakken’s framework

3.4.2 Prakken [2005]

In [Prakken, 2005] a framework for specifying two-party persuasion dialogues is
presented, which is then instantiated with some example protocols. The aim of
this work was to allow a more general study of properties of dialogue systems of
argumentation than the work reviewed so far. To this end, the framework largely
abstracts from the logical language, the logic and the communication language,
except that the communication language has to have an explicit reply structure and
that underlying logic is assumed to be a system that is much like a preliminary
version of ASPIC+. Moreover, different protocols were defined, all extending a
partial core protocol.

A main motivation of the framework was to ensure focus of dialogues while yet
allowing for freedom to move alternative replies and to postpone replies. This was
achieved with two main features of the framework. Firstly, an explicit reply structure
on the communication language is assumed (implicit in several other systems), where
each move either attacks or surrenders to its target. An example Lc of this format
is displayed in Table 2. Secondly, winning is defined for each dialogue, whether
terminated or not, and it is defined in terms of a notion of dialogical status of
moves. The dialogical status of a move is recursively defined as follows, exploiting
the tree structure of dialogues. A move is in if it is surrendered or else if all its
attacking replies are out. This implies that a move without replies is in. And a
move is out if it has a reply that is in. Actually, this has to be refined to allow
that some premises of an argument are conceded while others are challenged; see
[Prakken, 2005] for the details. Then a dialogue is (currently) won by the proponent
if its initial move is in while it is (currently) won by the opponent otherwise.

Together, these two features of the framework allow for a notion of relevance

2232



Historical Overview of Formal Argumentation

that ensures focus while yet leaving the desired degree of freedom (generalised from
[Prakken, 2001b]): a move is relevant just in case making its target out would make
the speaker the current winner. Termination is defined as the situation that a player
is to move but has no legal moves. The players can also agree to terminate a dialogue.

Consider by way of example the following dialogue in a protocol that allows
replies to all moves of the other player but only if the move is relevant.

P1: claim p
O1: why p (replying to P1)
P2: p since q (replying to O1)
O2: why q (replying to P2)
P3: p since r (replying to O1)

At this point a reply to P2 is irrelevant, since P2 is out, so replying to it cannot
change the status of P1. Note that the dialogue can only terminate after either P
has replied to O1 with retract p or O has replied to P1 with concede p. In all other
cases, legal moves can always be made.

3.4.3 Argument games as dialogue systems

Argument games for abstract argumentation semantics were above in Section 2.5.2
discussed as a proof theory for abstract argumentation semantics. However, they
have also been studied as genuine dialogue games for disagreeing agents, by dropping
the assumption that all arguments are taken from a fixed and globally known argu-
mentation framework [Loui, 1998; Jakobovits and Vermeir, 1999a; Jakobovits, 2000;
Prakken, 2001b]. If this assumption is dropped, the properties of the game can
change. A positive change is proven by Jakobovits, viz. that certain dynamic
argument-game protocols prevent the construction of AFs containing odd loops (it is
well known that such theories may have no extensions). A negative result is proven
by [Prakken, 2001b], viz. that the dynamified game for grounded semantics loses
soundness with respect to the joint framework constructed during a dialogue. How-
ever, if the game is changed by allowing any relevant reply (in the sense of [Prakken,
2005]) to any earlier move of the other side, then soundness is restored.

While the study of argument games as dialogue systems is theoretically very
interesting, their very simple logic and communication language make that they
cannot be a realistic model of persuasion dialogue.
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3.5 Persuasion embedded in other types of dialogues

I now briefly review work that embeds argumentation in a dialogue system for other
types of dialogues.

3.5.1 Negotiation

Much work on embedding argumentation into negotiation protocols is motivated
by the claim that argumentation can be beneficial to negotiation. From the point
of view of the negotiating agents, adding reasons for a proposal could increase the
chance of acceptance. This was the idea of Sycara’s [1985; 1990] early work on
modelling threats and reward in labour negotiation. For example ‘if you do not
accept our offer, we will go on strike’ (a threat) or ‘if you accept that you have to
work during the weekends, you will receive an increase in salary’ (a reward). This
idea was generalised by [Parsons et al., 1998] and [Kraus et al., 1998] for BDI-style
agents, that is, agents that form their intentions to act according to their beliefs
and, possibly prioritised, desires [Rao and Georgeff, 1991]. The general idea is that
the other agent should be made to change its beliefs or preferences in such a way
that it will form the intention to accept or make an offer that the initial agent wants.

From the perspective of protocol design the idea is that if negotiating agents
exchange and discuss reasons for their proposals and rejections, the negotiation
process may become more efficient and the negotiation outcome may be of higher
quality. If an agent explains why he rejects a proposal, the other agent knows which
of her future proposals will certainly be rejected so she will not waste effort at
such proposals. Thus efficiency is promoted. In such exchanges, reasons are not
only exchanged, they can also become the subject of debate. Suppose a car seller
offers a Peugeot to the customer but the customer rejects the offer on the grounds
that French cars are not safe enough. The car seller might then try to persuade
the customer that he is mistaken about the safety of French cars. If she succeeds
in persuading the customer that he was wrong, she can still offer her Peugeot.
Thus the quality of the negotiation is promoted, since the buyer has revised his
preferences to bring them in agreement with reality. This example illustrates that
a negotiation dialogue (where the aim is to reach a deal) sometimes contains an
embedded persuasion dialogue (where the aim is to resolve a conflict of opinion).

Since all this is about giving reasons for or against acting in a certain way,
the kind of argumentation that is involved is, inferentially speaking, argumentation
about decision options (see Section 2.6.2 above), although it can, as the car sales
example shows, also shift to epistemic argumentation about the underlying facts.
The early work of [Sycara, 1985; Sycara, 1990] and [Kraus et al., 1998] applied
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informal rhetorical models of argumentation. Later work incorporated formal in-
ferential models of argumentation in negotiation protocols. For example, [Parsons
et al., 1998] embed Krause et al.’s [1995] logic of argumentation, [Amgoud et al.,
2000b] embed Amgoud and Cayrol’s [1998] models of classical argumentation with
preferences, [Amgoud and Prade, 2004] incorporate the model summarised by [Am-
goud, 2009], and [van Veenen and Prakken, 2006] combine Wooldridge and Parson’s
[2000] negotiation protocol with one of Prakken’s [2005] persuasion protocols, thus
also embedding its preliminary version of ASPIC+.

3.5.2 Deliberation

The purpose of deliberation is to agree on a course of action. It differs from persua-
sion over action, as modelled in e.g. [Atkinson et al., 2005b; Atkinson et al., 2006]
in that at the start of a deliberation dialogue there typically just is a problem and
no proposed solutions yet. It differs from negotiation in that deliberating agents are
assumed not to be self-interested but collaborative, sharing the goals of the group or
community they are part of. The group may be small, such as a few people choosing
a restaurant for dinner, it may be big, such as in parliamentary debate, and it may
be huge, such as in public debate about political or societal issues. Clearly, different
settings require different kinds of protocols.

Embedding argumentation in deliberation has much the same benefits as embed-
ding it in negotiation: for the agents it may increase the chance of acceptance of their
proposals, and for the dialogue it may increase the quality of the outcome. Research
on deliberation with argumentation started later than research on argumentation-
based negotiation and is not as extensive. Here is brief overview of some work.

[Tang and Parsons, 2005] proposed a rather specific dialogue system for argumen-
tation about means-end planning, not based on a formal model of argumentation.

[McBurney et al., 2007] proposed a framework for multi-agent deliberation dia-
logues. The protocol is intended to allow for the open nature of deliberation, giving
the agents much freedom for establishing goals, constraints, perspectives, facts, ac-
tions and evaluations. Accordingly, the dialogue cyclicly moves through various
stages. After initial inform and propose stages, the agents evaluate and decide on
actions in the consideration, revision, recommendation and confirmation stages. The
framework does not assume a specific argumentation logic.

[Black and Atkinson, 2011] proposed a much more rigid system for two-agent
deliberation based on Atkinson’s [Atkinson, 2005] embedding of an argument scheme
for practical reasoning in value-based argumentation frameworks. The rigidness of
the system allows them to show that if the agents adhere to the dialogue protocol
and construct their arguments on the basis of their own belief bases, then any agreed
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proposal is also acceptable to both agents individually.
Finally, [Kok et al., 2011] proposed a dialogue system for multi-agent deliberation

dialogues as part of an experimental setup for testing the usefulness of argumentation
in such dialogues. The system is an instance of Prakken’s [2005] framework for
persuasion but adapted to deliberation. It incorporates ASPIC+ as the underlying
logic.

3.5.3 Inquiry

Only little work has been done on embedding argumentation in inquiry. Early work
is McBurney and Parsons’s [2001] model of scientific inquiry. More recently, [Black
and Hunter, 2007; Black and Hunter, 2009] embedded Garcia and Simari’s [2004]
DeLP argumentation system in a protocol for inquiry dialogue. They combined the
protocol with a strategy that selects exactly one of the legal moves to make. This
allowed them to prove soundness and completeness properties with respect to the
participants’ belief bases, provided the agents construct their arguments from their
own belief base.

3.6 Work on strategic aspects of argumentation

Dialogue systems for argumentation only cover the rules of the game, i.e., which
moves are allowed; they do not cover principles for playing the game well, i.e.,
strategies, tactics and heuristics for the individual players. Above we already dis-
cussed some work that studies the combination of a protocol with strategies, such
as [Black and Atkinson, 2011] for deliberation and [Black and Hunter, 2007; Black
and Hunter, 2009] for inquiry. Moreover, as remarked above, the assertion and ac-
ceptance policies studied by [Parsons et al., 2002; Parsons et al., 2003] could be seen
as heuristics for move selection (although Parsons, Wooldridge and Amgoud make
them part of their protocols).

Other early work on strategic aspects of argumentation is [Amgoud and Maudet,
2002], who, building on the even earlier work of [Moore, 1993] on argumentation
dialogues for intelligent tutoring, formulated move selection strategies and tactics
based on human strategies in natural dialogues. One example is that agents have
to choose between a build or destroy attitude, i.e., whether they want to support
their own or to attack their opponent’s position. This idea was later also used by
[Kok, 2013] in his simulation experiments on whether argumentation is beneficial to
deliberating agents.

In the context of dialogue games for abstract argumentation, Paul Dunne studied
issues arising from the mismatch between the purpose of persuasion dialogues and
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the arguing agent’s own objectives. In [Dunne, 2003] he studied the use of delay
tactics and in [Dunne, 2006] he studied situations where agents have a ‘hidden
agenda’.

More recently, there is an emerging research strand on opponent modelling for
strategic purposes, for example in terms of probability distributions or expected-
utility distributions over the possible actions of the opponent [Matt and Toni, 2008;
Thimm and Garcia, 2010; Oren and Norman, 2010; Hadjinikolis et al., 2013; Rienstra
et al., 2013]. Somewhat earlier, [Riveret et al., 2008] probabilistically modelled not
an opponent but an impartial adjudicator who has the power to accept or reject
premises of arguments put forward by the adversaries. In this work, probabilistic
game theory can be used to determine optimal strategies.

Other recent work that uses game theory is that on mechanism design for ar-
gumentation [Rahwan and Larson, 2008; Rahwan et al., 2009]. The goal here is
to develop protocols that make unwanted behaviour (such as lying or withholding
information) suboptimal.

All this recent work on strategic aspects of argumentation is still preliminary.
The reader can consult [Thimm, 2014] for a recent overview. I confine myself to one
concluding observation. On the one hand, the recent work on strategy, heuristics and
tactics is a natural continuation of the earlier work on communication languages and
protocols. However, in one respect it is a step backwards, since it generally assumes
much simpler dialogue systems than were developed before, with, for example, much
recent work assuming simple dialogue games for abstract argumentation semantics.

4 Application areas

Formal and computational models of argumentation have been applied in several
areas. Although a comprehensive review is beyond the scope of this article, a brief
overview is in order. For more detailed overviews the reader can consult [Modgil
et al., 2013] and some references given below. I will mainly focus on three main
application areas, viz. medicine, law and debating technologies. In addition, in the
literature many specific applications can be found, such as to recommender systems,
trust and reputation management, robot soccer, waste management, licensing policy
management, the internet of things, and so on.

Below I will only discuss applications of formal models of argumentation. In
several areas there is much applied research based on informal or ad-hoc models of
argumentation. For example, argumentation has been used in work on risk assess-
ment and design rationale in software engineering for explaining why a design meets
a design requirement or avoids a risk [Haley et al., 2008; Franqueira et al., 2011]
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. Moreover, there is quite some work on support tools for argument visualisation
[Reed et al., 2007; ter Berg et al., 2009] and collaborative argumentation and decision
making [Conklin et al., 2001; Scheuer et al., 2010; Kirschner et al., 2003], sometimes
in educational contexts [Pinkwart and McLaren, 2012], and with applications for the
social web [Schneider et al., 2013]. Finally, recently research in argument mining
[Palau and Moens, 2009; Lippi and Torroni, 2016] has become popular, which aims
to recognise (elements of) arguments and their relations in natural-language texts.

As for the nature of the applications mentioned below, theoretical, user-oriented
and fielded applications can be distinguished. Theoretical applications use a non-
trivial domain example to demonstrate the adequacy or motivate design features
of the model. In user-oriented applications (which usually are of computational
architectures) the usefulness of the architecture for designated types of users or
tasks is an essential aspect. Fielded applications have actually been used by the
intended user group in a realistic context, either experimentally or in actual use.

4.1 Medical applications

Medicine has been an important application field of argumentation, with John Fox as
a historically influential figure. Several systems developed by him and his colleagues
have been experimentally tested or are even in actual use [Fox et al., 2007], so these
count as fielded applications. While their underlying argumentation model is rather
simple, this group also studied formal foundations of their systems, e.g. in [Elvang-
Göransson et al., 1993] and [Krause et al., 1995]. Moreover, [Fox and Parsons, 1997]
proposed one of the first formal argumentation-based models of decision making,
using arguments for expressing and comparing the positive and negative effects of
medical treatments. This idea was combined with an argument-scheme approach
by [Tolchinsky et al., 2006; Tolchinsky et al., 2012], who present a model for multi-
agent deliberation about safety-critical medical actions, such as donor organ selection
for patients. The intended system plays the role of a mediating agent whose task
is to inform the participants about their valid move options, to decide whether
an argument is relevant enough to be admitted into the process, and to evaluate
the admitted arguments in order to assess whether the proposed action should be
undertaken. Since this system was tested experimentally with medical doctors, it
counts as a fielded application.

More recently, [Hunter and Williams, 2012] have applied argumentation in a
user-oriented way to the problem of aggregating evidence-based arguments for and
against treatment options from clinical trials. They use preference-based abstract ar-
gumentation frameworks instantiated with one-steps applications of domain-specific
inference rules, and express argument preferences in terms of outcome indicators of
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the treatments. The approach was evaluated by comparison with recommendations
made in published healthcare guidelines.

4.2 Legal applications

There has been much cross-pollination with the field of AI & Law [Prakken and
Sartor, 2015]. This is understandable, given the inherently adversarial nature of
the law and the importance of written justifications of legal decisions. Rule-based
argumentation formalisms such as assumption-based argumentation and the system
of [Prakken and Sartor, 1997] have been applied to preference-based reasoning with
conflicting rules [Kowalski and Toni, 1996; Prakken and Sartor, 1996]. Prakken &
Sartor also used their logic to formalise notions of burdens of proof [Prakken and
Sartor, 2009], as was done by [Gordon and Walton, 2009] with their Carneades
system. Work on applying dialogue systems to the formalisation of legal procedure
was discussed above in Sections 3.1 and 3.3.3.

An important contribution of AI & Law to the formal study of argumentation
is the study of the role of cases in argumentation; for a recent detailed overview see
[Bench-Capon, 2017]. In Section 1 above the still influential HYPO system [Ashley,
1990] and its successor CATO [Aleven, 2003] were mentioned. Their underlying
argumentation model is for ‘factor’- or ‘dimension’-based reasoning, where cases are
collections of abstract fact patterns that favour or oppose a conclusion, either in
an all-or nothing fashion (factors) or to varying degrees (dimensions). This work
inspired subsequent formal work using the tools of formal argumentation, e.g. [Hage,
1993; Loui et al., 1993; Prakken and Sartor, 1998; Bench-Capon and Sartor, 2003]. A
key idea in this work is that case decisions give rise to conflicting rules (or conflicting
sets of reasons) plus a preference expressing how the court resolved this conflict. In
the notation of [Prakken and Sartor, 1998]:

r1: Pro-factors ⇒ Decision
r2: Con-factors ⇒ Not Decision

r1 > r2

The rule preference expresses the court’s decision that the pro factors in the body of
rule r1 together outweigh the con factors in the body of rule r2. This approach allows
for ‘a fortiori’ reasoning in that adding factors to a pro-decision rule or removing
factors from a con-decision rule does not affect the rule priority. [Horty, 2011], using a
non-argumentation-based nonmonotonic logic, formalises the conditions under which
a decision is allowed or forced by body of precedents and then uses this to also
formalise the concepts of following, distinguishing and overruling a precedent.
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A related line of research is to compare cases not in terms of their factors but in
terms of underlying legal and social values. [Berman and Hafner, 1993] argued that
often a factor can be said to favour a decision by virtue of the purposes served or
values promoted by taking that decision because of the factor. A choice in case of
conflicting factors is then explained in terms of a preference ordering on the purposes,
or values, promoted or demoted by the decisions suggested by the factors. Cases
can then be compared in terms of the values at stake rather than on the factors
they contain. [Bench-Capon, 2002] first computationally modelled this approach,
leading to a series of papers culminating in [Prakken et al., 2015] and using argument
schemes for practical reasoning of the kinds also used in argumentation-based models
of decision making (see Section 2.6.2 above).

All the AI & law applications mentioned so far are theoretical applications. User-
oriented legal applications of argumentation are rare, with most applications in the
field of e-democracy, e.g. [Cartwright and Atkinson, 2009; Gordon, 2011]. Finally, to
my knowledge only one fielded application exists, namely, the CATO system, which
was experimentally tested for teaching case-based argumentation skills to American
law students.

4.3 Debating technologies
Most work on debating technologies is based on informal or ad-hoc models of argu-
mentation; for overviews see the references given above. An exception is the work of
the Arg-tech group at the University of Dundee, Scotland, led by Chris Reed. This
group has developed various user-oriented web-based argumentation tools partly
based on formal foundations [Bex et al., 2013a]. For example, they have been us-
ing the so-called Argument Interchange Format [Chesñevar et al., 2006], which was
given a logical foundation in ASPIC+ by [Bex et al., 2013b] and they have an online
implementation of an instance of ASPIC+ called TOAST [Snaid and Reed, 2012].
Several tools developed by the Arg-tech group have been experimentally tested with
intended users, so these count as fielded applications.

5 Conclusion
Looking back on the history of formal research on argumentation, there is a marked
difference between the study of argumentation as inference and that of argumenta-
tion as dialogue. The theory of argumentation-based inference is mature, with an
almost universally accepted formal foundation in Dung’s theory of abstract argumen-
tation frameworks and its extensions and with a converging study of structured argu-
mentation, with just a small number of general frameworks and increasing knowledge
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about their relations. By contrast, the study of argumentation-based dialogue con-
sists of a variety of different approaches and individual systems, all exciting work
but with few unifying accounts or general frameworks. There are a few exceptions,
such as a series of papers just after 2000 by Peter McBurney, Simon Parsons and
others on principles for the design of dialogue systems e.g. [McBurney et al., 2002;
McBurney and Parsons, 2002], and my own formal framework for persuasion dia-
logue in [Prakken, 2005]. However, this work is still far from being foundational.

In my own personal opinion, the following are the four main main theoretical
contributions of the field.

1. The idea that dialectical evaluation of arguments can be formalised. While
logic textbooks routinely write that a valid argument does not dictate the ac-
ceptance of its conclusion since it can always be attacked on its premises, formal
argumentation has shown that attack relations between arguments conform to
patterns that can be formally studied. In its purest form this is captured in
Dung’s [1995] theory of abstract argumentation frameworks.

2. The idea of defeasible rules. Dogma has it that all arguments should be de-
ductively valid, that is, the truth of their premises should guarantee the truth
of their conclusion. The fields of informal logic, argumentation theory and
epistemology have questioned this dogma and argued that arguments that fail
to meet this standard of perfection can still be good, as long as they withstand
critical scrutiny. The field of formal argumentation has shown that this idea
can be formalised.

3. The idea that the principles for evaluating arguments in the context of a dia-
logue can be formalised. [Toulmin, 1958] first proposed that arguments should
be evaluated not on their syntactic form but on whether they can be defended
in a properly conducted dispute. He urged logicians of his day to study the
principles of proper dispute. The formal study of dialogue studies has met
this challenge and thus also opened the prospects for precise formal studies of
strategy and tactics for persuasion.

4. The idea that reasoning under uncertainty can be formalised in a qualita-
tive way. There is an increasing trend of advocating quantitative (especially
Bayesian) models of uncertainty as the only way to reason about uncertainty.
Likewise with quantitative models of decision making. However, for humans
such quantitative theories are often hard to grasp, while they largely ignore the
dialogical and procedural aspects of reasoning. This is especially a problem for
applications with humans in the loop, such as support tools for human argu-
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mentation and decision making. Our field has shown that a natural qualitative
theory of reasoning under uncertainty can be formalised.

However, there is, in my opinion, also an unfortunate recent development. While
Dung’s [1995] idea of abstract argumentation frameworks was a major breakthrough
and is deservedly a key element in the formal study of argumentation-based inference,
not all follow-up work is of the same generality. We have seen that several proposals
for extending abstract argumentation frameworks with new elements implicitly make
assumptions that are not in general satisfied. The same holds for work on the
dynamics of abstract argumentation and for some work on probabilistic abstract
argumentation. The resulting formalisms are thus abstract but not general in that
they model special cases, such as the case in which all arguments, or all attacks, are
independent of each other, or the special case in which all arguments are attackable.

It is worth noting that the word ‘abstract’ in Dung’s [Dung, 1995] notion of ab-
stract argumentation frameworks does not qualify ‘argumentation’ but ‘frameworks’.
In Dung’s terminology, it is the framework that is abstract, not the argumentation.
Strictly speaking there is no such thing as abstract argumentation, just as there is no
such thing as structured argumentation. All there is is argumentation, which can be
studied at various levels of abstraction. And in real argumentation not arguments
but things like claims, reasons and grounds are the most basic elements. There
is nothing wrong in principle with abstract studies of argumentation: abstraction
is an indispensable tool in any kind of research. However, one should not forget
that we all study the same phenomenon, so that the various levels of abstraction
should be connected. I remind the reader of my (perhaps controversial) proposal in
Section 2.5.3 of a methodological guideline that every new proposal for extending
abstract argumentation frameworks with new elements should in the same paper be
accompanied by at least one non-trivial instantiation, in order to demonstrate the
significance of the new extension. In doing so, we would respect the historic roots of
the abstract study of argumentation, since in his original 1995 paper Dung respected
this guideline in a way that has since never been equalled.

It is time to conclude. The formal and computational study of argumentation
has established itself as a mature field of research. Argumentation is a key word or
topic in all main AI conferences, papers on argumentation are published in the major
AI journals, and the field has its own COMMA conference plus several workshops
(CNMA, ArgMas, TAFA). Theoretically, the field is in a healthy state with much
exciting research. With respect to applications this is less so, but this holds for all
theoretically interesting fields of research. There is every hope to be optimistic here
too, as long as a too strong focus on abstract argumentation is avoided. Unlike,
for example, constraint satisfaction or model checking, argumentation is not just a
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technique but an important aspect of human life. There will therefore always be the
need for support tools for argumentation, and our field is arguably in an excellent
position to provide these tools. In any case, it provides their formal foundations.
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Abstract

This article describes abstract dialectical frameworks, or adfs for short.
adfs are generalizations of the widely used Dung argumentation frameworks.
Whereas the latter focus on a single relation among abstract arguments, namely
attack, adfs allow arbitrary relationships among arguments to be expressed.
For instance, arguments may support each other, or a group of arguments may
jointly attack another one while each single member of the group is not strong
enough to do so. This additional expressiveness is achieved by handling accept-
ance conditions for each argument explicitly.

The semantics of adfs are inspired by approximation fixpoint theory (AFT),
a general algebraic theory for approximation based semantics developed by
Denecker, Marek and Truszczyski. We briefly introduce AFT and discuss its
role in argumentation. This puts us in a position to formally introduce adfs
and their semantics. In particular, we show how the most important Dung
semantics can be generalized to adfs. Furthermore, we illustrate the use of adfs
as semantical tool in various modelling scenarios, demonstrating how typical
representations in argumentation can be equipped with precise semantics via
translations to adfs. We also present grappa, a related approach where the
semantics of arbitrary labelled argument graphs can be directly defined in an
adf-like manner, circumventing the need for explicit translations. Finally, we
address various computational aspects of adfs, like complexity, expressiveness
and realizability, and present several implemented systems.
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1 Introduction
This article is about abstract dialectical frameworks, or adfs for short. adfs are
generalizations of Dung argumentation frameworks (afs, see the chapter Abstract
Argumentation Frameworks and Their Semantics of [Baroni et al., in press]). afs
are very popular tools in argumentation. They abstract away from the content of
particular arguments and focus on conflicts among arguments, where each argument
is viewed as an atomic item. The only information afs take into account is whether
an argument attacks another one or not. Based on a set of arguments and an attack
relation, different af semantics single out coherent subsets of arguments which “fit”
together, according to specific criteria. More formally, an af semantics takes an
argumentation framework as input and produces as output a collection of sets of
arguments, called extensions.

afs are typically not used directly for knowledge representation purposes, but
as semantical tools: given a knowledge base KB in some knowledge representation
formalism, the set of arguments induced by KB is formally defined and the attack
relation on these arguments is identified. This defines an af that can be evaluated
according to a chosen semantics. The KB formulas supported by accepted arguments
are then the ones which are accepted. This stepwise evaluation is often referred to
as the argumentation process [Caminada and Amgoud, 2007].

Given that afs are in wide use, a natural question to ask is why a generalization
of afs is useful in the first place. There are at least two possible answers to this
question:

• the generalization is more expressive than afs,

• the generalization allows for easier modelling.

In fact, it turns out that both answers apply to adfs. We will discuss the issue
of expressiveness in detail in Section 6.2. For the time being let us focus on the
modelling issue. afs restrict their attention to the attack relation, and the basic
intuition is the following: assume an argument b is attacked by argument c, then
whenever c is accepted b is defeated. But how about more fine-grained – or entirely
different – relations which could be of potential interest? What if c alone is not
strong enough and a second argument, say d, is needed to jointly defeat b? And,
maybe even more importantly, aren’t there situations where accepting an argument
can be a reason for accepting another one, in other words, where arguments are in
support rather than in attack relation? We do not claim here that examples like the
ones just discussed cannot be modelled at all with afs. However, additional nodes
in the af argument graph will be needed which have the sole purpose of modelling
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other relations indirectly, via attack. These nodes will often be entirely unrelated
to the original knowledge base and thus meaningless from the perspective of the
application.

Indeed, for these reasons many authors have felt the need to extend the func-
tionality available in afs in one way or another. Examples of extensions described
in the literature are preference or value-based afs [Simari and Loui, 1992; Amgoud
and Cayrol, 2002; Amgoud and Vesic, 2011; Bench-Capon, 2003], afs with support
relations [Cayrol and Lagasquie-Schiex, 2005; Cayrol and Lagasquie-Schiex, 2013;
Oren and Norman, 2008; Polberg and Oren, 2014], necessities [Nouioua, 2013],
set attacks [Nielsen and Parsons, 2007], attacks on attacks [Modgil, 2009], re-
cursive attacks [Baroni et al., 2011] and afs with weights [Martínez et al., 2008;
Dunne et al., 2011; Coste-Marquis et al., 2012] or probabilities [Hunter, 2013;
Thimm, 2012]. We refer the reader to [Brewka et al., 2014] for an overview of
such extensions.

In a nutshell, adfs are an attempt to unify several of these different approaches
and to generalize afs in a principled, systematic way. The basic idea is very simple.
Consider again the conditions under which an argument, say b, with attackers c and
d is accepted in an af: b is accepted iff c is not accepted and d is not accepted.
This condition can easily be expressed as the propositional formula ¬c ∧ ¬d. The
acceptance condition for each argument in an af is obtained in exactly the same
way, by constructing the conjunction of the negations of its attackers. Once the
implicit acceptance conditions which are at work in afs are made explicit this way,
the generalization adfs build upon are pretty straightforward: rather than using
implicit acceptance conditions of the form we just saw, adfs use explicit acceptance
conditions which can conveniently be expressed as arbitrary propositional formulas.

Let us see how explicit acceptance conditions allow us to handle some of the ex-
amples discussed above. We start with joint attack. If b can only be defeated jointly
by c and d, then all we have to do is change the acceptance condition accordingly:
rather than a conjunction, we have to use the disjunction ¬c ∨ ¬d as acceptance
condition for b. The effect is that b is only defeated when both c and d are accepted,
as intended. As soon as one of them is not accepted, b is no longer defeated.

Support can be handled in a similar manner. Assume g has two supporting
arguments a and b, and one attacking argument c, as illustrated in Figure 1. We
use + and − to indicate support and attack, respectively.

Note that the information about supporting and attacking links in the graph
does not sufficiently specify under what conditions g should be accepted. Let us call
a link active if its source node is accepted. There are various options we may want
to choose, all of them expressible as a particular acceptance condition for g:
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a

b

c

g

+

+

−

Figure 1: An argument with two supporters and one attacker.

• no negative and all positive links must be active: ¬c ∧ (a ∧ b)

• no negative and at least one positive link must be active: ¬c ∧ (a ∨ b)

• no negative or both positive links must be active: ¬c ∨ (a ∧ b)

• no negative or at least one positive link must be active: ¬c ∨ (a ∨ b)

• more positive than negative links must be active: (¬c ∧ (a ∨ b)) ∨ (a ∧ b)

Note how it depends on the acceptance condition whether supporting links are
“stronger than” attacking links (meaning that if all incoming links are active, the
node is accepted), as in the last three items, or attacking links are “stronger than”
supporting links (meaning that if all incoming links are active, the node is rejected),
as for the first two items.

We hope these examples are sufficient to illustrate the additional modelling cap-
abilities adfs provide, and also the simplicity of the basic idea they rest upon. We
will see, however, that generalizing the af semantics to adfs is far from being simple.
This issue will be addressed in Section 3.

In spite of their additional expressiveness, we do not view adfs primarily as a
knowledge representation formalism. We rather consider them as “argumentation
middleware”, that is, as a framework which is particularly useful for providing se-
mantics to other, maybe more user-friendly formalisms via translations [Brewka et
al., 2014]. We will further illustrate this in Section 4.

The rest of this article is organized as follows. In Section 2 we recall some relev-
ant background and in particular discuss some relationships between approximation
fixpoint theory and afs which will be useful later. Section 3 introduces adfs and
their semantics formally. The presentation of this section is based on [Brewka et
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al., 2013]. Section 4 illustrates the role of adfs in argumentation, showing how
they can be used for modelling. Section 5 describes grappa (GRaph-based Ar-
gument Processing based on Patterns of Acceptance) along the lines of [Brewka
and Woltran, 2014]; grappa is an approach to graph-based argumentation which is
closely related to adfs and their underlying formal techniques. Section 6 discusses
subclasses, computational aspects, and expressivity of adfs. Section 6.1 focuses on
an interesting special case of adfs, so-called bipolar adfs where each link in the adf
graph is attacking or supporting (or both). This rather expressive class is not only
of practical interest, but also has nice computational properties. Expressiveness of
adfs and bipolar adfs is investigated in Section 6.2, computational complexity in
Section 6.3, and recent systems in Section 6.4. Section 7 concludes the article.

2 Approximation Fixpoint Theory in Abstract Argu-
mentation

Denecker, Marek and Truszczyski [Denecker et al., 2000] (henceforth shortened to
DMT) introduced an algebraic framework for studying semantics of knowledge rep-
resentation formalisms. In this framework – approximation fixpoint theory (AFT)
– knowledge bases are associated with operators (functions) on algebraic structures
(for example lattices). The fixpoints of those operators are then studied in order to
analyse the semantics of knowledge bases. While this technique is standard to define
semantics of programming languages and has indeed been used in early works on
logic programming [van Emden and Kowalski, 1976], the major invention of DMT
has been the important concept of an approximation of an operator. In the study
of semantics of knowledge representation formalisms, elements of lattices represent
objects of interest. Operators transform such objects into others according to the
contents of a given knowledge base. Consequently, fixpoints of such operators are
then objects that cannot be updated any more – informally speaking, the knowledge
base can neither add information to a fixpoint nor remove information from it.

In classical approaches to fixpoint-based semantics, the underlying algebraic
structure is the complete lattice of the set V2 = {v : A→ {t, f}} of all two-valued
interpretations over some vocabulary A ordered by the truth ordering ≤t with

v1 ≤t v2 if and only if ∀a ∈ A : v1(a) = t =⇒ v2(a) = t.1

Consequently, an operator O on this lattice (V2,≤t) takes as input a two-valued
interpretation v ∈ V2 and returns a revised interpretation O(v) ∈ V2. The intuition

1(V2,≤t) is isomorphic to (2A,⊆) via v 7→ v−1(t) = {a ∈ A | v(a) = t}.
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of the operator is that the revised interpretation O(v) incorporates additional know-
ledge that is induced by the knowledge base associated to O from interpretation v.
Based on this intuition, fixpoints of O correspond to the models of the knowledge
base.

To study fixpoints of operators O, DMT investigate fixpoints of their approxim-
ating operators O. When O operates on two-valued interpretations V2, its approxim-
ation O operates on three-valued interpretations V3 = {v : A→ {t, f ,u}}. The three
truth values t (true), f (false), and u (undefined) can be ordered by the informa-
tion ordering ≤i. This ordering intuitively assigns a greater information content to
the classical truth values {t, f} than to undefined u; more formally, we have u <i t
and u <i f and ≤i is the reflexive transitive closure of <i. The partially ordered
set ({t, f ,u} ,≤i) forms a complete meet-semilattice with the meet operation ⊓i.2
This meet can be read as consensus and assigns t ⊓i t = t, f ⊓i f = f , and returns
u otherwise. The ordering ≤i can be generalized to three-valued interpretations in
a pointwise fashion:

v1 ≤i v2 if and only if ∀a ∈ A : v1(a) ∈ {t, f} =⇒ v1(a) = v2(a).3

Again, the resulting algebraic structure is a complete meet-semilattice; its ≤i-
maximal elements are exactly the two-valued interpretations V2, which form an
≤i-antichain. Intuitively, in that complete meet-semilattice, a single three-valued
interpretation

v : A→ {t, f ,u}
serves to approximate a set [v]2 = {w ∈ V2 | v ≤i w} of two-valued interpreta-
tions. For example, for the vocabulary A = {a, b, c}, the three-valued interpretation
v = {a 7→ t, b 7→ u, c 7→ f} approximates the set {w1, w2} of two-valued interpreta-
tions where w1 = {a 7→ t, b 7→ t, c 7→ f} and w2 = {a 7→ t, b 7→ f , c 7→ f}.

In a similar vein, a three-valued operator O : V3 → V3 approximates a two-valued
operator O : V2 → V2 if and only if

1. for all v ∈ V2, we have O(v) = O(v) (O agrees with O on two-valued v), and

2. for all v1, v2 ∈ V3, v1 ≤i v2 =⇒ O(v1) ≤i O(v2) (O is ≤i-monotone).

DMT [Denecker et al., 2000] showed that in this case fixpoints of O approximate
fixpoints of O. More specifically, for every fixpoint v2 of O, there is a fixpoint v3

2A complete meet-semilattice is such that every non-empty finite subset has a greatest lower
bound, the meet; and every non-empty directed subset has a least upper bound. A subset is directed
iff any two of its elements have an upper bound in the set.

3(V3,≤i) is isomorphic to ({M ⊆ A ∪ {¬a | a ∈ A} | a ∈M =⇒ ¬a /∈M} ,⊆) via the mapping
v 7→ {a ∈ A | v(a) = t} ∪ {¬a | a ∈ A, v(a) = f}.
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of O such that v2 ∈ [v3]2. Moreover, an approximating operator O always has a
fixpoint, which need not be the case for two-valued operators O. In particular, O
has an ≤i-least fixpoint, which approximates all fixpoints of O.

In subsequent work, DMT [Denecker et al., 2004] presented a general, abstract
way to define the most precise approximation of a given operator O : V2 → V2. Most
precise here refers to a generalisation of ≤i to operators, where for O1,O2 : V3 → V3,
they define O1 ≤i O2 iff for all v ∈ V3 it holds that O1(v) ≤i O2(v). Specifically,
DMT then show that the most precise – called the ultimate – approximation of O
is given by the operator UO : V3 → V3 that maps a given v ∈ V3 to

UO(v) : A→ {t, f ,u} with a 7→





t if w(a) = t for all w ∈ {O(x) | x ∈ [v]2}
f if w(a) = f for all w ∈ {O(x) | x ∈ [v]2}
u otherwise

This definition is remarkable since previously, approximations of operators had to be
devised by hand rather than automatically derived. DMT [Denecker et al., 2004] give
additional definitions introducing stable semantics that are only of minor interest
here and will be introduced in a special form later.

AFT on AFs
AFT can be used for defining semantics of afs as follows [Strass, 2013a]. The stable
semantics for afs can be understood as a two-valued semantics given by the fixpoints
of an operator (going back to Pollock [1987]) on two-valued interpretations.

Definition 1. For each af F = (A,R), the operator UF : V2 → V2 yields – for a
given interpretation v : A→ {t, f} – a new interpretation

UF (v) : A→ {t, f} with a 7→
{
f if ∃b ∈ A : v(b) = t, (b, a) ∈ R
t otherwise

Intuitively, all arguments that are attacked in F by some argument that is true
in v are set to false in UF and set to true otherwise, that is, if unattacked by all t
arguments of v. (So the U is for “unattacked”.) It is easy to see that the fixpoints of
this operator exactly correspond to stable extensions [Strass, 2013a, Proposition 4.4].

Proposition 2. Let F = (A,R) be an AF and v : A→ {t, f} be an interpretation.
Then v = UF (v) iff the set v−1(t) = {a ∈ A | v(a) = t} is a stable extension of F .

Example 3. Consider the af F1 = (A1, R1) with A1 = {a, b} and
R1 = {(a, b), (b, a)}:

2269



Brewka, Ellmauthaler, Strass, Wallner and Woltran

a b

Below, we depict the complete lattice ({v : A1 → {t, f}} ,≤t) of two-valued interpret-
ations over A1 ordered by the truth ordering as a Hasse diagram (i.e. straight lines
show direct ≤t-neighbours), and how the operator UF1 assigns its points to others
(dashed arrows).

{a 7→ f , b 7→ f}

{a 7→ t, b 7→ f} {a 7→ f , b 7→ t}

{a 7→ t, b 7→ t}

It can be seen from the diagram that the operator has two fixpoints, {a 7→ t, b 7→ f}
and {a 7→ f , b 7→ t}. They correspond one-to-one to the stable extensions {a} and
{b} of the AF F1.

Example 4. In contrast, consider the af F2 = (A2, R2) with A2 = {a, b, c} and
R2 = {(a, b), (b, c), (c, a)}:

a

bc

Again, we depict the complete lattice ({v : A2 → {t, f}} ,≤t) and how the operator
UF2 assigns its points to others.
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{a 7→ f , b 7→ f , c 7→ f}

{a 7→ t, b 7→ f , c 7→ f} {a 7→ f , b 7→ t, c 7→ f} {a 7→ f , b 7→ f , c 7→ t}

{a 7→ f , b 7→ t, c 7→ t}{a 7→ t, b 7→ f , c 7→ t}{a 7→ t, b 7→ t, c 7→ f}

{a 7→ t, b 7→ t, c 7→ t}

The picture makes it obvious that UF2 has no fixpoint, in accordance with the fact
that F2 has no stable extension.

Using the definitions of Denecker, Marek and Truszczyski, it is easy to obtain
the ultimate approximation of UF . (See also [Strass, 2013a, Proposition 4.1].)

Corollary 5. Given an interpretation v : A→ {t, f ,u}, the three-valued operator
ΥF : V3 → V3 yields a new interpretation

ΥF (v) : A→ {t, f ,u} with a 7→





f if ∃b ∈ A : v(b) = t, (b, a) ∈ R
t if ∀b ∈ A : (b, a) ∈ R =⇒ v(b) = f
u otherwise

For any given AF F , the fixpoints of UF constitute the stable semantics of F .
The ultimate approximation ΥF approximates UF , thus the semantics induced by ΥF
then intuitively approximate af stable semantics. More specifically, the following
result is straightforward [Strass, 2013a, Section 4]:4

Proposition 6. Let F = (A,R) be an AF and v : A→ {t, f ,u} be an interpretation.

1. v is complete for F iff v = ΥF (v).
4Given an AF F = (A,R), an extension E ⊆ A uniquely determines a three-valued interpret-

ation vE by letting vE(a) = t if a ∈ E, vE(a) = f if a is attacked by E in F , and vE(a) = u oth-
erwise. Similarly, a three-valued interpretation v : A→ {t, f ,u} uniquely determines an extension
Ev = {a | v(a) = t}. This allows us to switch freely between extensions and interpretations.
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2. v is admissible for F iff v ≤i ΥF (v).

3. v is preferred for F iff v is ≤i-maximal admissible.

4. v is grounded for F iff v is the ≤i-least fixpoint of ΥF .

In the next section, we will use approximation fixpoint theory and this result to
define the semantics of adfs in a straightforward way.

Example 7. Consider the AF F3 = (A3, R3) with A3 = {a, b} and R3 = {(a, b)}:

a b

Below, we depict the associated meet-semilattice ({v : A3 → {t, f ,u}} ,≤i) of the set
of all three-valued interpretations over A3 ordered by the information ordering, and
how the operator ΥF3 maps those interpretations to others.

{a 7→ u, b 7→ u}

{a 7→ f , b 7→ u}{a 7→ u, b 7→ f} {a 7→ t, b 7→ u} {a 7→ u, b 7→ t}

{a 7→ f , b 7→ f} {a 7→ t, b 7→ f} {a 7→ f , b 7→ t} {a 7→ t, b 7→ t}

The picture shows how the grounded semantics can be obtained by following the
dotted line starting in the ≤i-least element up to the operator’s single fixpoint. (In
fact, it obviates that all (sufficiently long) sequences of operator applications lead to
the fixpoint, showing that this interpretation really is the intended meaning of F3.)

Example 8. Reconsider the AF F1 = (A1, R1) from Example 3 with A1 = {a, b}
and R1 = {(a, b), (b, a)}:

a b
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Again, we show the complete meet-semilattice ({v : A1 → {t, f ,u}} ,≤i) along with
the mappings of the operator ΥF1 (dotted arrows).

{a 7→ u, b 7→ u}

{a 7→ f , b 7→ u}{a 7→ u, b 7→ f} {a 7→ t, b 7→ u} {a 7→ u, b 7→ t}

{a 7→ f , b 7→ f} {a 7→ t, b 7→ f} {a 7→ f , b 7→ t} {a 7→ t, b 7→ t}

In this picture, the operator UF1 re-appears in the top row of all two-valued inter-
pretations. Those form a complete lattice with respect to ≤t, but an antichain with
respect to ≤i. Likewise, the two fixpoints of UF1 re-appear as fixpoints of ΥF1 in
the top row. The additional fixpoint of ΥF1 consequently constitutes the grounded
semantics of F1.

As we have seen, the operator ΥF arises naturally from a straightforward ap-
plication of ultimate approximation [Denecker et al., 2004] to an operator proposed
by Pollock [1987]. It is interesting to observe that the assignments of the operator
correspond precisely to what has independently been defined as “legal argument
labellings” [Caminada and Gabbay, 2009].

3 ADFs: Syntax and Semantics
Like an af, an abstract dialectical framework (adf) is a directed graph whose nodes
represent arguments, statements or positions. One can think of the nodes as arbit-
rary items which can be accepted or not. The links represent dependencies. However,
unlike a link in an af, the meaning of an adf link can vary. The status of a node s
only depends on the status of its parents (denoted par(s)), that is, the nodes with
a direct link to s. In addition, each node s has an associated acceptance condition
Cs specifying the exact conditions under which s is accepted. Cs is a function as-
signing to each subset of par(s) one of the truth values t, f .5 Intuitively, if for some

5In the original paper in and out were used. We prefer truth values here as they allow us to
apply standard logical terminology.
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R ⊆ par(s) we have Cs(R) = t, then s will be accepted provided the nodes in R are
accepted and those in par(s) \R are not accepted.

Definition 9. An abstract dialectical framework is a tuple D = (S,L,C) where

• S is a set of statements (positions, nodes),

• L ⊆ S × S is a set of links,

• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {t, f}, one for each state-
ment s. Cs is called acceptance condition of s.

In many cases it is convenient to represent acceptance conditions as propositional
formulas. For this reason we will frequently use a logical representation of adfs
(S,L,C) where C is a collection {φs}s∈S of propositional formulas.6

Example 10. In the following adf, which will act as running example throughout
the article, we use formulas to specify acceptance conditions.

a b

c d

φa = ⊤ φb = b

φc = a ∧ b φd = ¬b

Intuitively, φa states that a should always be accepted. Condition φb expresses a kind
of self-support, which can be utilized as a guess whether or not to accept b. Finally,
c should be accepted if both a and b are, while d is attacked by statement b.

Unless specified differently we will tacitly assume that the acceptance formulas
specify the parents a node depends on implicitly. It is then not necessary to give
the links in the graph explicitly. We thus can represent an adf D as a tuple (S,C)
where S and C are as above and L is implicitly given as (a, b) ∈ L iff a appears in
φb.

6More precisely, each acceptance condition Cs will be represented as a propositional formula φs
over the vocabulary par(s).
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The different semantics of adfs over statements S are based (via approximation
fixpoint theory) on the notion of a two-valued model. A two-valued interpretation
v : S → {t, f} – a mapping from statements to the truth values true and false – is a
two-valued model (model, if clear from the context) of an adf (S,C) whenever for
all statements s ∈ S we have v(s) = v(φs), that is, v maps exactly those statements
to true whose acceptance conditions are satisfied under v.7

Approximation Fixpoint Theory on ADFs
We now come back to AFT and illustrate its role to define semantics for
ADFs [Strass, 2013a; Brewka et al., 2013]. As AFT deals with operator-based se-
mantics and how to approximate them, the starting point is an operator for the
two-valued semantics: the notion of an adf model allows us to associate a two-
valued operator to a given adf.

Definition 11. Let D = (S, {φs}s∈S) be an ADF. The operator GD : V2 → V2 takes
an input v : S → {t, f} and returns an updated interpretation

GD(v) : S → {t, f} with s 7→ v(φs)

In words, the operator takes a two-valued interpretation v and returns a two-
valued interpretation GD(v) mapping each s ∈ S to the truth value that is obtained
by evaluating φs with v. It is easy to see that this operator characterises the adf
model semantics [Strass, 2013a, Proposition 3.4].

Proposition 12. Let D = (S,L,C) be an adf and v : S → {t, f} be a two-valued
interpretation. Then v is a (two-valued) model of D iff v = GD(v).

Example 13. For the ADF D from Example 10, Figure 2 depicts the complete
lattice ({v : S → {t, f}} ,≤t) and how the operator GD assigns its points to others.

Using the general operator-based definitions of Denecker, Marek and Truszczyski
[Denecker et al., 2004], it is again straightforward to determine the ultimate approx-
imation of GD. Recall from the section on approximation fixpoint theory (Section 2)
that the set V3 of all three-valued interpretations over S forms a complete meet-
semilattice with respect to the information ordering ≤i. The consensus meet oper-
ation ⊓i of this semilattice is given by (v1 ⊓i v2)(s) = v1(s) ⊓i v2(s) for all s ∈ S.
The least element of this semilattice is the interpretation vu : S → {u} mapping all

7In an earlier paper [Brewka et al., 2013], there was the notion of a “three-valued model”. The
development and analysis of that concept has been discontinued.
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{a 7→ f ,
b 7→ f ,
c 7→ f ,
d 7→ f}

{a 7→ t,
b 7→ f ,
c 7→ f ,
d 7→ f}

{a 7→ f ,
b 7→ t,
c 7→ f ,
d 7→ f}

{a 7→ f ,
b 7→ f ,
c 7→ t,
d 7→ f}

{a 7→ f ,
b 7→ f ,
c 7→ f ,
d 7→ t}

{a 7→ t,
b 7→ t,
c 7→ f ,
d 7→ f}

{a 7→ t,
b 7→ f ,
c 7→ t,
d 7→ f}

{a 7→ t,
b 7→ f ,
c 7→ f ,
d 7→ t}

{a 7→ f ,
b 7→ t,
c 7→ t,
d 7→ f}

{a 7→ f ,
b 7→ t,
c 7→ f ,
d 7→ t}

{a 7→ f ,
b 7→ f ,
c 7→ t,
d 7→ t}

{a 7→ t,
b 7→ t,
c 7→ t,
d 7→ f}

{a 7→ t,
b 7→ t,
c 7→ f ,
d 7→ t}

{a 7→ t,
b 7→ f ,
c 7→ t,
d 7→ t}

{a 7→ f ,
b 7→ t,
c 7→ t,
d 7→ t}

{a 7→ t,
b 7→ t,
c 7→ t,
d 7→ t}

Figure 2: Complete lattice of two-valued interpretations for Example 10; dashed
arrows visualise the assignments of the operator GD. It can be readily seen that GD
has two fixpoints, whence D has two models (Proposition 12).
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statements to undefined – the least informative interpretation. The ultimate ap-
proximation of the two-valued adf operator GD is now obtained as follows [Strass,
2013a, Lemma 3.12]:

Corollary 14. Let D be an adf. The operator ΓD : V3 → V3 is the ultimate ap-
proximation of GD and is defined as follows: for an adf D and a three-valued
interpretation v, the revised interpretation ΓD(v) is given by

ΓD(v) : S → {t, f ,u} with s 7→ d
i {w(φs) | w ∈ [v]2}

That is, for each statement s, the operator returns the consensus truth value for
its acceptance formula φs, where the consensus takes into account all possible two-
valued interpretations w that extend the input valuation v. If this v is two-valued,
then [v]2 = {v}, thus ΓD(v)(s) = v(φs) = GD(v)(s) and ΓD indeed approximates GD.

Example 15. Consider the adf D1 = (S1, L1, C1) given by S1 = {a, b, c}, and L1
and C1 given as follows:

a b c

φa = ⊥ φb = a ∨ b ∨ ¬c φc = ¬a ∨ ¬b

Roughly, a cannot be accepted. Statement b supports itself, and is furthermore sup-
ported by a and attacked by c – more precisely, b can be accepted if a can be accepted
or b can be accepted or c can be rejected. In turn, c is jointly attacked by a and b –
c can only be rejected if both a and b are accepted, otherwise c is accepted. Figure 3
shows the associated complete meet-semilattice ({v : S1 → {t, f ,u}} ,≤i) along with
the mappings of the operator ΓD1.

It is now an easy corollary of Proposition 6 to generalize the standard af se-
mantics to adfs:

Definition 16. Let D = (S,L,C) be an adf and v : S → {t, f ,u} be an interpret-
ation.

1. v is complete for D iff v = ΓD(v).

2. v is admissible for D iff v ≤i ΓD(v).
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{a 7→ u,
b 7→ u,
c 7→ u}

{a 7→ u,
b 7→ u,
c 7→ t}

{a 7→ u,
b 7→ t,
c 7→ u}

{a 7→ t,
b 7→ u,
c 7→ u}

{a 7→ f ,
b 7→ u,
c 7→ u}

{a 7→ u,
b 7→ f ,
c 7→ u}

{a 7→ u,
b 7→ u,
c 7→ f}

{a 7→ u,
b 7→ t,
c 7→ t}

{a 7→ t,
b 7→ u,
c 7→ t}

{a 7→ t,
b 7→ t,
c 7→ u}

{a 7→ u,
b 7→ f ,
c 7→ t}

{a 7→ f ,
b 7→ t,
c 7→ u}

{a 7→ u,
b 7→ t,
c 7→ f}

{a 7→ f ,
b 7→ u,
c 7→ t}

{a 7→ t,
b 7→ f ,
c 7→ u}

{a 7→ t,
b 7→ u,
c 7→ f}

{a 7→ f ,
b 7→ f ,
c 7→ u}

{a 7→ f ,
b 7→ u,
c 7→ f}

{a 7→ u,
b 7→ f ,
c 7→ f}

{a 7→ t,
b 7→ t,
c 7→ t}

{a 7→ t,
b 7→ t,
c 7→ f}

{a 7→ t,
b 7→ f ,
c 7→ t}

{a 7→ f ,
b 7→ t,
c 7→ t}

{a 7→ t,
b 7→ f ,
c 7→ f}

{a 7→ f ,
b 7→ t,
c 7→ f}

{a 7→ f ,
b 7→ f ,
c 7→ t}

{a 7→ f ,
b 7→ f ,
c 7→ f}

Figure 3: Complete meet-semilattice of three-valued interpretations over
S1 = {a, b, c} under the information ordering for Example 15; dotted arrows visual-
ise mappings of the operator ΓD1. It can be seen that ΓD1 has a ≤i-least fixpoint,
which is situated right ≤i-beneath its two-valued models, the other two fixpoints of
ΓD1.

3. v is preferred for D iff v is ≤i-maximal admissible.

4. v is grounded for D iff v is the ≤i-least fixpoint of ΓD.

Incidentally, Brewka and Woltran [2010] already defined the operator ΓD (manu-
ally) and used it to define the grounded semantics. Thus the grounded semantics can
be seen as the greatest possible consensus between all acceptable ways of interpret-
ing the adf at hand. A three-valued interpretation is admissible for an adf D iff
it does not make an unjustified commitment that the operator ΓD will subsequently
revoke.

There is an alternative and perhaps slightly more accessible way of introducing
the operator ΓD. We will briefly pursue this way for illustration, and start out with
an additional definition. For a propositional formula φ over vocabulary S and a
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three-valued interpretation v : S → {t, f ,u}, the partial valuation of φ by v is the
formula

φv = φ[p/⊤ : v(p) = t][p/⊥ : v(p) = f ]

Intuitively, given a three-valued interpretation v and a formula φ, the partial eval-
uation of φ with v takes the two-valued part of v and replaces the evaluated vari-
ables with their truth values. For example, consider the propositional formula
φ = a ∨ (b ∧ c) and the interpretation v1 = {a 7→ f , b 7→ t, c 7→ u}. Statement c with
v1(c) = u will remain in φ, while a and b are replaced, and we get φv1 = ⊥ ∨ (⊤ ∧ c).
Now assume that an adf D = (S, {φs}s∈S) is given via acceptance formulas; for this
D and a three-valued interpretation v, the revised interpretation ΓD(v) is given by

ΓD(v) : S → {t, f ,u} with s 7→





t if φvs is irrefutable
f if φvs is unsatisfiable
u otherwise

An irrefutable formula is a formula that is satisfied under any two-valued interpret-
ation (i.e. the formula is a tautology).

For reasons of brevity, we will sometimes shorten the notation of a three-
valued interpretation v = {a1 7→ t1, . . . , an 7→ tn, } with statements a1, . . . , an and
truth values t1, . . . , tn to v =̂ {ai | v(ai) = t} ∪ {¬ai | v(ai) = f}. For instance,
v = {a 7→ t, b 7→ u, c 7→ f} =̂ {a,¬c}.

We now show some concrete interpretations and semantics for an example.

Example 17. As we have seen before, for the adf D from Example 10 we obtain
the following two-valued models:

• v1 = {a 7→ t, b 7→ t, c 7→ t, d 7→ f} =̂ {a, b, c,¬d}

• v2 = {a 7→ t, b 7→ f , c 7→ f , d 7→ t} =̂ {a,¬b,¬c, d}

Unfortunately, due to its sheer size (34 = 81 interpretations), we cannot depict the
semi-lattice ({S → {t, f ,u}} ,≤i) and will henceforth resort to textual descriptions.
The grounded interpretation of D is v3 = {a 7→ t, b 7→ u, c 7→ u, d 7→ u} =̂ {a}. The
admissible interpretations (ordered by ≤i) of our example adf are as follows:
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∅

{a}{b} {¬b}

{a,¬b}{a, b}{b,¬d} {¬b, d} {¬b,¬c}

{a,¬b, d}{a, b,¬d}{a, b, c} {a,¬b,¬c} {¬b,¬c, d}

{a, b, c,¬d} {a,¬b,¬c, d}

We verify that v4 =̂ {a,¬b,¬c} is admissible in the example adf. Statement a’s
acceptance condition is a tautology. This means that under any three-valued inter-
pretation v′ it holds that ΓD(v′)(a) = t, and, in particular, ΓD(v4)(a) = v4(a) = t.
Acceptance condition of statement b is the formula b. Such an acceptance condition
(a single unnegated variable) implies that for any three-valued interpretation v′ that
assigns a value to b, it holds that ΓD(v′)(b) = v′(b). If b is assigned t by v′, then
φv

′
b is a tautology, if b is assigned f , then φv

′
b is unsatisfiable, and if b is assigned

u by v′, then φv
′
b = b is neither a tautology nor unsatisfiable. The acceptance con-

dition of statement c is a ∧ b. Evaluating φc under v4 gives φv4c = ⊤ ∧ ⊥ ≡ ⊥,
and ΓD(v4)(c) = f = v4(c). Finally, v4(d) = u and φd = ¬b. Since for the un-
defined truth value it holds that u ≤i t and u ≤i f , if a three-valued interpretation v′
assigns undefined to a statement, then applying the operator ΓD under v′ cannot re-
turn a truth value with less information than u for that statement. For our example
interpretation, we have v4(d) ≤i ΓD(v4)(d) = t.

The complete interpretations of our example adf are

v3 =̂ {a}, v5 =̂ {a, b, c,¬d}, v6 =̂ {a,¬b,¬c, d}.

The latter two, v5 and v6, are the preferred interpretations.

The definition of stable model semantics for adfs [Brewka et al., 2013] is based
on ideas from Logic Programming (LP) where stable models strengthen the no-
tion of minimal models by excluding self-justifying cycles of atoms. In LP, this is
achieved by a test which picks a candidate model M , uses M to reduce the original
logic program to a program without negative literals, and then checks whether M
coincides with the (typically unique) least model of the reduced program. This way
self-justifying cycles cannot appear. What we do for an adf D is very similar: to
check whether a two-valued model v of D is stable we do the following:

• we eliminate in D all nodes with v-value f and corresponding links,
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• we replace eliminated nodes in acceptance conditions by ⊥,

• we check whether nodes that are t in v coincide with those that are t in the
grounded interpretation of the reduced adf.

This is captured in the following definition [Brewka et al., 2013, Definition 6]. (See
also [Strass and Wallner, 2015, Proposition 2.4] for an alternative definition via
AFT.)

Definition 18. Let D = (S,L,C) be an adf with C = {φs}s∈S and v : S → {t, f}
be a two-valued model of D. Define the reduced adf Dv with Dv = (Sv, Lv, Cv),
where

• Sv = {s ∈ S | v(s) = t}

• Lv = L ∩ Sv × Sv

• Cv = {φvs}s∈Sv where for each s ∈ Sv, we set φvs = φs[b/⊥ : v(b) = f ].

Denote by w the unique grounded interpretation of Dv. Now the two-valued model v
of D is a stable model of D if and only if for all s ∈ S, we find that v(s) = t implies
w(s) = t.

Note that a stable model of an adf D is a model of D by definition (v is assumed
to be a model). In the reduct for a model v, (i) only statements assigned to true by
v are present, (ii) only links with both ends being statements assigned to true by
v are considered, and (iii) in each acceptance formula of the remaining statements
we replace statements b ∈ S that v maps to false by their truth value, i.e., in these
acceptance conditions variables assigned to false by v are replaced by ⊥ (and the
remaining statements/variables remain unmodified in the formulas). This definition
straightforwardly expresses the intuition underlying stable models: if all statements
the model v takes to be false are indeed false, we must find a constructive proof for
all statements the model takes to be true.

Example 19. Consider the adf D given by

φa = ⊤, φb = ¬a ∨ c, φc = b.

It has two models: v1 = {a 7→ t, b 7→ t, c 7→ t} and v2 = {a 7→ t, b 7→ f , c 7→ f}. Let
us check whether they are stable models. For v1, the reduct, Dv1, is equal to D
(every statement is assigned to true by v1, thus all statements and links remain
in the reduct and no statement is replaced by ⊥ in an acceptance condition). The
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grounded interpretation of D is v3 = {a 7→ t, b 7→ u, c 7→ u}, implying that v1 is not
stable in D, since the grounded interpretation of Dv1 is not equal to v1.8

For the other model of D, the reduct Dv2 = (Sv2 , Lv2 , Cv2) with Sv2 = {a},
Lv2 = ∅, and φa = ⊤. The grounded interpretation of Dv2 is v4 = {a 7→ t}. The
final condition of Definition 18, v2(a) = t implies v4(a) = t, is satisfied, and, there-
fore, v2 is a stable model of D. Further, v2 is the only stable model of D, since
we considered all models of D, only one being stable, and any other interpretation
cannot be stable for D, since being a model is a prerequisite for being stable.

Next, we illustrate that there are cases where an adf has a model, but no stable
model.

Example 20. Consider the adf D given by

φa = c, φb = c, φc = a↔ b.

The only two-valued model of D is v = {a 7→ t, b 7→ t, c 7→ t}. Since c is true because
a and b are and vice versa, the model contains unintended cyclic support and thus
should not be stable. Indeed, for the reduct we get Dv = D. Let us compute the
grounded semantics of D. We start with interpretation w = {a 7→ u, b 7→ u, c 7→ u}.
Since none of the acceptance formulas is a tautology or an unsatisfiable formula,
w is already a fixpoint of ΓD and thus the grounded interpretation of D. Hence
v is not a stable model and D has no stable models, just as intended. Since v is a
minimal model of D the example illustrates that in Definition 18 we actually need the
grounded semantics; requiring v to be among the (subset-inclusion or information)
minimal two-valued models of the reduct is insufficient, in contrast to, e.g., stable
semantics of logic programs.

For our running example, the concept of reduct is applied as follows.

Example 21. The ADF from Example 10 has two two-valued models, namely
v1 = {a 7→ t, b 7→ t, c 7→ t, d 7→ f} and v2 = {a 7→ t, b 7→ f , c 7→ f , d 7→ t}. We obtain
the reducts for each model of D as follows:

8The definition of stable models in this article, taken from [Brewka et al., 2013, Definition 6],
supersedes the definition of stable models in the original paper on adfs [Brewka and Woltran,
2010, Definition 6] in that the new definition corrects certain unintended results. For instance, v1
in Example 19 is the only stable model according to the old definition, but this is not the case
under the new definition. The model v1 violates the basic intuition of stable semantics that all
elements of a stable model should have a non-cyclic justification: in the model v1 it holds that b is
accepted because c is and vice versa (these two statements have supporting links to each other; see
Section 6.1 for a formalization of attacking and supporting links between statements).
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a b

c

φa = ⊤ φb = b

φc = a ∧ b

Reduct Dv1

a

d

φa = ⊤

φd = ¬⊥

Reduct Dv2

The grounded interpretation of reduct Dv1 is {a}, v1 is thus not a stable model of D.
For v2, the reduct Dv2 has the grounded interpretation {a 7→ t, d 7→ t}. The model
v2 of D is thus the single stable model of D.

Well-known relationships between semantics defined on Dung AFs carry over to
adfs. This is formalized in the next theorem [Brewka et al., 2013, Theorem 3].

Theorem 3.1. Let D be an adf.

• Each stable model of D is a two-valued model of D;

• each two-valued model of D is a preferred interpretation of D;

• each preferred interpretation of D is complete;

• each complete interpretation of D is admissible;

• the grounded interpretation of D is complete.

We illustrate the relationships in Figure 4 where an arrow from a σ-interpretation
to a τ -interpretation denotes that every σ-interpretation is a τ -interpretation. Fur-
ther, again similarly as in AFs, any ADF possesses at least one admissible, complete,
preferred, and grounded interpretation, while this is not guaranteed for models and
stable models.

In addition to the semantical relationships generalizing those known from afs,
semantics on adfs also directly generalize semantics for afs. We first define for a
given af its associated adf.

Definition 22. For an af F = (A,R), define the adf associated to F as DF =
(A,R,C) with C = {φa}a∈A such that for each a ∈ A, the acceptance condition is
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stable model

two-valued model

preferred interpretation

complete interpretation

admissible interpretation

grounded interpretation

Figure 4: Relations between adf semantics

given by

φa =
∧

b∈A,
(b,a)∈R

¬b

Now we can formalize the way adfs, and their semantics, generalize afs in the
next two theorems [Brewka et al., 2013].

Theorem 3.2. Let F = (A,R) be an af and DF its associated adf. For any two-
valued interpretation v for A, the following are equivalent:

(A) the set v−1(t) = {a ∈ A | v(a) = t} is a stable extension of F ,

(B) v is a stable model of DF ,

(C) v is a two-valued model of DF .

Note that for af-based adfs, there is no distinction between models and stable
models. The intuitive explanation for this is that stable semantics on adfs breaks
cyclic supports, which cannot arise in afs because they cannot (directly) express
support.
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More generally, we can also show that our definitions are indeed proper gener-
alizations of Dung’s notions for afs as given in Proposition 6. The result is due to
[Brewka et al., 2013].

Theorem 3.3. Let F be an af and DF its associated adf. An interpretation
is admissible, complete, preferred, grounded for F iff it is admissible, complete,
preferred, grounded for DF .

On afs, if v is a preferred interpretation (a stable model) for an af F it holds
that there is no preferred interpretation (stable model) v′ ̸= v such that the set of
statements assigned to true by v is a subset of the statements assigned to true by v′,
i.e., {s | v(s) = t} ̸⊆ {s | v′(s) = t}. On general adfs, this property does not hold
for preferred interpretations and two-valued models, i.e., there are adfs with two
preferred interpretations (models) v and v′ such that {s | v(s) = t} ⊆ {s | v′(s) = t}.

Example 23. Consider adf D = ({a}, {(a, a)}, {φa = a}). Both v1 = {a 7→ f}
and v2 = {a 7→ t} are models and preferred interpretations of D. It holds that
{s | v(s) = t} = ∅ ⊊ {a} = {s | v′(s) = t}.

On the other hand, for any ADF D with stable models v1 and v2, it holds
that v1 ≤t v2 implies v1 = v2 [Strass, 2013a, Proposition 3.8], that is, such strict
relationships cannot occur between stable models. (This follows easily from AFT.)

4 ADFs as Modelling Tools
In this section we will provide various examples illustrating why – as we believe –
adfs are useful tools in formal argumentation. We discussed the term argumentation
middleware in the introduction already. We now want to give a clearer picture
what we actually mean by this. More precisely, we will discuss various graphical
representations of argumentation scenarios users may find useful. In each case we
define the semantics of the chosen representation by providing a formal translation
to adfs. The representation is thus equipped – via the translation – with the whole
range of Dung semantics we have defined for adfs. We also discuss how adfs can
serve as a tool for providing semantics to systems based on strict and defeasible
inference rules, again via a translation.

4.1 Weights and Preferences
In our informal discussion in the introduction we have already shown how graphical
representations based on link types (+ for supporting, − for attacking) can be
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a

b

c

g

5

2

−6

Figure 5: An argument graph with weighted links.

modeled using adfs. The same is obviously true for links annotated with numerical
weights. Throughout the paper we will assume a positive weight represents support,
a negative weight attack, in both cases with a given strength. An example can be
found in Figure 5.

The figure uses a weighted graph to represent a simple argumentation scenario.
We will provide the graph with a formal semantics based on translating it to an adf.
There are various ways of interpreting the numbers and of actually deriving specific
adf acceptance conditions from representations like this one. We first have to specify
how the numbers should actually be used to decide whether a node is accepted or
not. Recall that a link is active if its source node is accepted. A straightforward
idea is to accept a node whenever the sum of the weights of all active links pointing
to the node is positive. We will call this strategy sum-of-weights (sow). For node
g in Figure 5 this amounts, as we will see, to the following acceptance condition:
(¬c ∧ (a ∨ b)) ∨ (a ∧ b).

Secondly, we need to take care of those nodes which do not depend on other
nodes, that is, nodes without incoming links. We will call these nodes input nodes
and denote the input nodes of a graph G as input(G). It is often useful to consider
input nodes as parameters whose truth values can be chosen freely, with the aim to
explore the consequences of a particular choice. Consequently, our translation will
depend on the assignment of truth values to the input nodes.

Definition 24. Let G = (N,E, I) be a labelled graph with nodes N , edges E and
(integer) labelling function I : E → Z. Let A ⊆ input(G) be the subset of input
nodes considered true (the other input nodes are considered false). The sum-of-
weights translation of G under A is the adf D = (S,L,C) with S = N , L = E, and
the acceptance condition Cs (represented as a formula ϕs) is defined as follows:
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ϕs =





⊤, if s ∈ A
⊥, if s ∈ input(G) \A
ϕsow(s), otherwise

where the formula ϕsow(s) is the disjunction of all conjunctions of literals built from
parent nodes of s which represent truth value assignments under which the sum of
weights of active links is positive.

Let us check how the acceptance condition for node g in Figure 5 is obtained.
The following table shows 8 possible assignments of truth values to g’s parent nodes,
together with the sum of values of active links:

a b c
t t t 1
t t f 7
t f t -1
t f f 5
f t t -4
f t f 2
f f t -6
f f f 0

The sum of weights of active links is positive in 4 of the 8 lines, the acceptance
condition of g is the disjunction of the conjunctions corresponding to these lines,
that is:

(a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ ¬c)
which can be simplified to (¬c ∧ (a ∨ b)) ∨ (a ∧ b), the formula presented earlier.

Of course, there are many more strategies how to evaluate the numbers. One
possibility is to check whether the maximal positive weight of an active link is
higher than the maximal negative weight of an active link. This leads to a different
definition of acceptance conditions for non-input nodes. We leave the details to the
reader and just mention that in Figure 5 the acceptance condition for g under this
new strategy becomes (¬c ∧ (a ∨ b)).

Qualitative preferences can be handled in a similar manner. Let us first introduce
prioritized argument graphs.

Definition 25. A prioritized argument graph is a tuple G = (S,L+, L−, >) where
S is the set of nodes, L+ and L− are subsets of S ×S, the supporting and attacking
links, and > is a strict partial order (irreflexive, transitive, antisymmetric) on S
representing preferences among the nodes.
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Figure 6: An argument graph with qualitative weights.

As before, we will translate prioritized argument graphs to adfs. We illustrate the
translation using an example. Assume we are given the graph in Figure 6.

Assume further the preference ordering is a > c and g > d, that is a is strictly
preferred to c, g to d. We want to capture the following intuition: an attacker
(represented by label − in the graph) does not succeed if the attacked node is
more preferred than the attacker, or if there is a more preferred supporting node
(represented by label + in the graph).

We treat input nodes as in Definition 24. The general scheme for deriving for-
mulas expressing the corresponding acceptance condition ϕs for a node s with a
non-empty set of parents is the following: we create a conjunction of implications,
one for each attacker t of s which is not less preferred than s. The left side of the
implication (the precondition) consists of the attacker t, the right side (conclusion)
is the disjunction of all supporting nodes of s which are more preferred than t.

In the example above, the only attackers which are not less preferred than g are
b and c. For b we obtain the implication b→ f (as there is no supporting node more
preferred than b and the empty disjunction is equivalent to f). For attacker c we
obtain the implication c→ a, as a is more preferred than c. This yields the following
acceptance condition for g: (b→ f) ∧ (c→ a) or, equivalently ¬b ∧ (c→ a).

As a matter of fact, preferences are often not given in advance, as assumed in the
example, but an issue of debate themselves. One way to model situations where the
preference relation > is established dynamically in the course of argumentation is
the following. Let us assume some nodes represent (possibly conflicting) preference
information, that is information about which pairs of nodes belong to >. The idea is
to guess a (stable, preferred, grounded) interpretation M and then to verify whether
M can be generated in a way satisfying the preference relation it contains. To do so
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we extract the preference information from the relevant nodes in M . We then check
whetherM can be reconstructed under this (now static) preference information using
the techniques described above. We thus verify whether the preferences represented
in the model itself were taken into account adequately.

Definition 26. An argument graph with dynamic preferences is a tuple

G = (S,L+, L−, P )

where S is the set of nodes, L+ and L− are subsets of S × S, the supporting and
attacking links, and P : S → S × S is a partial function.

The function P assigns preference information to some of the nodes in S. If
P (a) = (b, c) then node a carries the information that b is preferred over c. For a
three-valued interpretation M we use >M to denote the smallest strict partial order
on S containing the set {(b, c) | P (a) = (b, c),M(a) = t}. Note that >M may be
undefined, e.g. if M contains two nodes with conflicting preference information. The
semantics of argument graphs with dynamic preferences is now defined as follows:

Definition 27. Let G = (S,L+, L−, P ) be an argument graph with dynamic pref-
erences, A a subset of its input nodes. E is a (stable, preferred, grounded) inter-
pretation of G under A iff >E is a strict partial order and E is a (stable, preferred,
grounded) interpretation of the prioritized argument graph DE = (S,L+, L−, >E)
under A.

We thus guess an interpretation E of the intended type, extract from E the
corresponding strict partial order on S, and check whether E is among the intended
interpretations of the (non-dynamic) prioritized argument graph which is based on
the extracted preference information. The evaluation of the prioritized graph is
based on the translation to adfs described earlier in this section. For further details
see [Brewka et al., 2013].

4.2 Proof Standards
Proof standards are well known and play an important role in legal reasoning. They
are based on the intuitive idea that decisions or verdicts which have drastic con-
sequences, say for a defendant, should be based on stronger, less doubtful criteria
than decisions with limited consequences, say a small fine. Farley and Freeman
[Farley and Freeman, 1995] introduced a model of legal argumentation which distin-
guishes four types of arguments (in decreasing order of strength):

• valid arguments based on deductive inference,
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• strong arguments based on inference with defeasible rules,

• credible arguments where premises give some evidence,

• weak arguments based on abductive reasoning.
By using values V = {+v,+s,+c,+w,−v,−s,−c,−w} we will distinguish pro and
con links of the corresponding types in argument graphs, where the type of a link is
inherited from the type of its source node.

Based on these argument types, Farley and Freeman define the following proof
standards:

• Scintilla of Evidence: at least one pro-argument is accepted.

• Preponderance of Evidence: at least one pro-argument is accepted, all accepted
con arguments are outweighed by stronger accepted pro arguments.

• Dialectical Validity: there is at least one credible accepted pro-argument, none
of the other side’s arguments is accepted.

• Beyond Reasonable Doubt: there is at least one strong accepted pro-argument,
none of the other side’s arguments is accepted.

• Beyond Doubt: there is at least one valid active pro-argument, none of the
other side’s arguments is accepted.

Again we will show how these notions can be formalized using adfs.
Consider the labelled graph in Figure 7. Let us focus on the acceptance condition

for g, represented as a propositional formula. The condition obviously depends on
g’s proof standard. For scintilla of evidence it is sufficient that at least one pro-
argument is accepted. There are two such arguments, a and b, the acceptance
condition thus is a ∨ b. For preponderance of evidence at least one pro-argument
must be accepted, and in addition each accepted con-argument must be outweighed
by a stronger pro-argument. In our case this means that if c is accepted, then the
stronger pro-argument b must also be accepted, and d cannot be accepted, as there
is no stronger pro-argument than the valid argument d. Taken together this yields
the formula (a ∨ b) ∧ (c→ b) ∧ ¬d. In a similar manner we obtain the formulas for
g for the remaining proof standards, as shown in the following table:

Scintilla of evidence: a ∨ b
Preponderance of evidence: (a ∨ b) ∧ (c→ b) ∧ ¬d
Dialectical validity: b ∧ ¬c ∧ ¬d
Beyond reasonable doubt: b ∧ ¬c ∧ ¬d
Beyond doubt: ⊥
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Figure 7: A Farley/Freeman argument graph.
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Figure 8: A graph with dynamic proof standards.

It is even possible to choose the proof standard dynamically. For ease of presenta-
tion let’s focus on three proof standards, namely scintilla of evidence, preponderance
of evidence and dialectical validity, represented as se, pe and dv, respectively.9 Con-
sider the graph in Figure 8 which should be viewed as part of a larger argument
graph. The idea here is that scintilla of evidence is the default proof standard. If
the corresponding node se is attacked from outside (e.g. since a crime was com-
mitted), then preponderance of evidence becomes the active proof standard. If also
the corresponding node pe is attacked from outside (e.g. since the crime has serious
consequences), then dialectical validity will be active. To model this intuition, the

9The type of these nodes is irrelevant and thus left out.
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acceptance condition of node g becomes:

(se ∧ (a ∨ b)) ∨ (pe ∧ (a ∨ b) ∧ (c→ b) ∧ ¬d) ∨ (dv ∧ b ∧ ¬c ∧ ¬d).

4.3 Carneades
Carneades [Gordon et al., 2007] is an advanced model of argumentation based on a
graphical representation of arguments and the propositions involved in them. Each
proposition has an associated proof standard (scintilla of evidence, preponderance
of evidence, clear and convincing evidence, beyond reasonable doubt, dialectical
validity). There is some paraconsistency at work in the system as scintilla of evidence
allows both a proposition and its negation to be accepted at the same time. The
adf graphs we will construct later will for this reason have separate nodes for each
proposition p and its complement p. A major restriction of Carneades is that cycles
in the graph are not allowed (which means the system handles only cases where all
Dung semantics coincide).

Let us start with some basic definitions underlying Carneades. Our presentation
follows [Brewka and Gordon, 2010].

Definition 28. An argument is a tuple ⟨P,E, c⟩ with premises P , exceptions E
(P ∩ E = ∅) and conclusion c. c and elements of P , E are literals.

An argument evaluation structure (CAES) is a tuple S =
⟨args, as,weight, standard⟩, where

• args is a set of arguments generating an acyclic argument graph,

• as is a consistent set of literals,

• weight assigns a real number to each argument, and

• standard maps propositions to a proof standard.

The argument graph generated by a CAES is obtained as follows: each literal
occurring in an argument arg becomes a node; each argument arg becomes a node;
each premise of an argument arg is linked to the corresponding argument node arg
via a link labelled with +, each exception via a link labelled with -; an additional
link, labelled with weight(arg), connects arg and the conclusion of arg.

The central notions in Carneades are applicability of arguments and acceptability
of propositions. These notions are defined via mutual recursion. Note that for the
recursion to bottom out it is essential that Carneades is acyclic.

Definition 29. We say an argument ⟨P,E, c⟩ ∈ args is applicable in S iff
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• p ∈ P implies p ∈ as or [p ̸∈ as and p acceptable in S], and

• p ∈ E implies p ̸∈ as and [p ∈ as or p is not acceptable in S].

Based on the applicability of arguments, we can define what it means for a
proposition p to be acceptable in S. As expected, acceptability depends on p’s proof
standard. The Carneades proof standards differ form those of Farley and Freeman.
In particular, they depend on numerical values:

• standard(p) = se: there is an applicable argument for p,

• standard(p) = pe: p satisfies se, and the maximum weight assigned to an
applicable argument pro p is greater than the maximum weight of an applicable
argument con p,

• standard(p) = ce: p satisfies pe, and the maximum weight of an applicable
pro argument exceeds a threshold α, and difference between the maximum
weight of applicable pro arguments and the maximum weight of applicable
con arguments exceeds a threshold β,

• standard(p) = bd: p satisfies ce, and the maximum weight of the applicable
con arguments is less than a threshold γ,

• standard(p) = dv: there is an applicable argument pro p and no applicable
argument con p.

We now show how arguments and the generated argument graphs are represented
using adfs. The translation to adfs is based on the techniques we have seen so
far in this section. Consider the argument a = ⟨{bird}, {peng, ostr}, flies⟩ with
weight(a) = 0.8. This argument is represented graphically as shown in Figure 9.

Apart from the duplication of propositions/complements the graphical repres-
entation corresponds to the original Carneades graph. Using techniques similar to
the ones described earlier, we can properly define acceptance conditions such that
an argument node is t in the adf graph iff the argument is applicable, and a pro-
position node is t iff the proposition is acceptable. The acceptance condition of an
argument node arg requires that all premises of arg are true, all exceptions false (as-
sumptions can be handled by an easy preprocessing step). The acceptance condition
of a proposition node depends on the proof standard and is modelled along the lines
of what we have discussed earlier in this section. We leave the details to the reader.
Note that we will resume our discussion of Carneades at the end of Section 5 where
we show how the relevant acceptance conditions can be formalized in grappa.
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Figure 9: A Carneades argument represented graphically.

What has been gained by this reconstruction? Why is it useful? First of all, it
shows the generality of adfs. Secondly, it puts Carneades on safe formal ground.
But in addition, and this is probably the main advantage, it allows us to give up
the restriction of Carneades to acyclic argument graphs. Nothing in our translation
rests on the assumption that Carneades is acyclic. The translation works perfectly
well also for cyclic argument evaluation structures. The only difference is that the
resulting adf graph will have cycles as well. But handling cycles of this kind is part
of the core functionality of adfs, and they have a variety of different semantics to
offer for this case, as we have seen in Section 3.

4.4 Rule-based Languages
A major strand of research in formal argumentation is concerned with using argu-
mentation techniques to assign semantics to simple rule-based languages (see the
paper Abstract Rule-based Argumentation by Modgil and Prakken in this issue).
Those languages are simple logic-inspired formalisms working with inference rules
on a set of propositional literals. Inference rules can be strict, in which case the
conclusion of the inference (a literal) must necessarily hold whenever all antecedents
(also literals) hold. Inference rules can also be defeasible, which means that the
conclusion usually holds whenever the antecedents hold. Here, the word “usually”
suggests that there could be exceptional cases where a defeasible rule has not been
applied [Pollock, 1987] (for example to avoid an imminent inconsistency).

Most of the existing works in this area translate rule-based languages to afs by
constructing arguments and identifying attacks. But this approach is not always
without problems, as Caminada and Amgoud [Caminada and Amgoud, 2007] ob-
served. (They even devised a set of rationality postulates for capturing the intended
behavior of semantics for rule-based languages.) While there exist af-based solu-
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tions to those problems [Wyner et al., 2013], we concentrate here on one approach
using adfs as target language [Strass, 2013b; Strass, 2015b]. Translating to adfs in-
stead of afs has the additional benefit of tackling the problem of cyclic justifications
amongst arguments on the semantic level instead of the syntactic one (like it is done
in the ASPIC approach [Caminada and Amgoud, 2007] among others). We only give
intuitions here and refer the reader to the original paper(s) for details [Strass, 2013b;
Strass, 2015b].

Inspired by the approach of Wyner et al. [Wyner et al., 2013], Strass [Strass,
2013b; Strass, 2015b] directly uses the literals from the theory base as statements
that express whether the literal holds. He also uses rule names as statements indic-
ating that the rule is applicable. Additionally, for each rule r he creates a statement
-r indicating that the rule has not been applied. Not applying a rule is acceptable for
defeasible rules, but unacceptable for strict rules since it would violate the closure
postulate. This is enforced via integrity constraints saying that it may not be the
case in any model that the rule body holds but the head does not hold: Technic-
ally, for a strict rule r, he introduces a conditional self-attack of -r; this self-attack
becomes active if (and only if) the body of r is satisfied but the head of r is not sat-
isfied, thereby preventing this undesirable state of affairs from getting included in a
model. Defeasible rules offer some degree of choice, whence it is left to the semantics
whether or not to apply them. This choice is modelled by a mutual attack cycle
between r and -r. The remaining acceptance conditions are equally straightforward:

• Opposite literals attack each other.

• A literal is accepted whenever some rule deriving it is applicable, that is, all
rules with head ψ support statement ψ.

• A strict rule is applicable whenever all of its body literals hold, that is, the
body literals of r are exactly the supporters of r.

• Likewise, a defeasible rule is applicable whenever all of its body literals hold,
and additionally the negation of its head literal must not hold.

Strass [2013b, 2015b] showed that the approach satisfies the rationality pos-
tulates of Caminada and Amgoud [2007]. Furthermore, this method has a mild
computational complexity (with an at most quadratic blowup from rule-based the-
ory to adf formalization, while there can be exponential to infinite blowup in other
approaches).
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5 Graph-based Argument Processing
We have seen in Section 4 how adfs can be used to provide graphical representations
of argumentation scenarios with semantics. The different approaches were based
on translations from some graphical representation to adfs. In a nutshell, the
grappa approach [Brewka and Woltran, 2014] described in this section addresses
the opposite question: is it possible to extend the formal techniques underlying adfs
in such a way that the semantics of various kinds of graphical representations can
be defined directly for these representations, without the detour of a translation?
More specifically, we will consider arbitrary (edge) labelled graphs. Such graphs are
highly popular for visualizing argumentation scenarios, and indeed the literature on
argumentation is full of such representations. The goal of this section is to define
various semantics directly for such labelled graphs.

Another way of looking at the approach is the following: Dung afs actually
can be seen as graphs where all edges have the same label, which is left implicit
for this reason. In addition, all nodes have the same type of acceptance condition.
Dung’s seminal contribution can thus be characterized as defining various semantics
for specific graphs with a single label and uniform acceptance conditions. Our goal is
to generalize this to arbitrary labelled graphs with flexible, user-defined acceptance
conditions.

grappa requires two major changes. First of all, the acceptance conditions can
no longer be propositional formulas built from parent nodes, as in adfs. We rather
have to define them in terms of the labels of active links in the graph, that is links
whose source nodes are accepted (true). More precisely, since it may be relevant
whether there are multiple active links with the same label, we have to consider
multisets of labels. An acceptance condition will thus be a function assigning a
truth value to each multiset of labels. Secondly, we have to modify the operator ΓD
for adfs D as defined in Section 3 in such a way that the new acceptance conditions
are taken into account adequately.

In the following we describe multisets as functions into the natural numbers.
Intuitively, the number assigned to an element describes the number of occurrences
of the element in the multiset.

Definition 30. An acceptance function over a set of labels L is a function c : (L→
N) → {t, f}.

The set of all acceptance functions over L is denoted FL.

Definition 31. A labelled argument graph (LAG) is a tuple G = (S,E,L, λ, α)
where
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• S is a set of nodes (statements),

• E is a set of edges (dependencies),

• L is a set of labels,

• λ : E → L assigns labels to edges,

• α : S → FL assigns L-acceptance-functions to nodes.

The characteristic operator ΓG of a LAGG basically does what the corresponding
operator does for adfs: it takes a three-valued (or, equivalently, partial) interpreta-
tion v and produces a new one v′. In doing so, it checks which truth values of nodes
in S can be justified by v. This is done by considering all possible completions of
v, more precisely the multisets of active labels induced by completions of v. These
multisets are obtained by including an occurrence of a particular label for each oc-
currence of that label in a link which is active in the completion. If the acceptance
function of s yields t under all completions (more precisely, for all multisets induced
by any completion), then v′ assigns t to s. If the acceptance function of s yields f
under all completions, then v′ assigns f to s. In all other cases the value remains
undefined.

Here are the formal details. Note that we represent here three-valued interpreta-
tions v as sets of literals: nodes true in v appear positively in the set, nodes assigned
false appear negated, and undefined nodes are left out.

Definition 32. Let G = (S,E,L, λ, α) be a LAG, v a three-valued interpretation
of S. mv

s, the multiset of active labels of s ∈ S in G under v, is defined as

mv
s(l) = |{(e, s) ∈ E | e ∈ v, λ((e, s)) = l}|

for each l ∈ L.

The characteristic operator ΓG of G takes a three-valued interpretation v of S
and produces a revised three-valued interpretation ΓG(v) of S.

Definition 33. Let G = (S,E,L, λ, α) be a LAG, v a three-valued interpretation
of S. ΓG(v) = PG(v) ∪NG(v) with

PG(v) =
{
s
∣∣∣ α(s)(m) = t for each m ∈ {mv′

s | v′ ∈ [v]c}
}

NG(v) =
{
¬s

∣∣∣ α(s)(m) = f for each m ∈ {mv′
s | v′ ∈ [v]c}

}

With this new operator we can define the semantics of grappa in exactly the
same way as was done for adfs:
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Definition 34. Let G = (S,E,L, λ, α) be a LAG, v a three-valued interpretation of
S.

• v is a model of G iff v is total and v = ΓG(v),

• v is grounded in G iff v is the least fixed point of ΓG,

• v is admissible in G iff v ⊆ ΓG(v),

• v is preferred in G iff v is ⊆-maximal admissible in G,

• v is complete in G iff v = ΓG(v).

Example 35. This is a variation of Example 10. Consider the LAG with S =
{a, b, c, d} and L = { , }. The following graph shows the labels of each link.

a b

c d

For simplicity, let us assume all nodes have the same acceptance condition re-
quiring that all positive links must be active (that is the respective parents must be
t) and no negative link is active.10 We obtain two models, namely v1 = {a, b, c,¬d}
and v2 = {a,¬b,¬c, d}. The grounded interpretation is v3 = {a}. The 16 admissible
interpretations are exactly the same as for Example 17. Among the admissible in-
terpretations {a, b, c,¬d} and {a,¬b,¬c, d} are preferred. Complete interpretations
are these two and in addition {a}.

Now let us turn to stable semantics. The idea underlying stable semantics is to
exclude self-justifying cycles. Again this semantics can be defined along the lines
of the corresponding definition for ADFs in [Brewka et al., 2013]: take a model
v, reduce the LAG based on v and check whether the grounded extension of the
reduced LAG coincides with the nodes true in v. Here is the definition:

Definition 36. Let G = (S,E,L, λ, α) be a LAG, v a model of G, Sv = v ∩ S.
v is a stable model of G iff v restricted to Sv is the grounded interpretation of
Gv = (Sv, Ev, L, λv, αv), the v-reduct of G, where

10In the pattern language developed later in this section this can be expressed as (#t( )−#( ) =
0) ∧ (#( ) = 0).
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• Ev = E ∩ (Sv × Sv),

• λv is λ restricted to Sv,11

• αv is α restricted to Sv.

Observe that in αv we did not have to alter the values of the function, i.e. the
true and false multisets remain the same (although some of them might become
“unused” since the number of parents shrinked). We will see later that this exactly
matches the stable semantics for ADFs from [Brewka et al., 2013]. For the moment,
we continue our running example.

Example 37. For Example 35 we obtained two models, v1 = {a, b, c,¬d} and v2 =
{a,¬b,¬c, d}. In v1 the justification for b is obviously based on a cycle. The v1-reduct
of our graph is

a b

c

It is easy to see that the grounded interpretation of the reduced graph is {a}, v1
is thus not a stable model, as intended. We leave it to the reader to verify that v2
indeed is a stable model.

Results about the semantics carry over from adfs [Brewka et al., 2013].

Proposition 38. Let G be a LAG. The following inclusions hold:

stb(G) ⊆ mod(G) ⊆ pref (G) ⊆ com(G) ⊆ adm(G),

where stb(G),mod(G), pref (G), com(G) and adm(G) denote the sets of stable mod-
els, models, preferred interpretations, complete interpretations and admissible inter-
pretations of G, respectively. Moreover, pref (G) ̸= ∅, whereas mod(G′) = ∅ for some
LAG G′.

11Given a function f : M → N and M ′ ⊆ M , f restricted to M ′ is the function f ′ : M ′ → N
such that f ′(m) = f(m) for all m ∈M ′.
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A remaining question is how to actually specify acceptance functions for grappa.
In [Brewka and Woltran, 2014] a specific pattern language has been developed for
this purpose. This pattern language allows for the specification of conditions on
multisets of labels. In the patterns one can refer to the number of total and active
labels of specific types, to minimal/maximal numerical labels of active links. It is
also possible to use simple arithmetics and relations.

More precisely, grappa acceptance functions are specified using acceptance pat-
terns over a set of labels L defined as follows:

• A term over L is of the form #(l), #t(l) (with l ∈ L), or min, mint, max,
maxt, sum, sumt, count, countt.

• A basic acceptance pattern (over L) is of the form a1t1 + · · ·+ antnRa, where
the ti are terms over L, the ais and a are integers and R ∈ {<,≤,=, ̸=,≥, >}.

• An acceptance pattern (over L) is a basic acceptance pattern or a Boolean
combination of acceptance patterns.

A grappa instance then is a labelled argument graph with acceptance functions
represented as acceptance patterns:

Definition 39. A grappa instance is a tuple G = (S,E,L, λ, π) where S is a set
of statements, E a set of edges, L a set of labels, λ an assignment of labels to edges,
and π an assignment of acceptance patterns over L to all elements of S.

We still need to specify what the acceptance function represented by a particular
pattern assigned to a node s is. Recall that an acceptance function assigns a truth
value in {t, f} to a multiset of labels. We will define this function by specifying
a satisfaction relation |= between multisets and patterns: the basic idea is that
a multiset receives value t iff it satisfies the corresponding pattern. The actual
definition is slightly more complicated, though, as some of the terms (actually those
indexed with t) are actually independent of the multiset, but depend on the node
s, more precisely on the labels of links – active or not – with target s. For this
reason, satisfaction of a pattern depends on both a multiset of labels and the node
the pattern is assigned to via π. For a multiset of labels m : L → N and s ∈ S the
value function valms is:

valms (#l) = m(l)
valms (#tl) = |{(e, s) ∈ E | λ((e, s)) = l}|
valms (min) = min{l ∈ L | m(l) > 0}
valms (mint) = min{λ((e, s)) | (e, s) ∈ E}
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valms (max) = max{l ∈ L | m(l) > 0}
valms (maxt) = max{λ((e, s)) | (e, s) ∈ E}
valms (sum) = ∑

l∈Lm(l)
valms (sumt) = ∑

(e,s)∈E λ((e, s))
valms (count) = |{l | m(l) > 0}|
valms (countt) = |{λ((e, s)) | (e, s) ∈ E}|

min(t), max(t), sum(t) are undefined in case of non-numerical labels. For ∅ they
yield the neutral element of the corresponding operation, i.e.

valms (sum) = valms (sumt) = 0,
valms (min) = valms (mint) = ∞,

valms (max) = valms (maxt) = −∞.

Let m and s be as before. For basic acceptance patterns the satisfaction relation
|= is defined by

(m, s) |= a1t1 + · · ·+ antnRa iff
n∑

i=1

(
ai val

m
s (ti)

)
R a.

The extension to Boolean combinations is as usual. The acceptance function rep-
resented by pattern p at node s then is the function assigning t to multiset m iff
(m, s) |= p.

Example 40. Let L = { , , , } be a set of labels representing strong support,
support, attack and strong attack, respectively. Assume a node s is accepted if its
(active) support is stronger than its attack, where we measure strength by counting
the respective links, hereby multiplying strong support/attack with a factor of 2. This
can be specified using the following pattern for s:

2(# ) + (# )− 2(# )− (# ) > 0.

We conclude this section by showing how the necessary patterns for Carneades
argument graphs, which we discussed in Section 4.3, can be defined in grappa.
Recall that these graphs have two kinds of nodes, argument nodes and propositions
nodes. The pattern for all argument nodes is

(
(#t )− (# ) = 0

) ∧ (
(
# ) = 0

)
.
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which says that all premises and none of the exceptions must be accepted. The
patterns for proposition nodes depend on their proof standard. Recall that some of
these standards have additional numerical parameters α, β and γ. The terms max
and min represent the maximal, respectively minimal, label of an active link:

• scintilla of evidence: max > 0

• preponderance of evidence: max + min > 0

• clear and convincing evidence: (max > α) ∧ (max + min > β)

• beyond reasonable doubt: (max > α) ∧ (max + min > β) ∧ (−min < γ)

• dialectical validity: (max > 0) ∧ (min > 0)

This representation of the acceptance conditions underlying Carneades is not only
extremely simple. It has the big advantage that it is uniform: the patterns for all
nodes with the same proof standard are actually the same. This is different from
representations of proof standards and other notions we discussed in Section 4 in
adfs where the acceptance condition for each node depends on its specific parents.

6 Computational Aspects
In the introduction we discussed, in an informal manner, relationships between state-
ments (arguments) that are supporting or attacking, in the sense that a statement
can have a positive or negative influence on the acceptance of another statement.
General adfs have a generic notion of links (dependencies) between statements.
However, such links can be formally categorized into 4 groups, depending on whether
they have an attacking or supporting nature (or both or neither). This leads to the
notion of so-called bipolar adfs (badfs for short) which contain only attacking or
supporting dependencies. We will introduce them, based on the original definition
of [Brewka and Woltran, 2010], in Section 6.1, together with the formalization of
attacking and supporting links. Such badfs are a subclass of general adfs, yet have
appealing computational properties. They generalize afs in a direct manner, but
are strictly “in-between” afs and general adfs w.r.t. their corresponding express-
iveness. Results relating to expressiveness are presented in Section 6.2. Further,
many frameworks arising in argumentation in AI, other than afs, can be translated
to badfs [Polberg, 2016] (partially under semantics not discussed in this article).

From a computational perspective, badfs have the following interesting proper-
ties: they have the same worst-time complexity as afs for many semantics, while
general adfs typically exhibit higher computational complexity. We summarize
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these results in Section 6.3, followed by Section 6.4 that gives pointers to recent
systems for computing reasoning tasks on adfs and badfs.

6.1 Bipolar ADFs
As we have seen in previous sections, the concept of acceptance condition is quite
powerful. A natural question is to what extent different restrictions of acceptance
conditions may form interesting subclasses of adfs. One such subclass are bipolar
adfs, as already defined in [Brewka and Woltran, 2010]. This class relies on the
concept of attacking and supporting links which are defined as follows.

Let D = (S,L,C) be an adf. Formally, a link (r, s) ∈ L is

• supporting inD iff for all R ⊆ par(s), we have Cs(R) = t implies Cs(R∪{r}) =
t;

• attacking in D iff for all R ⊆ par(s), we have Cs(R∪{r}) = t implies Cs(R) =
t.

We use L+ ⊆ L to denote all supporting and L− ⊆ L to denote all attacking links
of L in an adf D = (S,L,C).

Example 41. In Figure 10 we see an example adf D = (S,L,C) with S = {a, b, c}
and acceptance conditions φa = b → c, φb = a ∧ (c ∨ ¬c), and φc = a ↔ b. On
the right of that figure the link types are shown. Let us investigate why some of the
links are supporting or attacking. Looking at the acceptance condition of a, φa, and
the parents of a then we have the following relevant sets of statements (shown as
two-valued interpretations):

v1 =̂ {¬b,¬c} |= φa
v2 =̂ {b,¬c} ̸|= φa
v3 =̂ {¬b, c} |= φa
v4 =̂ {b, c} |= φa

We see, e.g., that the link (c, a) is supporting, because whenever c is added to a
subset of parents that is mapped to t by Ca (switched to true in every model of φa)
then the new set (interpretation) is again mapped to true by acceptance condition
Ca (is a model of φa). More concretely, v1, v3, and v4 are models of acceptance
condition φa. Switching the truth value of c to true in each of them, results in v3
and v4 (assigning c to true in v1 and v3 results in both cases with v3, and assigning
c to true in v4 is again equal to v4). Both v3 and v4 are models of φa. This means
(c, a) is a supporting link. Similarly, link (b, a) is attacking because whenever we
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a

b c

b→ c

a ∧ (c ∨ ¬c) a↔ b

L+ L−

(a, b) (b, a)
(c, b) (c, b)
(c, a)

Figure 10: An adf with link types.

remove b from a set of parents of a that is mapped to t by Ca we get a set that is
likewise mapped to t by Ca.

Links (a, b) which are both attacking and supporting are so-called redundant
links. The reason to call such a link redundant is that switching the truth value
of a in any interpretation does not change the evaluation of acceptance condition
φb w.r.t. the original interpretation and the modified interpretation. A link that is
neither attacking nor supporting is called dependent.

Example 42. Continuing Example 41, the link (c, b) is a redundant link. This link
is both attacking and supporting. Redundancy means that the evaluation of φb is
independent of the value of c (formula φb only depends on the truth value of a). In
contrast, the links (b, c) and (a, c) are dependent links. For instance, {¬a,¬b} |= φc
and {a,¬b} ̸|= φc taken together show that (a, c) is not supporting in this adf. To
see that (a, c) is not attacking, consider {a, b} |= φc and {¬a, b} ̸|= φc.

An adf D = (S,L,C) is bipolar (a badf) if all links in L are supporting or
attacking or both, i.e., L = L+ ∪ L−. For example, our running example adf from
Example 10 is a badf. Further, for any af F its associated adf DF is bipolar, in
fact each link in DF is attacking.

Bipolar adfs are still a quite expressible class; they allow acceptance conditions
not only to express simply attack and support (for example ¬a1 ∧ · · · ∧ ¬an ∧ s1 ∧
· · · ∧ sm expressing that a statement is attacked by statements ai and supported by
statements sj), but more advanced relations, like e.g. ((¬a1∨s1)∧(¬a2∨s2))∨¬a3; in
fact, all examples given in Section 4 are also bipolar adfs. We would like to mention
here that bipolar adfs behave differently than the prominent class of bipolar afs
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[Cayrol and Lagasquie-Schiex, 2013]. Indeed, several concepts of support relations
have been discussed in the literature (abstract, deductive, necessary, and evidential
support), thus a detailed discussion is beyond the scope of this article, and we refer
the reader to works relating adfs to formalisms including support [Polberg and
Oren, 2014; Polberg, 2016]. However, what is important to state is that bipolar
adfs treat support and attack as equally strong concepts. Given the generality
of bipolar adfs which allow to “mix” support and attack as exemplified above, a
distinct handling of support and attack in adfs, e.g. as separated concepts in the
language instead of a property of links and acceptance conditions, would require a
lot of additional machinery.

Acceptance conditions in badfs are, in fact, not only interesting for defining
adfs. The study of the concept of bipolar Boolean functions has meanwhile found
applications outside of adfs. Baumann and Strass (2016) have analyzed the integer
sequence that arises when considering for each positive integer n the number of
bipolar Boolean functions in n arguments. The resulting sequence is novel and has
been added to the Online Encyclopedia of Number Sequences12. In further related
work, Alviano, Faber, and Strass [Alviano et al., 2016] applied the concept of bipolar
Boolean functions to aggregates in answer set programming and obtained a novel
class of aggregates whose model checking problems (according to the semantics of
Pelov et al. [Pelov et al., 2007] and Son and Pontelli [Son and Pontelli, 2007])
can be decided in deterministic polynomial time. They even identify a class that
goes beyond bipolar Boolean functions but still retains polynomial-time decidability;
this might constitute an interesting avenue for research that extends the bipolarity
concept of adfs.

6.2 Expressiveness and Realizability
Expressiveness of a formalism F (i.e. the set of structures available in a formalism)
with a semantics σ over a vocabulary A can be defined as the set of interpretation-
sets over A that elements of F (the knowledge bases kb ∈ F of that formalism) can
produce. Formally, the signature of a formalism F w.r.t. semantics σ is the set

Σσ
F = {σ(kb) | kb ∈ F}

Intuitively, expressiveness is a basic measure of the capabilities of formalism F under
σ, because it characterizes what “can and cannot be done” with F under semantics
σ [Gogic et al., 1995]. Whenever we have two formalisms, say F1 and F2, that share
a semantics σ and we find that Σσ

F1 ⊊ Σσ
F2 , then this intuitively means that F2 is

12https://oeis.org/A245079
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strictly more expressive than F1: all sets V ⊆ V3 that can be realized with F1 can
be realized with F2, and there is at least one set V ⊆ V3 that can be realized with
F2 but not with F1.

For afs, badfs and adfs under various semantics, their relative expressiveness
is summarized in the following result [Strass, 2015c; Strass, 2015a; Linsbichler et al.,
2016b].
Theorem 6.1. For σ ∈ {adm, com, prf ,mod}, we find that

Σσ
AF ⊊ Σσ

BADF ⊊ Σσ
ADF.

For the stable model semantics stb, we find that
Σmod

AF = Σstb
AF ⊊ Σstb

BADF = Σstb
ADF.

Furthermore, for the model semantics we have
Σmod

ADF = V2 = {v : A→ {t, f}},
that is, adfs under the model semantics are universally expressive.
Example 43. We give example sets of interpretations that can be used to witness
Σprf

AF ⊊ Σprf
BADF ⊊ Σprf

ADF. Consider S = {a, b, c} and interpretations v1 = {a 7→
t, b 7→ t, c 7→ f}, v2 = {a 7→ t, b 7→ f , c 7→ t}, and v3 = {a 7→ f , b 7→ t, c 7→ t}. To
see that {v1, v2, v3} ∈ Σprf

BADF, consider the adf over S with acceptance conditions
φa = ¬b ∨ ¬c, φb = ¬a ∨ ¬c, and φc = ¬a ∨ ¬b. It is easy to verify that this adf
is bipolar and that {v1, v2, v3} constitute its preferred interpretations. On the other
hand, from results in [Dunne et al., 2015] it follows that there is no af with preferred
extensions {a, b}, {a, c}, and {b, c}. In fact, this is quite easy to see: consider there
would exist an af F with those three preferred extensions. Then, there cannot be
an attack in F between a and b, and moreover {a, b} defends itself in F ; the same
holds for the pairs a, c, and b, c. But then, {a, b, c} has to be conflict-free in F and
defends itself, and thus {a, b} (and likewise, {a, c} and {b, c}) cannot be preferred in
F ; a contradiction.

For Σprf
BADF ⊊ Σprf

ADF, we use an example given in [Linsbichler et al., 2016a,
Theorem 8]: consider S′ = {a, b} and interpretations v4 = {a 7→ t, b 7→ t}, v5 =
{a 7→ t, b 7→ f}, and v6 = {a 7→ f , b 7→ u}. For X ′ = {v4, v5, v6} we have X ′ ∈ Σprf

ADF,
but X ′ /∈ Σprf

BADF. For general adfs, one example adf is D′ = (S′, L′, {φa = a, φb =
a↔ b}). All three interpretations v4, v5, and v6 are preferred interpretations of D′.
This adf D′ is not bipolar (due to φb, see Example 42). There is no badf that has
X ′ exactly as its preferred interpretations.13

13For an automated way to check whether for a given set of three-valued interpretations there is
an adf, badf, or af that has exactly this set as its σ-interpretations, one can use the system UN-
REAL [Linsbichler et al., 2016a], available at http://www.dbai.tuwien.ac.at/proj/adf/unreal/.
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While this shows that badfs can do strictly more than afs, and in turn adfs can
do strictly more than badfs (with the exception of the stable model semantics), there
is little information on what exactly these signatures look like. Work on precisely
characterizing signatures has been carried out for afs (see the paper On the Nature
of Argumentation Semantics by Baumann in this issue. There has also been work
on characterizing realizability for adfs under two-valued [Strass, 2015a] and three-
valued [Pührer, 2015; Linsbichler et al., 2016b] semantics.

Finally, initial results on characterizing the representational succinctness of these
formalisms have recently been obtained. Succinctness not only takes into account
what formalisms can realize, but also to what representational cost, that is, what
amount of space is needed to represent the smallest knowledge base realizing some
desired set of interpretations. Again, the capabilities of different formalisms can be
compared with respect to this measure [Gogic et al., 1995]. As one promising result
on adfs, it turned out that even badfs are exponentially more succinct than normal
logic programs [Strass, 2015a].

6.3 Computational Complexity
The computational complexity of adfs is well-studied [Strass and Wallner, 2014;
Strass and Wallner, 2015; Gaggl et al., 2015; Brewka et al., 2013; Polberg and
Wallner, 2017; Wallner, 2014]; for an overview we refer the reader to the paper
Computational Problems of Formal Argumentation by Dvořák and Dunne in this
issue. For the reader’s convenience we repeat here the main results. For a specified
semantics σ, the main reasoning tasks for adfs to solve are:

• Credulous acceptance of a statement: is statement s assigned to true in at
least one interpretation under semantics σ?

• Skeptical acceptance of a statement: is statement s assigned to true in all
interpretations under semantics σ?

• Interpretation verification: is a given interpretation an interpretation under
semantics σ?

• Interpretation existence: is there an interpretation under semantics σ?

• Non-trivial interpretation existence: is there an interpretation under semantics
σ assigning true or false to some statement?

Briefly put, complexity of reasoning tasks on general adfs is situated one level
higher in the polynomial hierarchy compared to the corresponding tasks on afs. For
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adf compile to
ASP/QBF

ASP/QBF
solver results

(a)

adf

ASP
solver

encoding of
semantics

ASP
solver

encoding of
semantics

results

(b)

Figure 11: Workflow for systems based on (a) instance-based compilation (QADF,
GrappaVis, and YADF), and (b) static encodings (diamond and GrappaVis)

badfs complexity of reasoning stays at the same level as reasoning on afs for most
reasoning tasks, if the link type (attack or support) for each link is known (part of
the input). Thus, badfs offer more modeling capabilities than afs while having the
same (worst-case) computational cost as afs for many reasoning tasks.

6.4 Systems
Systems for implementing reasoning on adfs rely on declarative encodings in answer-
set programming (ASP) [Brewka et al., 2011] or quantified Boolean satisfiability, and
utilize available solvers for these languages [Gebser et al., 2011; Lonsing and Biere,
2010]. Most prominently, the diamond family14 [Strass and Ellmauthaler, 2017;
Ellmauthaler and Strass, 2016; Ellmauthaler and Strass, 2014; Ellmauthaler and
Strass, 2013] consists of ASP-based systems for reasoning on adfs. In each diamond
version an adf is encoded via ASP facts and, when augmented with static encodings
for semantics, several reasoning tasks can be solved by computing answer-sets of the
resulting ASP. Depending on the complexity of the reasoning task and used options
in diamond one call (in some family members two calls) to an ASP-solver are carried
out to solve the given problem instance. diamond includes dedicated badf-specific

14http://diamond-adf.sourceforge.net/
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encodings that make use of badfs’ upper complexity bounds.
The system QADF15 [Diller et al., 2015] uses solvers for quantified Boolean

formulas (QBFs) to perform reasoning on adfs. In QADF, in contrast to diamond,
each adf instance is compiled to a QBF incorporating both the input adf and the
chosen semantics, i.e., the encodings for the semantics are not static.

GrappaVis16 [Heißenberger, 2016] is a system implementing grappa (see Sec-
tion 5) and incorporates both instance-based compilation of grappa input into
declarative ASP encodings and static encodings for the semantics utilizing in both
cases one ASP solver call.

The system YADF17 [Brewka et al., 2017] is an ASP-based system for adfs,
based on the encodings for grappa used in GrappaVis. This system compiles adf
instances into one program to call an ASP solver (once).

The basic workflows for diamond, QADF, GrappaVis, and YADF are shown
in Figure 11. With this figure we illustrate that QADF, GrappaVis, and YADF
implement algorithms that take an instance of an adf, compile this instance, to-
gether with the chosen semantics and reasoning task, to one instance of an ASP or
a QBF. On the other hand, diamond and GrappaVis implement algorithms that
take an instance of an adf, add to this instance a static encoding for the semantics
and reasoning task, and give these to an ASP solver (with calling such a solver once
or twice, depending on the task). The difference between (a) and (b) is that in (a)
adf and semantics have to be compiled together into one input for the solver, while
for (b) semantics can be encoded separately (and modified separately).

A technique to cope with the high computational complexity of reasoning on
adfs was proposed by Linsbichler (2014). The technique is based on splitting the
input adf into partitions and solving one partition and transforming and solving
the other partitions accordingly.

7 Conclusion
In this article, we have reviewed the argumentation formalism of abstract dialectical
frameworks (adfs). In contrast to Dung style frameworks, adfs allow for a much
more general specification of the interrelationship between the arguments. We have
discussed how standard semantics like admissible, grounded, complete, preferred and
stable can be generalized to adfs by making use of the well known approximation
fixpoint theory due to Denecker, Marek and Truszczyski [Denecker et al., 2004].

15http://www.dbai.tuwien.ac.at/proj/adf/qadf/
16http://www.dbai.tuwien.ac.at/proj/adf/grappavis/
17http://www.dbai.tuwien.ac.at/proj/adf/yadf/
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Alternative approaches to defining adf semantics can be found in the works
of Polberg and colleagues [Polberg et al., 2013; Polberg, 2014a; Polberg, 2014b;
Polberg, 2015]. Likewise, further well-known semantics for afs have been generalized
to adfs, e.g. naive, stage, and the cf2 family of semantics [Gaggl and Strass, 2014]
and an alternative, symmetric version of the naive semantics [Strass and Wallner,
2015].

A further subclass of adfs, related to a certain notion of acyclicity and dif-
ferent from badfs, is investigated in [Polberg, 2015; Polberg, 2016]. Other au-
thors have analyzed the relationship of adfs and logic programs [Strass, 2013a;
Alviano and Faber, 2015] and in the course of that have defined new adf semantics,
like approximate stable models [Strass, 2013a], F-stable models [Alviano and Faber,
2015], and the grounded fixpoint semantics [Bogaerts et al., 2015]. The whole adf
formalism has even been lifted to the probabilistic case [Polberg and Doder, 2014].

We also addressed the modelling capabilities of adfs; for a thorough discussion
on the relation between adfs and other argumentations frameworks, see also [Pol-
berg, 2017]. A further application of adfs in the context of legal reasoning can
be found in [Al-Abdulkarim et al., 2014; Al-Abdulkarim et al., 2016]. The use of
adfs in text exploration has been investigated in [Cabrio and Villata, 2016]. Fi-
nally, we discussed the grappa approach which makes use of adf-like semantics in
a flexible graph-based formalism. grappa is the formal system underlying a mobile
argumentation app developed by Pührer [2017].
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Abstract

This article reviews abstract rule-based approaches to argumentation, in
particular the ASPIC+ framework. In ASPIC+ and its predecessors, going
back to the seminal work of John Pollock, arguments can be formed by com-
bining strict and defeasible inference rules and conflicts between arguments can
be resolved in terms of a preference relation on arguments. This results in ab-
stract argumentation frameworks (a set of arguments with a binary relation of
defeat), so that arguments can be evaluated with the theory of abstract argu-
mentation. First the basic ASPIC+ framework is reviewed, possible ways to
instantiate it are discussed and how these instantiations can satisfy closure and
consistency properties. Then the relation between ASPIC+ and other work in
formal argumentation and nonmonotonic logic is discussed, including a review
of how other approaches can be reconstructed as instantiations of ASPIC+.
Further developments and variants of the basic ASPIC+ framework are also
reviewed, including developments with alternative or generalised notions of at-
tack and defeat and variants with further constraints on arguments. Finally,
implementations and applications of ASPIC+ are briefly reviewed and some
open problems and avenues for further research are discussed.

1 Introduction
One of the oldest research strands in the logical study of argumentation is to allow
for arguments that combine strict and defeasible inference rules. Strict inference
rules are intended to capture deductively valid inferences, where the truth of the
premises guarantees the truth of the conclusion. Defeasible inference rules are in-
stead meant to capture presumptive inferences, where the premises only create a
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presumption in favour of the conclusion, which can be refuted by evidence to the
contrary. This approach was introduced in AI by [Pollock, 1987; Pollock, 1990;
Pollock, 1992; Pollock, 1994; Pollock, 1995], previously studied by e.g. [Lin and
Shoham, 1989; Simari and Loui, 1992; Vreeswijk, 1997; Prakken and Sartor, 1997]
and [Garcia and Simari, 2004] and currently studied by e.g. [Dung and Thang, 2014;
Dung, 2014; Dung, 2016] and in work on the ASPIC+ framework [Prakken, 2010;
Modgil and Prakken, 2013; Modgil and Prakken, 2014; Caminada et al., 2014;
Li and Parsons, 2015; Grooters and Prakken, 2016].

While Dung’s seminal theory of abstract argumentation frameworks [Dung, 1995]
has proved to be extremely influential, it adopts a level of abstraction that precludes
provision of guidelines for choosing how to define arguments and attacks from knowl-
edge bases, and a study of how these choices should be made to ensure rational out-
comes yielded by evaluation of the justified arguments under Dung’s semantics. The
above-mentioned work, which partly originates from before Dung’s article, addresses
these issues. This article presents the current consolidation of this research strand:
the ASPIC+ framework for structured argumentation. The ASPIC framework was
initially developed as an output of a European Union project on argumentation
[Amgoud et al., 2006] and further developed into the ASPIC+ framework, initially
in [Prakken, 2010], and subsequently in [Modgil and Prakken, 2013]. The principal
aims of ASPIC+ were to: 1) generalise ASPIC so as to provide a natural knowledge
representation framework in which to formalise a wide variety of existing and novel
instantiations of abstract argumentation frameworks, while; 2) providing guidelines
for instantiations that use features typically incorporated at the abstract level of
these frameworks; in particular the use of preferences, which were introduced at the
abstract level to determine the success of attacks as defeats [Amgoud and Cayrol,
2002], but may violate rationality postulates unless one carefully accounts for their
use when instantiating abstract argumentation frameworks.

Importantly, the strict and defeasible inference rules in ASPIC+are not part of
the logical object language (in which the premises and conclusions of arguments are
expressed), but are metalevel rules for encoding inference over well-formed formulas
in some object level language. Also, the ASPIC+ framework abstracts from the na-
ture and origin of the inference rules and from the nature of the language over which
they are defined. The resulting abstract nature1 of ASPIC+means that it provides a
framework enabling the study of various logical instantiations of abstract argumen-
tation frameworks, and conditions under which the extensions of these frameworks
(and hence the defined inference relation over the instantiating knowledge base of

1The aforementioned features of ASPIC +are shared by earlier work in this tradition, such as
the work of Pollock and [Vreeswijk, 1997], and justifies the title of this article.
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logical formulae, identified by the conclusions of justified arguments in extensions)
satisfy the rationality postulates in [Caminada and Amgoud, 2007] (for example
that the conclusions of arguments in an extension are mutually consistent). In fact,
Assumption-Based Argumentation (ABA) ([Bondarenko et al., 1997]), which only
has strict rules, can also be regarded as abstract rule-based argumentation, since
ABA also abstracts from the nature and origin of its inference rules. However, we
will (except for some brief comparisons) not discuss ABA in this article, as it is re-
viewed elsewhere, e.g. in [Toni, 2014]. The same holds for a particular instantiation
of the rule-based approach: Defeasible Logic Programming, which is reviewed in e.g.
[Garcia and Simari, 2014].

In a rule-based approach, arguments are formed by chaining applications of in-
ference rules into inference trees or graphs. This approach can be contrasted with
approaches defined in terms of logical consequence notions, in which arguments are
premises-conclusion pairs where the premises are consistent and imply the conclusion
according to the consequence notion of some adopted ‘base logic’. Examples of this
approach are classical-logic argumentation [Cayrol, 1995; Besnard and Hunter, 2001;
Besnard and Hunter, 2008; Gorogiannis and Hunter, 2011] and its generalisation into
abstract Tarskian-logic argumentation [Amgoud and Besnard, 2013]. It is important
to note that, unlike these logic-based approaches, rule-based approaches in general
do not adopt a single base logic but two base logics, one for the strict and one for
the defeasible rules. This issue will be discussed in detail in Section 3.1 of this ar-
ticle. Moreover, we will review how ‘base logic’ approaches [Hunter, 2010] can be
formalised as instances of ASPIC+ in which the logical language is a full proposi-
tional or first-order language and the only inference rules defined over this language
are strict, and corresponds to the inference rules of the base logic.

This article is organised as follows. In Section 2 we incrementally introduce
features of the ASPIC+ framework. We first introduce the basic framework in
which arguments are built from strict and or defeasible inference rules, and are
grounded in fallible or infallible premises. Various notions of attacks as well as the
use of preferences to determine defeats are defined. The basic framework can thus
capture rule-based approaches to argumentation of the type dating back to John
Pollock’s work in formal epistemology, and formalisms for encoding the well-known
schemes and critical questions approach to argumentation developed by the informal
logic community (notably [Walton, 1996]), and widely used to accommodate more
human orientated rather than formal logic based instantiations. We then define a
version of ASPIC+ that generalises the standard notion of negation used to identify
when the claim of one argument is in conflict with an element in the attacked
argument. In this way an asymmetric notion of conflict can be represented that
allows for instantiations by logical languages with negation as failure, and the study
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of formalisms such as ABA as instances of ASPIC+.
In Section 3 we provide guidance on how to choose and define the premises and

strict and defeasible rules that comprise ASPIC+ arguments, and the preference
relations that are used to determine the success of attacks as defeats. We then specify
formal guidelines as to how one should make the aforementioned choices to ensure
satisfaction of the rationality postulates in [Caminada and Amgoud, 2007]. We also
discuss the extent to which reasoning with defeasible rules and/or preferences can be
reduced to reasoning in systems that do not distinguish between strict and defeasible
rules, and/or do not use preferences. Finally, we discuss how argument schemes with
critical questions can be reconstructed in ASPIC+ as defeasible inference rules.

Section 4 then reviews the relation of ASPIC+ with other works on argumen-
tation and nonmonotonic logic. We show how some existing argumentation for-
malisms can be reconstructed in the ASPIC+ framework; in particular, ABA as
formulated in [Dung et al., 2007], the Carneades system [Gordon et al., 2007;
Gordon and Walton, 2009a], and argumentation formalisms based on Tarskian ab-
stract logics [Amgoud and Besnard, 2013] and in particular classical logic argumenta-
tion [Gorogiannis and Hunter, 2011]. We will also discuss how the inference relations
of existing non-monotonic logics, in particular Preferred Subtheories [Brewka, 1989]
and Prioritised Default Logic [Brewka, 1994a], can be endowed with argumentation
semantics through instantiation of the ASPIC+ framework. We conclude by review-
ing how our structured approach to argumentation sheds light on developments of
the theory of abstract argumentation frameworks, including the use of preferences
and values, support relations, attacks on attacks, resolutions of attacks and the
dynamics of abstract argumentation frameworks.

Further developments of the ASPIC+ framework will be discussed in Section 5,
in particular studies of alternative notions of attack, studies of generalised notions
of attack and defeat, and studies of further consistency, minimality and chaining
restrictions on arguments. Implementations and applications of ASPIC+ are dis-
cussed in Section 6 and we conclude with a discussion of open problems and future
research directions in Section 7.

2 ASPIC+: Defining the Framework
2.1 The underlying ideas
People argue to remove doubt about a claim [Walton, 2006, p. 1], by giving reasons
why one should accept the claim and by defending these reasons against criticism.
The strongest way to remove doubt is to show that the claim deductively follows
from indisputable grounds. A mathematical proof from the axioms of arithmetic is
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like this; its grounds are mathematical axioms, while its inferences are deductively
sound. So such a proof cannot be attacked on its grounds or its inferences. However,
in real life our grounds may not be indisputable and may provide less than conclusive
support for their claim.

Suppose we believe that John was in Holland Park some morning and that Hol-
land Park is in London. Then we can deductively reason from these beliefs, to
conclude that John was in London that morning. While this reasoning cannot be
attacked, the argument is still fallible since its grounds may turn out to be wrong.
For instance, Jan may tell us that he met John in Amsterdam that morning around
the same time, challenging our belief that John was in Holland Park that morning,
since witnesses usually speak the truth. Maybe we have a supporting reason for
our belief that John was in Holland Park; that we went jogging in Holland Park
and saw John and that our senses are usually accurate. But given Jan’s testimony,
perhaps our senses betrayed us? But then we discover Jan has a reason to lie, since
John is a suspect in a robbery in Holland Park that morning and Jan and John are
friends. We then conclude that the basis for questioning our belief that John was
in Holland Park that morning (namely, that witnesses usually speak the truth and
Jan witnesses John in Amsterdam) does not apply to witnesses who have a reason
to lie. So our reason in support of our belief is undefeated and we accept it.

Figure 1: An informal example

This example is displayed in Figure 1, where the strict inference is visualised
with solid lines, the defeasible inferences with dotted lines and the attack relations
with arrow. The defeasible inferences within arguments are supposed to be licensed
by the generalisations in the example.

If we want to formalise a logic for argumentation, then this simple example al-
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ready suggests a number of issues to be addressed. First, the claims and beliefs in
our example were supported in various ways: in the first case we appealed to the
principles of deductive inference when concluding that John was in London. AS-
PIC+ is therefore designed so that arguments can be constructed using deductive or
strict inference rules that license deductive inferences from premises to conclusions.
However, in the other two cases the reasoning from grounds to claim appealed to
the reliability of, respectively, our senses and witnesses as sources of information.
Should these kinds of support (inferences) from grounds to claims be modelled as
deductive?

To help answer this question, consider that our informal example contains three
ways of attacking an argument: 1) Our initial argument that John was in London
was attacked by the witness argument on its ground, or premise, that John was
in Holland Park that morning; 2) The initial argument was then extended with
an additional argument for the attacked premise, but the extended argument was
still attacked (by the witness argument) on the (now) intermediate conclusion that
John was in Holland Park that morning; 3) Finally, we counterattacked the witness
argument not on a premise or conclusion but on the reasoning from the grounds to
the claim: namely, the inference step from the premise that Jan said he met John in
Amsterdam that morning to the claim that John was in Amsterdam that morning
(note that here we regard the principle that witnesses usually speak the truth as an
inference rule).

Now, returning to the question whether all kinds of inference should be deductive,
the second type of attack would not be possible on the deductively inferred interme-
diate conclusion since the nature of deductive support is that if all antecedents of a
deductively valid inference rule are true, then its consequent must also be true. So
if we have reason to believe that the conclusion of a deductive inference is not true,
then there must be something wrong with its premises (which may in turn be the
conclusions of subarguments). It is for this very same reason that the third type of
attack on a deductive inferential step is also not possible.

ASPIC+ is therefore designed to comply with the common-sense and philosoph-
ically argued position ([Pollock, 1995, p.41]; [Pollock, 2009, p. 173]) advocating the
rationality of supporting claims with grounds that do not deductively entail them.
In other words, the fallibility of an argument need not only be located in its premises,
but can also be located in the inference steps from premises to conclusion. Thus,
arguments in ASPIC+ can be constructed using defeasible inference rules, and argu-
ments can be attacked on both the conclusions, and application of, such defeasible
inference rules, in keeping with the interpretation that the premises of such a rule
presumptively rather than deductively support their conclusions.

As well as fallible premises that can be attacked, ASPIC+ also allows to distin-
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guish premises that are axiomatic and so cannot be attacked. We discuss the uses
of such premises in Section 2.2.1, but for the moment we can summarise by saying
that ASPIC+ arguments can be constructed from fallible and infallible premises
(respectively called ordinary and axiom premises in Section 2.2.1), and strict and
defeasible inference rules, and that arguments can be attacked on their ordinary
premises, the conclusions of defeasible inference rules, and the defeasible inference
steps themselves. Finally, a key feature of the ASPIC+ framework is that it accom-
modates the use of preferences over arguments, so that an attack from one argument
to another only succeeds (as a defeat) if the attacked argument is not stronger than
(strictly preferred to) the attacking argument, according to some given preference
relation. The justified ASPIC+ arguments are then evaluated with respect to the
abstract argumentation framework relating ASPIC+ arguments by the defeat rela-
tion. Since requirements for use of preferences in argumentation (and more generally
for conflict resolution in non-monotonic logics) are well established in the literature,
we will here not justify the need for preferences. However, examples are given in the
remainder of the paper.

2.2 The basic framework with symmetric negation
2.2.1 Argumentation systems, knowledge bases, and arguments

ASPIC+ is a general framework that allows one to choose a logical language L closed
under negation ¬ (which we later replace with a more general notion of conflict) and
two (possibly empty) sets of strict (Rs) and defeasible (Rd) inference rules. One
also specifies well-formed formulas in L that correspond to (i.e., name) defeasible
rules in Rd via a partial function n. These names can then be used when attacking
arguments on defeasible inference steps. Informally, n(r) is a well-formed formula
(wff) in L which says that the defeasible rule r ∈ R is applicable, so that an argument
claiming ¬n(r) attacks the inference step in the corresponding rule2.

Definition 2.1 (Argumentation systems). An argumentation system is a triple
AS = (L,R, n) where:

• L is a logical language with a unary negation symbol ¬.

• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules of
the form ϕ1, . . . , ϕn → ϕ and ϕ1, . . . , ϕn ⇒ ϕ respectively (where ϕi, ϕ are
meta-variables ranging over wff in L), and Rs ∩Rd = ∅.

2n is a partial function since you may want to enforce that some defeasible inference steps
cannot be attacked.
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• n is a partial function such that n : Rd −→ L.

We write ψ = −ϕ just in case ψ = ¬ϕ or ϕ = ¬ψ (we will sometimes informally
say that formulas ϕ and −ϕ are each other’s negation).

It is important to stress here that ASPIC+’s strict and defeasible inference rules
are not object-level formulae in the language L, but are meta to the language,
allowing one to deductively, respectively defeasibly, infer the rule’s consequent from
the rule’s antecedents. Such inference rules may range over arbitrary formulae in
the language, in which case they will, as usual in logic, be specified as schemes. For
example, a scheme for strict inference rules capturing modus ponens for the material
implication of classical logic can be written as α, α ⊃ β → β3, where α and β are
metavariables for wff in L. Alternatively, strict or defeasible inference rules may be
domain-specific in that they reference specific formulae, as in the defeasible inference
rule concluding that an individual flies if that individual is a bird: Bird ⇒ Flies.
We will further discuss these distinct uses of inference rules in Section 3.1.

ASPIC+ also requires that one specify a knowledge base from which the premises
of an argument can be taken, where one can distinguish between ordinary premises
which are uncertain and so can be attacked, and axiom premises that are certain
and so cannot be attacked.

Definition 2.2 (Knowledge bases). A knowledge base in an AS = (L,R, n) is a
set K ⊆ L consisting of two disjoint subsets Kn (the axioms) and Kp (the ordinary
premises).

An argumentation theory consists of an argumentation system and a knowledge
base:

Definition 2.3 (Argumentation theory). An argumentation theory is a tuple AT
= (AS,K) where AS is an argumentation system and K is a knowledge base in AS.

ASPIC+ arguments are now defined relative to an argumentation theory AT =
(AS,K), and chain applications of the inference rules from AS into inference graphs,
starting with elements from the knowledge base K. In what follows, for a given
argument, the function Prem returns all the formulas of K (called premises) used to
build the argument, Conc returns its conclusion, Sub returns all its sub-arguments,
DefRules returns all the defeasible rules of the argument and TopRule returns the
last inference rule used in the argument.

3In this article we use ⊃ to denote the material implication connective of classical logic.
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Definition 2.4 (Argument). An argument A on the basis of an argumentation the-
ory with a knowledge base K and an argumentation system (L,R, n) is any structure
obtainable by applying one or more of the following steps finitely many times:

1. ϕ is an argument if ϕ ∈ K with: Prem(A) = {ϕ}, Conc(A) = ϕ, Sub(A) = {ϕ},
DefRules(A) = ∅, TopRule(A) = undefined.

2. A1, . . . , An → ψ is an argument if A1, . . . , An are arguments such that there
exists a strict rule
Conc(A1), . . . , Conc(An)→ ψ in Rs.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An),
TopRule(A) = Conc(A1), . . . , Conc(An)→ ψ

3. A1, . . . , An ⇒ ψ is an argument if A1, . . . , An are arguments such that there
exists a defeasible rule Conc(A1), . . . , Conc(An)⇒ ψ in Rd.
Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An),
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An)∪
{Conc(A1), . . . , Conc(An)⇒ ψ},
TopRule(A) = Conc(A1), . . . , Conc(An)⇒ ψ.

Each of these functions Func are also defined on sets of arguments S = {A1, . . . ,
An} as follows: Func(S) = Func(A1) ∪ . . . ∪ Func(An). Moreover, for any argument
A we define Premn(A) = Prem(A) ∩ Kn and Premp(A) = Prem(A) ∩ Kp.

Example 2.5. Consider a knowledge base in an argumentation system with L con-
sisting of p, q, r, s, t, u, v, x, d1, d2, d3, d4, d5 and their negations, with Rs = {s1, s2}
and Rd = {d1, d2, d3, d4, d5, d6}, where4

d1: p⇒ q d4: u⇒ v s1: p, q → r
d2: s⇒ t d5: v, x⇒ ¬t s2: v → ¬s
d3: t⇒ ¬d1

4In the examples that follow we may use terms of the form si, di or fi, to identify strict or
defeasible inference rules or items from the knowledge base. We will assume that the di names are
those assigned by the n function of Definition 2.1.
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Let Kn = {p} and Kp = {s, u, x}. Note that in presenting the example, we have
informally used names di to refer to defeasible inference rules. We now define the
n function that formally assigns wff di to such rules, i.e., for any rule informally
referred to as di, we have that n(di) = di, so that ‘n(d1) = d1’ is a shorthand for
n(p⇒ q) = d1. In further examples we will often specify the n function in the same
way.5

An argument for r (i.e., with conclusion r) is displayed in Figure 2, with the
premises at the bottom and the conclusion at the top of the tree. In this and the next
figure, the type of a premise is indicated with a superscript and defeasible inferences,
underminable premises and rebuttable conclusions are displayed with dotted lines.
The figure also displays the formal structure of the argument. We have that

q

r

pn

pn

d1

s1

A1A2A3

A  : p1

A   :2 A   1)q

A   :3 A   ,  1 A     2! r

Figure 2: An argument

Prem(A3) = {p} DefRules(A3) = {d1}
Conc(A3) = r TopRule(A3) = s1
Sub(A3) = {A1, A2, A3}

The distinction between two kinds of inference rules and two kinds of premises
motivates a distinction into four kinds of arguments.
Definition 2.6 (Argument properties). An argument A is strict if DefRules(A) =
∅; defeasible if DefRules(A) 6= ∅; firm if Prem(A) ⊆ Kn; plausible if Prem(A)∩Kp 6=
∅. An argument is fallible if it is defeasible or plausible and infallible otherwise. We
write S ` ϕ if there exists a strict argument for ϕ with all premises taken from S,
and S |∼ ϕ if there exists a defeasible argument for ϕ with all premises taken from
S.

5In our further examples we will often leave the logical language L and the n function implicit,
trusting that they will be obvious.
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Example 2.7. In Example 2.5 the argument A1 is both strict and firm, while A2
and A3 are defeasible and firm. Furthermore, we have that K ` p, K |∼ q and K |∼ r.

In logic-based approaches to argumentation [Besnard and Hunter, 2008; Amgoud
and Besnard, 2013] arguments are often required to be minimal in that no proper
subset of their premises should logically (according to the adopted base logic) imply
the conclusion. In the ASPIC+ context such a constraint would be fine for applica-
tions of strict rules and below we will review work that imposes such constraints on
ASPIC+ arguments (Sections 4.2 and 5.1). However, minimality cannot be required
for application of defeasible inference rules, since defeasible rules that are based on
more information may well make an argument stronger. For example, Observations
done in ideal circumstances are usually correct is stronger than Observations are
usually correct.

Another requirement of logic-based approaches, namely, that an argument’s
premises have to be consistent, can optionally be imposed in basic ASPIC+, leading
to two variants of the basic framework. We define a special class of arguments whose
premises are ‘c-consistent’ (for ‘contradictory-consistent’). In this way ASPIC+ can
be used as a framework for reconstructing logic-based argumentation formalisms, as
we will further discuss in Section 4.2.

Definition 2.8 (c-consistency). A set S ⊆ L is c-consistent if for no φ is it the case
that S ` φ and S ` −φ. Otherwise S is said to be c-inconsistent. We say that S ⊆ L
is minimally c-inconsistent iff S is c-inconsistent and ∀S′ ⊂ S, S′ is c-consistent.

Definition 2.9 (c-consistent arguments). An argument A is c-consistent iff Prem(A)
is c-consistent.

2.2.2 Attack and defeat

ASPIC+ generates abstract argumentation frameworks consisting of arguments re-
lated by binary defeats. Having defined arguments above, we now define the attack
relation and then apply preferences to determine the defeat relation (in fact [Dung,
1995] called his relation “attack” but we reserve this term for the basic notion of
conflict, to which we then apply preferences).

Attack We first present the three ways in which ASPIC+ arguments can be in
conflict (i.e., attack). Arguments can be attacked on a conclusion of a defeasible
inference (rebutting attack), on a defeasible inference step itself (undercutting at-
tack), or on an ordinary premise (undermining attack). In Section 2.1 we argued
that arguments cannot be attacked on their strict inferences. In Section 3.3 we will
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also show that attacks on conclusions of strict inferences may result in violation
of rationality postulates. In Section 5.3 we will discuss to what extent alternative
definitions of rebutting attack still make sense.

To define undercutting attack, the function n of an AS is used, which assigns
to elements of Rd a well-formed formula in L. Recall that informally, n(r) (where
r ∈ Rd) means that r is applicable. Then an argument using r is undercut by any
argument with conclusion −n(r).

Definition 2.10 (Attacks). A attacks B iff A undercuts, rebuts or undermines B,
where:

• A undercuts argument B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B)
such that B′’s top rule r is defeasible.

• A rebuts argument B (on B′) iff Conc(A) = −ϕ for some B′ ∈ Sub(B) of the
form B′′1 , . . . , B

′′
n ⇒ ϕ.

• Argument A undermines B (on ϕ) iff Conc(A) = −ϕ for an ordinary premise
ϕ of B.

This definition allows for a distinction between direct and indirect attack: an
argument can be indirectly attacked by directly attacking one of its proper subar-
guments. This distinction will turn out to be crucial for a proper application of
preferences when determining whether attacks succeed as defeats.

Example 2.11. In our running example argument A3 cannot be undermined, since
all its premises are axioms. A3 can potentially be rebutted on A2, with an argument
for ¬q. However, the argumentation theory of our example does not allow the con-
struction of such a rebuttal. Likewise, A3 can potentially be undercut on A2, with an
argument for ¬d1. Our example does allow the construction of such an undercutter,
namely:

B1: s
B2: B1 ⇒ t
B3: B2 ⇒ ¬d1

B3 has an ordinary premise s, and so can be undermined on B1 with an argument
for ¬s:

C1: u
C2: C1 ⇒ v
C3: C2 → ¬s

2330



Abstract Rule-based Argumentation

Note that since C3 has a strict top rule, argument B1 does not in turn rebut C3.
Argument B3 can potentially be rebut or undercut on either B2 or B3, since both

of these subarguments of B3 have a defeasible top rule. Our argumentation theory
only allows for a rebutting attack on B2:

C1: u
C2: C1 ⇒ v
D3: x
D4: C2, D3 ⇒ ¬t

All arguments and attacks in the example are displayed in Figure 3.
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Figure 3: The arguments and attacks in the running example

Defeat The attack relation tells us which arguments are in conflict with each
other. If an argument A successfully attacks, i.e., defeats, B, then A can be used as
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a counter-argument to B. Whether an attack from A to B (on its sub-argument B′)
succeeds as a defeat, may depend on the relative strength of A and B′, i.e., whether
B′ is strictly stronger than, or strictly preferred to A. Only the success of undermin-
ing and rebutting attacks is contingent on preferences; undercutting attacks succeed
as defeats independently of any preferences (see [Modgil and Prakken, 2013] for a
discussion as to why this is the case). ASPIC+ allows for any strict binary preference
ordering ≺ on the set of all arguments that can be constructed on the basis of an
argumentation theory. Note that in this article we formalise argument orderings not
as they are defined in [Modgil and Prakken, 2013], but as they are defined in an er-
ratum available online at https://nms.kcl.ac.uk/sanjay.modgil/AIJfinalErratum.
The erratum essentially reverts to the directly defined strict partial ordering ≺ over
arguments as employed in [Prakken, 2010]. Then (as illustrated in Section 3.2),
the non-strict � is defined so that A � B iff A ≺ B or the fallible elements in A
and B that are used in deciding preferences, are the same. Moreover, [Modgil and
Prakken, 2013] identify conditions under which argument orderings are well-behaved
in that they ensure satisfaction of the rationality postulates. The erratum modifies
these conditions, which in [Modgil and Prakken, 2013] are stated by reference to
non-strict orderings over sets of defeasible rules (ordinary premises), but in the erra-
tum are stated with respect to strict orderings over sets of defeasible rules (ordinary
premises). This has been done in order to address a counterexample to rationality
pointed out by Sjur Dyrkolbotn (personal communication), assuming the conditions
as stated in [Modgil and Prakken, 2013]6. We will review these conditions later in
this article.

Definition 2.12 (Successful rebuttal, undermining and defeat).

• A successfully rebuts B if A rebuts B on B′ and A 6≺ B′.

• A successfully undermines B if A undermines B on ϕ and A 6≺ ϕ.

• A defeats B iff A undercuts or successfully rebuts or successfully undermines
B. (In general, we say A strictly defeats B if A defeats B and B does not
defeat A).

The success of rebutting and undermining attacks thus involves comparing the
conflicting arguments at the points where they conflict; that is, by comparing those
arguments that are in a direct rebutting or undermining relation with each other.
The definition of successful undermining exploits the fact that an argument premise
is also a subargument, so the preference A 6≺ ϕ is well defined.

6Note that the erratum also addresses a counterexample to rationality in [Dung, 2016].
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Example 2.13. In our running example, the undercutting attack of B3 on A2 (and
thereby on A3) succeeds as a defeat irrespective of the argument ordering between
B3 and A2. The undermining attack of C3 on B1 succeeds if C3 6≺ B1. If B2 and
D4 are incomparable, then these two arguments defeat each other, while D4 strictly
defeats B3. If D4 ≺ B2 then B2 strictly defeats D4 while if B2 ≺ D4 then D4 strictly
defeats both B2 and B3.

Let us now put all these elements together; that is the arguments and attacks
defined on the basis of an argumentation theory, and a preference ordering over the
arguments (here we write ‘(c-)SAF ’ as meaning ‘SAF or c-SAF ’):

Definition 2.14 (c-SAF s). Let AT be an argumentation theory (AS,KB).
A (c-)structured argumentation framework ( (c-)SAF) defined by AT , is a triple 〈A,
C, � 〉 where

• In a SAF , A is the set of all arguments constructed from KB in AS satisfying
Definition 2.4;

• In a c-SAF , A is the set of all c-consistent arguments constructed from KB
in AS satisfying Definition 2.4;

• � is a preference ordering on A;

• (X,Y ) ∈ C iff X attacks Y .

Note that a c-SAF is a SAF in which all arguments are required to have a
c-consistent set of premises.

Example 2.15. In our running example A = {A1, A2, A3, B1, B2, B3, C1, C2, C3,
D3, D4}, while C is such that B3 attacks both A2 and A3, argument C3 attacks all
of B1, B2, B3, argument D4 attacks both B2 and B3 and, finally, B2 attacks D4.

2.2.3 Generating abstract argumentation frameworks

We now instantiate abstract argumentation frameworks with ASPIC+ arguments
and defeats.

Definition 2.16 (Argumentation frameworks). An abstract argumentation frame-
work (AF ) corresponding to a (c-)SAF = 〈A, C, � 〉 is a pair (A,D) such that D
is the defeat relation on A determined by 〈A, C, � 〉.

The justified arguments of the above defined abstract argumentation frameworks
are then defined under various semantics, as in [Dung, 1995]:

2333



Modgil and Prakken

Definition 2.17 (Dung Semantics). Let (A,D) be an AF and S ⊆ A. Then:

• S is conflict free iff ∀X,Y ∈ S: (X,Y ) /∈ D7.

• X ∈ A is acceptable with respect to S iff ∀Y ∈ A such that (Y,X) ∈ D :
∃Z ∈ S such that (Z, Y ) ∈ D.

• S is an admissible set iff S is conflict free and X ∈ S implies X is acceptable
w.r.t. S.

• S is a complete extension iff S is admissible and if X ∈ A is acceptable w.r.t.
S then X ∈ S;

• S is a preferred extension iff it is a set inclusion maximal complete extension;

• S is the grounded extension iff it is the set inclusion minimal complete exten-
sion;

• S is a stable extension iff S is conflict free and ∀Y /∈ S, ∃X ∈ S s.t. (X,Y )
∈ D.

For T ∈ {complete, preferred, grounded, stable}, X is sceptically, respectively cred-
ulously justified on the basis of AF under the T semantics if X belongs to all,
respectively at least one, T extension of AF .

It is now also possible to define a consequence notion for well-formed formulas.
Several definitions are possible. One is:

Definition 2.18 (Justified Formulae). A wff ϕ ∈ L is sceptically justified on the
basis of a (c-)SAF under semantics T if ϕ is the conclusion of a sceptically justified
argument on the basis of the AF corresponding to the (c-)SAF under semantics T ,
and credulously justified on the basis of a (c-)SAF under semantics T if ϕ is not
sceptically justified and is the conclusion of a credulously justified argument on the
basis of the AF corresponding to the (c-)SAF under semantics T .

An alternative definition of skeptical justification is:

7Note that in [Modgil and Prakken, 2013] we motivate the use of the ASPIC + attack relation to
define conflict-free sets (a set of arguments is conflict-free if there does not exist an attack between
any of its contained arguments), and then only use the ASPIC + defeat relation to determine the
acceptability of arguments. It turns out that under certain conditions, this way of evaluating the
status of arguments is equivalent to Definition 2.17’s use of the defeat relation for both determining
conflict freeness and acceptability of arguments.
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A wff ϕ ∈ L is sceptically justified on the basis of the (c-)SAF under
semantics T if all T -extensions of the AF corresponding to the (c-)SAF
contain an argument with conclusion ϕ.

While the original definition of skeptical justification requires that there is one ar-
gument for ϕ that is in all extensions, the alternative definition allows that different
extensions contain different arguments for ϕ. In multiple-extension semantics this
can make a difference in, for example, cases with so-called floating conclusions; cf.
Example 25 of [Prakken and Vreeswijk, 2002].

Example 2.19. In our running example, if D4 strictly defeats B2, then we have
a unique extension in all semantics, namely, E = {A1, A2, A3, C1, C2, C3, D3, D4}.
If in addition C3 does not defeat B1, then the extension also contains B1. In both
cases this yields that wff r is sceptically justified.

Alternatively, if B2 strictly defeats D4, then the status of r depends on whether
C3 defeats B1. If it does, then we again have a unique extension in all semantics
consisting of the set S, so r is sceptically justified. By contrast, if C3 does not defeat
B1, we obtain a unique extension with A1, B1, B2, B3, C1, C2, C3 and D3, so r is
neither sceptically nor credulously justified.

Finally, if B2 and D4 defeat each other, then the outcome again depends on
whether C3 defeats B1. If it does, then the situation is as in the previous case –
a unique extension E – but if C3 does not defeat B1, then the grounded extension
consists of A1, B1, C1, C2, C3, D3. So in the latter case, in grounded semantics
r is neither sceptically nor credulously justified. However, in preferred and stable
semantics we then obtain two alternative extensions: the first contains D4, A2 and
A3, while the second instead contains B2 and B3 and so excludes A2 and A3. So in
the latter case r is credulously, but not sceptically justified under stable and preferred
semantics.

2.3 The basic framework with possibly non-symmetric negation
The notion of an argumentation system in Section 2.2.1, assumed a language L with
a unary negation symbol ¬, which was used in the definition of conflict-based attack.
The standard classical interpretation of ¬ licenses a symmetric notion of conflict-
based attack, so that an argument consisting of an ordinary premise φ or with a
defeasible top rule concluding φ, symmetrically attacks an argument consisting of
an ordinary premise ¬φ or with a defeasible top rule concluding ¬φ. However, the
ASPIC+ framework as presented in [Prakken, 2010; Modgil and Prakken, 2013], ac-
commodates a more general notion of conflict, by defining an argumentation system
to additionally include a function − that, for any wff ψ ∈ L, specifies the set of
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wff’s that are in conflict with ψ, so that one can define both an asymmetric and
symmetric notion of conflict-based attack. Formally:
Definition 2.20 (− function). − is a function from L to 2L, such that:
• ϕ is a contrary of ψ if ϕ ∈ ψ, ψ 6∈ ϕ ;
• ϕ is a contradictory of ψ (denoted by ‘ϕ = −ψ’), if ϕ ∈ ψ, ψ ∈ ϕ.

Now Conc(A) ∈ ϕ (Conc(A) ∈ n(r)) replaces Conc(A) = −ϕ (Conc(A) = −n(r))
in Definition 2.10’s definition of attacks. This induces a generalised notion of an
argumentation system as a four-tuple AS = (L,−,R, n) where L, R and n are
defined as in Definition 2.1 and − is as just defined. The special case of Definition 2.1
can then be reformulated as the case where − is defined in terms of classical negation
as α ∈ β iff α is of the form ¬β or β is of the form ¬α (i.e., for any wff α, α and ¬α
are contradictories). Below we will continue to refer to the special case with ¬ as a
triple, leaving the − function implicit.

The rationale for these more general notions of conflict and attack is two-fold.
Firstly, one can for pragmatic reasons state that two formulae are in conflict, rather
than requiring that one implies the negation of another; for example, assuming a
predicate language with the binary ‘<’ relation, one can state that any two formulae
of the form α < β and β < α are contradictories. Secondly, the − function allows for
an asymmetric notion of negation. This enables reconstruction of assumption-based
argumentation (ABA) in ASPIC+ (indeed the idea of using a − function is taken
from [Bondarenko et al., 1997]). We briefly review this reconstruction in Section 4.1.
Closely related to its use in reconstructing ABA, the contrary function allows for
the modelling of negation as failure (as in logic programming). Using the negation
as failure symbol ∼ (also called ‘weak’ negation, in contrast to the ‘strong’ negation
symbol ¬), then ∼ α denotes the negation of α under the assumption that α is not
provable (i.e., the negation of α is assumed in the absence of evidence for α). Given
this intended reading of ∼ it is not meaningful to assert that such an assumption
brings into question (and so initiates an attack on) the evidence whose very absence
is required to make the assumption in the first place. In other words, if A is an
argument consisting of the premise ∼ α, and B concludes α (the contrary of ∼ α),
then B attacks A, but not vice versa. Furthermore, since the very construction of
A is invalidated by evidence to the contrary, i.e., B, then such attacks succeed as
defeats independently of preferences.

To accommodate the notion of contrary, and attacks on contraries succeeding as
defeats independently of preferences, we further modify Definition 2.10 to distinguish
the special cases where Conc(A) is a contrary of ϕ, in which case we say that A
contrary rebuts B and A contrary undermines B, and then modify Definition 2.12
so that:
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• A successfully rebuts B if A contrary rebuts B, or A rebuts B on B′ and
A ⊀ B′.

• A successfully undermines B if A contrary undermines B, or A undermines B
on φ and A ⊀ φ.

The definition of undercutting attack does not need to be changed.
To illustrate the use of negation as failure, suppose one wants arguments to be

built from a propositional language that includes both ¬ and ∼. One could then
define L as a language of propositional literals, composed from a set of propositional
atoms {a, b, c, . . . } and the symbols ¬ and ∼. Then:
• α is a strong literal if α is a propositional atom or of the form ¬β where β is
a propositional atom (strong negation cannot be nested).

• α is a wff of L, if α is a strong literal or of the form ∼ β where β is a strong
literal (weak negation cannot be nested).

Then α ∈ β iff (1) α is of the form ¬β or β is of the form ¬α; or (2) β is of the
form ∼ α (i.e., for any wff α, α and ¬α are contradictories and α is a contrary of
∼ α). Finally, for any ∼ α that is in the antecedent of a strict or defeasible inference
rule, one is required to include ∼ α in the ordinary premises.

Consider now Example 2.5, where we now have that u ∈ ∼ u, and we replace
the rule d4 : u ⇒ v with d′4: ∼ u ⇒ v, and add ∼ u to the ordinary premises:
Kp = {∼ u, s, u, x}. Then, the arguments C3 and D4 are now replaced by arguments
C ′3 and D′4 each of which contain the sub-argument E : ∼ u (instead of C1 : u).
Then C1 : u contrary undermines, and so defeats, C ′3 and D′4 on ∼ u.

3 Instantiating the ASPIC+ Framework
ASPIC+ is a framework for specifying systems, and so leaves one fully free to make
choices as to the logical language, the strict and defeasible inference rules, the axioms
and ordinary premises in a knowledge base, and the argument preference ordering.
In this section we discuss various more or less principled ways to make these choices,
and then show specific uses of ASPIC+.

3.1 Choosing strict and defeasible rules
3.1.1 Domain specific strict inference rules

ASPIC+ allows the specification of domain specific strict inference rules, as illus-
trated by the following example (based on Example 4 of [Caminada and Amgoud,

2337



Modgil and Prakken

2007]) in which the strict inference rules capture definitional knowledge, namely,
that bachelors are not married.

Example 3.1. Let Rd = {d1, d2} and Rs = {s1, s2}, where:

d1 = WearsRing ⇒ Married s1 = Married → ¬Bachelor
d2 = PartyAnimal ⇒ Bachelor s2 = Bachelor → ¬Married

Finally, let Kp = {WearsRing,PartyAnimal}. Consider the following arguments.

A1: WearsRing B1: PartyAnimal
A2: A1 ⇒ Married B2: B1 ⇒ Bachelor
A3: A2 → ¬Bachelor B3: B2 → ¬Married

We have that A3 rebuts B3 on its subargument B2 while B3 rebuts A3 on its subar-
gument A2. Note that A2 does not rebut B3, since B3 applies a strict rule; likewise
for B2 and A3.

In Example 3.1, the rules s1 and s2 are ‘transpositions’ of each other, and Rs is
‘closed under transposition’, in the sense that:

Definition 3.2 (Closure under Transposition). Let AT = (AS,K) be an argumen-
tation theory. Then AT is closed under transposition iff if φ1, . . . , φn → ψ ∈ Rs,
then for i = 1 . . . n, φ1, . . . , φi−1,−ψ, φi+1, . . . , φn → −φi ∈ Rs.

In general it is a good idea to ensure that an argumentation theory is closed
under transposition, since a strict (deductive) rule q → ¬s expresses that if q is
true, then this guarantees the truth of ¬s, no matter what. Hence, if we have s,
then q cannot hold, otherwise we would have ¬s. In general, if the negation of the
consequent of a strict rule holds, then we cannot have all its antecedents, since if we
had all of them, then its consequent would hold. This is the very meaning of a strict
rule. So it is very reasonable to include in Rs the transposition of a strict rule that
is in Rs. A second reason for ensuring closure under transposition is that it ensures
satisfaction of [Caminada and Amgoud, 2007]’s rationality postulates, as illustrated
later in Section 3.3.

3.1.2 Strict inference rules and axioms based on deductive logics

Some find the use of domain-specific strict inference rules rather odd; why not instead
express them as material implications in L and put them in the knowledge base as
axiom premises? One then reserves the strict inference rules for general patterns
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of deductive inference, since one might argue that this is what inference rules are
meant for in logic. ASPIC+ therefore allows one to base your strict inference rules
(and axioms) on a deductive logic of one’s choice. One can do so by choosing
a semantics for a particular choice of L with an associated monotonic notion of
semantic consequence, and then letting Rs be rules that are sound with respect to
that semantics. For example, suppose Rs should conform to classical logic, given
a standard propositional (or first-order) language, such that arguments can contain
any classically valid inference step over this language. This can be done in two ways:
a crude way and a sophisticated way.

A crude way is to simply put all valid propositional (or first-order) inferences
over your language of choice in Rs. So if a propositional language has been chosen,
then Rs can be defined as follows. (where `PL denotes standard propositional-logic
consequence). For any finite S ⊆ L and any ϕ ∈ L:8

S → ϕ ∈ Rs if and only if S `PL ϕ

In fact, with this choice of Rs, strict parts of an argument don’t need to be more
than one step long. For example, if rules S → ϕ and ϕ → ψ are in Rs, then
S ∪ {ϕ} → ψ will also be in Rs. Note also that using this method, strict rules will
be closed under transposition, because of the properties of classical logic.

It should be noted that this way of using a logic as the origin of the strict rule
makes some implicit assumptions on the chosen logic, for example that it is compact
(everything implied by an infinite set is implied by a finite subset) and satisfies the
Cut rule (if S implies ϕ and S ∪ {ϕ} implies ψ then S implies ψ). In Section 5.1 we
return to this issue.

Let us illustrate the crude approach with a variation of Example 3.1. We retain
the defeasible rules d1 and d2 but we replace the domain-specific strict rules s1 and
s2 with a single material implication Married ⊃ ¬Bachelor in Kn. Moreover, we put
all propositionally valid inferences over our language in Rs, including, for example,
all inferences instantiating the modus ponens scheme ϕ,ϕ ⊃ ψ → ψ. Then the
arguments change as follows:

A1: WearsRing B1: PartyAnimal
A2: A1 ⇒ Married B2: B1 ⇒ Bachelor
A3: Married ⊃ ¬Bachelor B3: Married ⊃ ¬Bachelor
A4: A2, A3 → ¬Bachelor B4: B2, B3 → ¬Married

Now A4 rebuts B4 on B2 while B4 rebuts A4 on A2.
8Although antecedents of rules formally are sequences of formulas, we will sometimes abuse

notation and write them as sets.
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A sophisticated way to base the strict part of ASPIC+ on a deductive logic of
one’s choice is to build an existing axiomatic system for the logic into ASPIC+.
Its axiom(s) (typically a handful) can be encoded in Kn and its inference rule(s)
(typically just one or a few) in Rs. For example, there are axiomatic systems for
classical logic with just four axioms and just one inference rule, namely, modus
ponens (i.e, ϕ ⊃ ψ,ϕ → ψ)9. With this choice of Rs, strict parts of an argument
could be very long, since in logical axiomatic systems, proofs of even trivial validities
might be long. However, this difference with the crude way is not very big, since if
we want to be crude, we must, to know whether S → ϕ is in Rs, first construct a
propositional proof of ϕ from S.

With the sophisticated way of building classical logic into our argumentation
system, argument A4 in our example stays the same, since modus ponens is in Rs.
However, argument B4 will change, since modus tollens is not in Rs. In fact, B4 will
be replaced by a sequence of strict rule applications, together being an axiomatic
proof of ¬Married from Married ⊃ ¬Bachelor and Bachelor .

Note that in the sophisticated method, closure under transposition may not hold;
our example above does not contain modus tollens (that is, ϕ ⊃ ψ,−ψ → −ϕ).
However, this desirable form of reasoning can also be enforced without explicitly
transposing rules. Recall that S ` ϕ was defined as ‘there exists a strict argument
for ϕ with all premises taken from S’. Now it turns out that if ` contraposes, then
this is just as good as closure of the strict rules under transposition. Contraposition
of ` means that if S ` ϕ, then if we replace one element s of S with −ϕ, then −s is
strictly implied (if ` corresponds to classical provability, as enforced by our choice
of axioms and inference rules, then ` does indeed contrapose).

Definition 3.3 (Closure under Contraposition). Let AT = (AS,K) be an argumen-
tation theory. We say that AT is closed under contraposition iff for all S ⊆ L,
s ∈ S and φ, if S ` φ, then S\{s} ∪ {−φ} ` −s.

Again, as will be discussed in Section 3.3, closure under contraposition also
ensures satisfaction of rationality postulates.

3.1.3 Choosing defeasible inference rules

Regarding the choice of defeasible rules, the question as to whether these can be
derived from a logic of our choice, just as with strict rules, is controversial. Some
philosophers argue that all rule-like structures that we use in daily life are “inference
licenses” and so cannot be expressed in the logical object language. In this view,

9As explained above, this strictly speaking is not a rule but a scheme, with meta variables
ranging over L.
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all defeasible generalisations are inference rules, whether they are domain-specific or
not, and are applied to formulas from L to support new formulas from L.

Others (usually logicians) take a more standard-logic approach (e.g. [Kraus et
al., 1990; Pearl, 1992]) whereby all contingent knowledge should be expressed in
the object language, and so they reject the idea of domain-specific defeasible infer-
ence rules (for the same reason they don’t like domain-specific strict rules). They
introduce a new connective, e.g., ;, into L where (informally) p ; q is read as
“If p then normally/typically/usually q”. They then want to give a model-theoretic
semantics for this connective just as logicians give a model-theoretic semantics for
all connectives, except that semantics for these defeasible conditionals focus on a
preferred class of models (e.g., all models where things are as normal as possible)
instead of all models of a theory as in semantics for deductive logics. Hence, the
model-theoretic interpretation of p ⊃ q is that q is true in all models of p, whereas
the model theoretic interpretation of p ; q is that q is true in all preferred models
of p.

What inference rules for ; could result from such an approach? On two things
there is consensus: modus ponens for; is defeasibly but not deductively valid, so the
rule ϕ ; ψ,ϕ ⇒ ψ should go into Rd. There is also consensus that contraposition
for ; is deductively invalid, so the rule ϕ ; ψ → −ψ ; −ϕ should not go into
Rs. However, here the consensus ends. Should the defeasible analogue of this rule
go into Rd or not? Opinions differ at this point10.

Let us illustrate the difference between the two approaches, by including defea-
sible modus ponens for ; in Rd, and replacing the defeasible inference rules d1 and
d2 (in Example 3.1) with object-level conditionals expressed in L and included in
Kp:

WearsRing ; Married ∈ Kp and PartyAnimal ; Bachelor ∈ Kp
Rd = {ϕ; ψ,ϕ⇒ ψ}

The arguments then change as follows (assuming the crude incorporation of classical
logic):

A1: WearsRing B1: PartyAnimal
A2: WearsRing ; Married B2: PartyAnimal ; Bachelor
A3: A1, A2 ⇒ Married B3: B1, B2 ⇒ Bachelor
A4: Married ⊃ ¬Bachelor B4: Married ⊃ ¬Bachelor
A5: A3, A4 → ¬Bachelor B5: B3, B4 → ¬Married

10See Chapter 4 of [Caminada, 2004] for a very readable overview of the discussion.
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Now A5 rebuts B5 on B3 while B5 rebuts A5 on A3.
Concluding, if desired, at least some of the choices concerning defeasible inference

rules can be based on model-theoretic semantics for nonmonotonic logics. However,
it is an open question whether a model-theoretic semantics is the only criterion by
which we can choose our defeasible rules. Some have based their choice on other
criteria, since they do not primarily see defeasible rules as logical inference rules but
as principles of human cognition or rational action, so that they should be based on
foundations other than semantics. For example, John Pollock based his defeasible
reasons on his account of epistemology. Others have based their choice of defeasible
reasons on the study of argument schemes in informal argumentation theory. We
give examples of both these approaches in Section 3.5.

3.2 Choosing argument preference orderings

A well studied use of preferences in the non-monotonic logic literature is based on
the use of preference orderings over formulae in the language or defeasible inference
rules. If ASPIC+ is to be used as a framework for giving argumentation-based
characterisations of non-monotonic formalisms augmented with preferences, then
it needs to provide an account of how these preference orderings can be ‘lifted’
to preferences over arguments. Since ASPIC+ uses defeasible inference rules and
ordinary premises, both may come equipped with preference orderings ≤ on Rd and
≤′ on Kp, which in general may be distinct, in keeping with the ontologically distinct
nature of rules and premises. For example, the ordinary premises may represent the
content of percepts from sensors or of witness testimonies, whose preference ordering
reflects the relative reliability of the sensors, respectively witnesses. The defeasible
rules may, for example, be ordered based on probabilistic strength, on temporal
precedence (defeasible rules acquired later are preferred to those acquired earlier),
on the basis of principles of legal precedence, and so on. The challenge is to then
define a preference over arguments A and B based on the preferences over their
constituent ordinary premises and defeasible rules.

We now define two argument preference orderings, called the weakest-link and
last-link orderings. These orderings are in turn based on partial preorders ≤ on Rd
and ≤′ on Kp, where as usual, X <(′) Y iff X ≤(′) Y and Y �(′) X (note that we may
represent these orderings in terms of the strict counterpart they define). However,
these preferences relate individual defeasible rules, respectively ordinary premises,
whereas when comparing two arguments, we want to compare them on the (possibly
non-singleton) sets of rules/premises that these arguments are constructed from. So,
to define these argument preferences, we need to first define a strict set ordering �s
over sets of rules/premises, where for any sets of defeasible rules/ordinary premises
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S and S′, we intuitively want that:
1) if S is the empty set, it cannot be that S �s S

′;
2) if S′ is the empty set, it must be that S �s S

′ for any non-empty S .
In other words, arguments that have no defeasible rules (ordinary premises) are,
modulo the premises (rules), strictly stronger than (preferred to) arguments that
have defeasible rules (ordinary premises). Hence the following definition explicitly
imposes these constraints, and then gives two alternative ways of defining�s; the
so called Elitist and Democratic ways (i.e., s = Eli and Dem respectively). Eli
compares sets on their minimal and Dem on their maximal elements.

Definition 3.4 (Orderings �s). Let Γ and Γ′ be finite sets11. Then �s is defined
as follows:

1. If Γ = ∅ then Γ 6s Γ′ ;

2. If Γ′ = ∅ and Γ 6= ∅ then Γ /s Γ′ ;
else, assuming a preordering ≤ over the elements in Γ ∪ Γ′, then if :

3. s = Eli:
Γ /Eli Γ′ if ∃X ∈ Γ s.t. ∀Y ∈ Γ′, X < Y .
else, if:

4. s = Dem:
Γ /Dem Γ′ if ∀X ∈ Γ, ∃Y ∈ Γ′, X < Y .

For s = Eli or s = Dem: Γ Es Γ′ iff Γ = Γ′ or Γ /s Γ′

Now the last-link principle strictly prefers an argument A over another argu-
ment B if the last defeasible rules used in B are less preferred (/s) than the last
defeasible rules in A or, in case both arguments are strict, if the premises of B are
less preferred than the premises of A. The concept of ‘last defeasible rules’ is defined
as follows.

Definition 3.5 (Last defeasible rules). Let A be an argument.

• LastDefRules(A) = ∅ iff DefRules(A) = ∅.

• If A = A1, . . ., An ⇒ φ, then LastDefRules(A) = {Conc(A1), . . ., Conc(An)
⇒ φ}, else LastDefRules(A) = LastDefRules(A1) ∪ . . . ∪
LastDefRules(An).

11Notice that it suffices to restrict � to finite sets since ASPIC + arguments are assumed to be
finite (in Definition 2.14) and so their sets of ordinary premises/defeasible rules must be finite.
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For example, letting K = {p, q}, Rs = {r, s → t} and Rd = {p ⇒ r; q ⇒ s},
then
LastDefRules(A) = {p⇒ r; q ⇒ s} where A is the argument for t.

The above definition is now used to compare pairs of arguments as follows:

Definition 3.6 (Last link principle). Let A and B be two arguments. Then A ≺ B
iff:

1. LastDefRules(A) /s LastDefRules(B); or

2. LastDefRules(A) and LastDefRules(B) are empty and Premp(A) /s
Premp(B).

Then B � A iff B ≺ A or, if LastDefRules(A) 6= ∅ then LastDefRules(A) =
LastDefRules(B), else Premp(A) = Premp(B).

Example 3.7. Suppose in our running example that u <′ s, x <′ s, d2 < d5 and
d4 < d2. Applying the last-link ordering to check whether C3 defeats B1, we compare
LastDefRules(C3) = {d4} with LastDefRules(B1) = ∅. Clearly, {d4} /Eli ∅, so
C3 ≺ B1, so C3 does not defeat B1. Next, to check whether D4 defeats B2, we
compare LastDefRules(B2) = {d2} with LastDefRules(D4) = {d5}. Since d2 < d5
we have that LastDefRules(B2) /Eli LastDefRules(D4), so D4 strictly defeats B2.

The weakest-link principle considers not the last but all uncertain elements
in an argument.

Definition 3.8 (Weakest link principle). Let A and B be two arguments. Then
A ≺ B iff

1. If both B and A are strict, then Premp(A) /s Premp(B), else;

2. If both B and A are firm, then DefRules(A) /s DefRules(B), else;

3. Premp(A) /s Premp(B) and DefRules(A) /s DefRules(B)

Then B � A iff B ≺ A or, DefRules(A) = DefRules(B) and Premp(A) =
Premp(B).

Example 3.9. In our running example to check whether C3 defeats B1 according to
the weakest-link ordering, we first compare Premp(C3) = {u} with Premp(B1) = {s}.
Since u <′ s we have that Premp(C3)/EliPremp(B1). Also, DefRules(C3) = {d4}/Eli
DefRules(B1) = ∅, and so C3 ≺ B1 and C3 does not defeat B1.
For B2 and D4: Premp(D4) = {u, x} /Eli Premp(B2) = {s} since u <′ s and x < s′.
Then since d4 < d2, DefRules(D4) = {d4, d5} /Eli DefRules(B2){d2}. So D4 ≺ B2
and B2 strictly defeats D4.
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We next present two examples illustrating the suitability of the last-, respectively,
weakest-link orderings. Consider an example relating to whether people misbehaving
in a university library may be denied access to the library.12

Example 3.10. Let Kp = {Snores, Professor}, Rd =
{Snores ⇒d1 Misbehaves;
Misbehaves ⇒d2 AccessDenied;
Professor ⇒d3 ¬AccessDenied}.

Assume that Snores <′ Professor and d1 < d2, d1 < d3, d3 < d2, and consider the
following arguments.

A1: Snores B1: Professor
A2: A1 ⇒ Misbehaves B2: B1 ⇒ ¬AccessDenied
A3: A2 ⇒ AccessDenied

Let us apply the ordering to the arguments A3 and B2. The rule sets to be compared
are LastDefRules(A3) = {d2} and LastDefRules(B2) = {d3}. Since d3 < d2 we
have that LastDefRules(B2)/Eli LastDefRules(A3), hence B2 ≺ A3. So A3 strictly
defeats B2, hence A3 is justified in any semantics, and we conclude AccessDenied.

With the weakest-link principle the ordering between A3 and B2 is different. Both
A and B are plausible and defeasible so we are in case (3) of Definition 3.8. Since
Snores <′ Professor , we have that Premp(A3)�Eli Premp(B2). Furthermore, the rule
sets to be compared are now DefRules(A3) = {d1, d2} and DefRules(B2) = {d3}.
Since d1 < d3 we have that DefRules(A3) �Eli DefRules(B2). So now we have
that A3 ≺ B2. Hence B2 now strictly defeats A3 and we conclude instead that
¬AccessDenied.

Which outcome is better? Some have argued that the last-link ordering gives the
better outcome since the conflict really is between the two legal rules about whether
someone may be denied access to the library, while d1 just provides a sufficient
condition for when a person can be said to misbehave. The existence of a conflict
on whether someone may be denied access to the library is in no way relevant for
the issue of whether a person misbehaves when snoring. More generally, it has
been argued that for reasoning with legal (and other normative) rules the last-link
ordering is appropriate. However, in an example of exactly the same form, with
the legal rules replaced by empirical generalisations, intuitions seem to favour the
weakest-link ordering:

12In all examples below, sets that are not specified are assumed to be empty. Moreover, sometimes
we will attach the rule names to the ⇒ symbol. Note that these attached indices have no formal
meaning and are for ease of reference only.
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Example 3.11. Let Kp = {BornInScotland, FitnessLover}, Rd =
{BornInScotland ⇒d1 Scottish;
Scottish ⇒d2 LikesWhisky;
FitnessLover ⇒d3 ¬LikesWhisky}.

Assume that BornInScotland <′ FitnessLover and d1 < d2, d1 < d3, d3 < d2, and
consider the following arguments.

A1: BornInScotland B1: FitnessLover
A2: A1 ⇒ Scottish B2: B1 ⇒ ¬LikesWhisky
A3: A2 ⇒ LikesWhisky

This time it seems reasonable to conclude ¬LikesWhisky, since the epistemic uncer-
tainty of the premise and d1 of A3 should propagate to weaken A3. And this is the
outcome given by the weakest-link ordering. So it could be argued that for epistemic
reasoning the weakest-link ordering is appropriate.

3.3 The rationality postulates of Caminada and Amgoud (2007)
and their satisfaction in ASPIC+

ASPIC+ leaves one fully free to choose a language, what is an axiom and what is an
ordinary premise and how to specify strict and defeasible rules. However some care
needs to be taken in making these choices, to ensure that the result of argumentation
is guaranteed to be well-behaved in the sense that the desirable properties proposed
by [Caminada and Amgoud, 2007] are satisfied. Before presenting these properties,
we define required notions of direct and indirect consistency in terms of the contrary
function (recall Definition 2.20).

Definition 3.12 (Direct and Indirect Consistency). For any S ⊆ L, let the closure
of S under strict rules, denoted Cl(S), be the smallest set containing S and the
consequent of any strict rule in Rs whose antecedents are in Cl(S). Then a set S
⊆ L is

• directly consistent iff @ ψ, ϕ ∈ S such that ψ ∈ ϕ

• indirectly consistent iff Cl(S) is directly consistent.

Let E be any complete extension of an abstract argumentation framework cor-
responding to a (c)-SAF as defined in Section 2.2.3.

Sub-argument Closure: For any argument A in E, all sub-arguments of A
are in E, i.e., for all A ∈ E: if A′ ∈ Sub(A) then A′ ∈ E.
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Closure under Strict Rules: If E contains arguments with conclusions
α1, . . . .αn, then any arguments obtained by applying only strict inference rules
to these conclusions, are in E, i.e., {Conc(A)|A ∈ E} = Cl({Conc(A)|A ∈ E}).

Direct Consistency: The conclusions of arguments in E are directly consis-
tent, i.e., {Conc(A)|A ∈ E} is consistent.

Indirect Consistency: The conclusions of arguments in E are indirectly
consistent, i.e., Cl({Conc(A)|A ∈ E}) is consistent.

We next review the work done on identifying sufficient conditions for ASPIC+

satisfying [Caminada and Amgoud, 2007]’s four rationality postulates.

3.3.1 The work of Caminada and Amgoud (2007), Prakken (2010) and
Modgil and Prakken (2013)

The first relevant condition is that an argumentation theory is closed under trans-
position or contraposition. If neither is satisfied, then since strict rule applications
cannot be attacked, direct consistency may be violated. Consider our first version
of Example 3.1. Suppose we only have the strict rule s1 so that B3 cannot be con-
structed (given the absence of s2). We still have that A3 rebuts B2. Suppose now
that d1 < d2 and we apply the last-link argument ordering. Then A3 does not defeat
B2. In fact, no argument in the example is defeated, so we end up with a single
extension (under all semantics) which contains arguments for both Bachelor and
¬Bachelor and so violates direct and indirect consistency. However, with transpo-
sition we also have s2. Then B3 can be constructed, which rebuts A3 on A2. Under
the last-link ordering (assuming again that d1 < d2) we still have that A3 does not
defeat B2, but now B3 strictly defeats A2. We have a unique extension in all seman-
tics, containing all arguments except A2 and A3. This extension does not violate
consistency.

One might argue that the above violation of consistency, before inclusion of
the transposed rule s2, arises because ASPIC+ forbids attacks on strictly derived
conclusions. Consistency would not be violated if B2 was allowed to attack A3.
However, apart from the reasons discussed in Section 2.2.2, another reason for pro-
hibiting attacks on strictly derived conclusions is that if allowed, extensions may not
be strictly closed or indirectly consistent, even if the strict rules are closed under
transposition. To see why, suppose we allow attacks on strict conclusions, so that
B2 attacks A3, A2 attacks B3, and A3 and B3 attack each other in Example 3.1.
Suppose also that all knowledge-base items and defeasible rules are of equal prefer-
ence, and we apply the weakest- or last-link argument ordering. Then all rebutting

2347



Modgil and Prakken

attacks in the example succeed. But then the set {A1, A2, B1, B2} is admissible and
is in fact both a stable and preferred extension. But this violates strict closure and
indirect consistency. The extension contains an argument for Bachelor but not for
¬Married, which strictly follows from it by rule s2. Likewise, the extension contains
an argument for Married but not for ¬Bachelor , which strictly follows from it by
rule s1. So the extension is not closed under strict rule application. Moreover, the
extension is indirectly inconsistent, since its strict closure contains both Married
and ¬Married, and both Bachelor and ¬Bachelor .

Other requirements for satisfying the postulates are expressed in the following
definition of a ‘well-defined’ structured argumentation framework (recall Definition
2.14), which references the notion of a ‘reasonable’ preference relation that is sub-
sequently explained and defined:

Definition 3.13 (Well defined (c-)SAFs). A (c-)SAF (A, C,�) defined by an an
argumentation theory AT = (AS,K), where AS = (L,−,R, n) and K = Kn ∪Kp, is
said to be well defined iff:
• AT is closed under transposition or closed under contraposition.
• ClRs(Kn) is consistent (in which case K is said to be axiom consistent).
• If A is restricted to be the set of c-consistent arguments, then A is c-classical.
That is to say, for any minimal c-inconsistent S ⊆ L and for any ϕ ∈ S, it holds
that S \{ϕ} ` −ϕ (i.e., amongst all arguments defined there exists a strict argument
with conclusion −ϕ with all premises taken from S \ {ϕ}).
• well formed if whenever ϕ is a contrary of ψ then:
− ψ /∈ Kn; and
− ψ is not the consequent of a strict rule.

• � is reasonable.

The property of transposition (and the alternative contraposition) has been dis-
cussed above. That the axiom premises are required to be consistent when closed
under strict rules is self-evident given that axiom premises represent indisputable in-
formation or axioms of a deductive logic. The c-classicality condition is only required
to hold when using ASPIC+ to reconstruct Tarskian logic, and in particular classical
logic approaches to argumentation, where A is restricted to arguments with consis-
tent premises. Intuitively, c-classicality says that for every minimally c-inconsistent
set of wff and any of its elements the remaining maximally c-consistent subset gives
rise to an argument against the element. The intuition underlying the well-formed
property should be apparent given the motivation for use of the contrary function
and preference independent attacks on contraries, as discussed in Section 2.3. We
now elaborate on the notion of reasonable preference orderings.
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Before doing so, we define the following notion of strict continuations of argu-
ments, which we define in a slightly different way than [Modgil and Prakken, 2013].
The new definition is arguably simpler but does not affect the proofs of Modgil and
Prakken. It identifies arguments that are formed by extending a set of arguments
with only strict inferences into a new argument, so that the new argument can only
be attacked on the arguments that it extends.

Definition 3.14 (Strict continuations). The set of strict continuations of a set of
arguments from A is the smallest set satisfying the following conditions:

1. Any argument A is a strict continuation of {A}.
2. If A1, . . . , An and S1, . . . , Sn are such that for each i ∈ {1, . . . , n}, Ai is a strict

continuation of Si and {Bn+1, . . . , Bm} is a (possibly empty) set of strict-and-
firm arguments, and Conc(A1), . . . , Conc(An), Conc(Bn+1), . . . , Conc(Bm)→ ϕ
is a strict rule in Rs, then A1, . . . , An, Bn+1, . . . , Bm → ϕ is a strict continu-
ation of S1 ∪ . . . ∪ Sn.

If argument A is a strict continuation of arguments {A1, . . . , An}, then A is a strict
argument over {Conc(A1), . . . , Conc(An)}.

Example 3.15. In Example 2.5 (see Figure 3) all arguments are strict continua-
tions of the singleton set containing themselves while A3 is a strict continuation of
{A1, A2} and C3 is a strict continuation of {C2}.

Definition 3.16 (Reasonable Argument Orderings). An argument ordering � is
reasonable iff:

1. i) ∀A,B, if A is strict and firm and B is plausible or defeasible, then B ≺ A;
ii) ∀A,B, if B is strict and firm then B ⊀ A;
iii) ∀A,A′, B such that A′ is a strict continuation of {A}, if A ⊀ B then
A′ ⊀ B, and if B ⊀ A then B ⊀ A′ (i.e., applying strict rules to a single argu-
ment’s conclusion and possibly adding new axiom premises does not weaken,
respectively strengthen, arguments).

2. Let {C1, . . . , Cn} be a finite subset of A, and for i = 1 . . . n, let C+\i be some
strict continuation of {C1, . . . , Ci−1, Ci+1, . . . , Cn}. Then it is not the case
that: ∀i, C+\i ≺ Ci.

A reasonable argument ordering essentially amounts to requiring that: argu-
ments that are both strict and firm are strictly preferred over all plausible or defea-
sible arguments, and no argument is strictly preferred to a strict and firm argument
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( 1i) and 1ii) ); the strength (and implied relative preference) of an argument is
determined exclusively by the defeasible rules and/or ordinary premises ( 1iii) ); the
preference ordering is acyclic (2).

Indeed, a strict relation / (on sets of ordinary premises or defeasible rules) results
in a preference ordering (under either weakest- or last-link) that is reasonable, if /
satisfies the following conditions:

Definition 3.17 (Inducing reasonable orderings). / is said to be reasonable inducing
if / is a strict partial ordering (irreflexive and transitive) such that:

for any kr ∈ {LastDefRules, DefRules, Premp}, for all arguments B1, . . . ,

Bn, A such that ⋃n
i=1 kr(Bi) � kr(A), it holds that for some i = 1 . . . n,

kr(Bi) / kr(A)

It can be shown that both /Eli and /Dem (recall Definition 3.4) are reasonable
inducing.

We are now in a position to state some important results proved in [Modgil and
Prakken, 2013]. Any (c)-structured argumentation framework satisfies the rational-
ity postulate of sub-argument closure. Moreover, if a (c-)structured argumentation
framework is well-defined then the postulates of strict closure and direct and indi-
rect consistency are also satisfied by the ASPIC+ framework as defined with the
contrary function in Section 2.3.

Theorem 3.18 (Sub-argument Closure). Let ∆ = (A, C,�) be a (c-)SAF and E
a complete extension of the AF corresponding to ∆. Then for all A ∈ E: if A′ ∈
Sub(A) then A′ ∈ E.

Theorem 3.19. Let ∆ = (A, C,�) be a well-formed (c-)SAF and E a complete
extension of the AF corresponding to ∆. Then

Closure under Strict Rules {Conc(A)|A ∈ E} = ClRs({Conc(A)|A ∈ E});

Direct consistency {Conc(A)|A ∈ E} is consistent;

Indirect consistency ClRs({Conc(A)|A ∈ E}) is consistent.

Finally, note that if no strict rules or axiom premises are included in the argu-
mentation theory, then the preference ordering need not be reasonable in order for
all four rationality postulates to be satisfied (indeed no assumptions as to the prop-
erties of the preference ordering are required in this case). Thus the requirement
that the defined (c-)SAF be well-defined does not apply.
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3.3.2 The work of Dung and Thang (2014) and Grooters (2014)

For the case without preferences and knowledge bases, [Dung and Thang, 2014] iden-
tify weaker conditions for satisfying the rationality postulates than those discussed
above. [Dung and Thang, 2014] formulate their results in terms of an adaptation
of [Amgoud and Besnard, 2013] abstract-logic approach to abstract argumentation
with abstract attack and support relations between arguments. After defining their
adaptation they apply it to what they call “rule-based systems”, which are a pair
of sets of strict and defeasible rules defined over a propositional literal language.
Since they adopt the ASPIC+ definitions of an argument and of defeat (which they
call ‘attack’) they thus effectively study a class of ASPIC+ instantiations with an
empty knowledge base and with no preferences. Below we summarise their def-
initions and results as holding for this class of ASPIC+ instantiations, adapting
fragments of [Grooters, 2014] and [Grooters and Prakken, 2016]. In doing so, we
implicitly assume a given ASPIC+ structured argumentation framework generated
by a rule-based instantiation in the sense of [Dung and Thang, 2014], which we will
call a ‘rule-based’ ASPIC+ SAF .

First, an argument A is a basic defeasible argument iff TopRule(A) ∈ Rd, and a
set X of arguments is called inconsistent if Conc(X) is indirectly inconsistent.
Definition 3.20 (Base of an argument). Let A be an argument and BA a finite set
of subarguments of A. BA is a base of A if
• Conc(A) ∈ ClRs(Conc(BA));

• For each argument C, C defeats A if and only if C defeats BA.
The following example shows the intuitive idea of a base.

Example 3.21. Let Rs = {c → d} and Rd = {⇒ a;⇒ b; a, b ⇒ c}. Then the
following arguments can be constructed: A1 :⇒ a, A2 :⇒ b, A3 : A1, A2 ⇒ c and
A4 : A3 → d. See Figure 4.

A4 can only be attacked on its subarguments A1, A2, or A3 because of the strict
top rule. Every argument that attacks A1 or A2 also attacks A3, so every argument
that attacks A4 also attacks A3. It is easy to see that every argument that attacks
A3 also attacks A4. Conc(A4) ⊆ ClRs(Conc(A3)), so {A3} is a base of A4. The same
kind of reasoning applies to the fact that the set {A1, A2, A3} is also a base of A4.
However note that the set {A1, A2} is not a base of A4, because A4 can be rebutted
(on A3) without A1 or A2 being attacked.
Definition 3.22 (Generation of arguments). An argument A is said to be generated
by a set of arguments S, if there is a base B of A such that B ⊆ Sub(S). The set of
all arguments generated by S is denoted by GN(S).
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Figure 4: Arguments of Example 3.21

[Dung and Thang, 2014] show that for every set of arguments S, Sub(S) ⊆
GN(S) and for every complete extension E, GN(E) = E. [Grooters, 2014] notes
that these results immediately imply that each rule-based ASPIC+ SAF satisfies
the closure under subarguments postulate, since for every complete extension E:
Sub(E) ⊆ GN(E) = E ([Dung and Thang, 2014] do not consider the subargument-
closure postulate).

Definition 3.23 (Compact). A rule-based ASPIC+ SAF is compact if for each set
of arguments S, GN(S) is closed under strict rules.

[Dung and Thang, 2014] show that each rule-based ASPIC+ SAF is compact
and that each compact rule-based ASPIC+ SAF satisfies strict closure, so each
rule-based ASPIC+ SAF satisfies the closure under strict rules postulate.

Definition 3.24 (Cohesive). A rule-based ASPIC+ SAF is cohesive if for each
inconsistent set of arguments S, GN(S) is conflicting (attacks itself).

Definition 3.25 (Self-contradiction axiom). A rule-based ASPIC+ SAF is said to
satisfy the self-contradiction axiom if for each minimal inconsistent set X ⊆ L:
¬X ⊆ ClRs(X) (where ¬X = {¬l | l ∈ L}).

[Dung and Thang, 2014] then show that each cohesive rule-based ASPIC+ SAF
satisfies the indirect-consistency postulate and, moreover, that each rule-based AS-
PIC+ SAF that satisfies the self-contradiction axiom is cohesive. Combining these
two results, it follows that each rule-based ASPIC+ SAF that satisfies the self-
contradiction axiom, also satisfies indirect consistency. This result generalises the
corresponding results discussed in the previous subsection, since satisfying the self-
contradiction axiom is a weaker notion than closure under transposition. First,
[Dung and Thang, 2014] prove that the latter implies the former in that each rule-
based ASPIC+ SAF that is closed under transposition satisfies the self-contradiction
axiom. They then give the following counterexample to the converse implication.
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Example 3.26. Let L = {a,¬a, b,¬b} and Rd = ∅ and Rs = {a → b} ∪ {x,¬x →
y | x ∈ {a, b} and y ∈ L}. This system satisfies the self-contradiction axiom but is
not closed under transposition.

It is worth noting that [Grooters, 2014] generalised all these results to the case
with arbitrary logical languages with symmetric negation, c-consistent nonempty
knowledge bases and reasonable argument orderings, and for both SAF s and for c-
SAF s. Moreover, she did so alternatively for closure under transposition and closure
under contraposition. In doing so, it was shown that the following weaker version
of the self-contradiction axiom suffices:

Definition 3.27 (Weak self-contradiction axiom). A rule-based ASPIC+ (c-)SAF
is said to satisfy the weak self-contradiction axiom if for each minimal inconsistent
set X ⊆ L there is a σ ∈ X such that ¬σ ∈ ClRs(X).

3.4 On the need for the various elements of ASPIC+

ASPIC+ as a general framework is quite expressive. The question therefore arises
whether all these elements are really needed.

3.4.1 The need for knowledge bases

The ASPIC system as presented in [Caminada and Amgoud, 2007] did not have
knowledge bases. Instead, certain and uncertain premises were encoded as strict
rules → ϕ and defeasible rules ⇒ ϕ. Others, such as [Dung and Thang, 2014], [Li
and Parsons, 2015] and [Dung, 2016] also adopt this idea. Yet there are good reasons
to retain knowledge bases. To start with, the distinction between knowledge (or be-
liefs) and inference rules is a natural one, widely adopted in logic. Furthermore, this
distinction allows a systematic study of encodings of logical consequence notions in
the set of strict rules, as we will see below. We therefore conclude that although
dispensing with knowledge bases might have practical advantages in specific appli-
cations, a general theory of argumentation-based inference should retain the formal
distinction between knowledge and inference rules.

3.4.2 The need for strict rules and axiom premises

[Li and Parsons, 2015] show that every ASPIC+ SAF with a weakest-link ordering
that satisfies the rationality postulates can be translated into a SAF with no strict
rules and no axiom premises and that (for all of [Dung, 1995]’s semantics) validates
exactly the same conclusions as the original SAF. Their basic idea is that each strict
rule is translated to a corresponding defeasible rule and each axiom premise to an
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ordinary premise, and the argument ordering is then extended so as to give the new
elements resulting from the translations of strict rules or axiom premises, precedence
over all conflicting elements. While this result is theoretically interesting, we still
believe that the distinction between strict and defeasible inference rules is a natural
one and is philosophically grounded. For example, the observation that the inclusion
of strict rules allows a systematic study of encodings of logical consequence notions
also applies here. We also believe that the distinction between disputable (ordinary)
and undisputable (axiom) premises is a practically useful one. For these reasons we
claim that a general framework for structured argumentation should leave room for
these distinctions.

3.4.3 The need for preferences

In the context of ABA, [Kowalski and Toni, 1996] proposed a way to encode pref-
erences with a specific use of assumptions in strict rules with the effect that if
a preferred rule applies, the assumption in a non-preferred conflicting rule is at-
tacked. The same can in fact be done with defeasible rules. However, [Kowalski and
Toni, 1996]’s proposal does not cover any of the argument orderings discussed in
this article. Outside of argumentation, a systematic treatment for [Brewka, 1994b;
Brewka, 1994a]’s prioritised default logic was given by [Delgrande and Schaub, 2000],
who showed that prioritised default theories can be translated into equivalent ordi-
nary default theories. In Section 4.5 we will discuss the relation between prioritised
default logic and ASPIC+.

In general, the question as to whether ASPIC+ argument orderings can be en-
coded in ASPIC+ rule sets or knowledge bases is still an open question. We con-
jecture that such translations may be very hard to give for argument orderings that
depend on global properties of an argument, such as weakest-link orderings.

3.4.4 The need for defeasible rules

Perhaps the most controversial issue is whether defeasible inference rules are needed.
In Section 2.1 we illustrated with an informal example that there are three ways to
attack an argument: on its premises, on its defeasible inferences, and on the con-
clusions of its defeasible inferences. In Section 2.2.2 we saw that ASPIC+ explicitly
allows all three forms of attack. However, some would argue that the second and
third type of attacks can be simulated using only deductive rules (specifically the
deductive rules of classical logic) by augmenting the antecedents of these rules with
normality premises. For example, with regard to the second type of attack, could
we in our example of Section 2.1 not say that our argument claiming that John was
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in Holland Park that morning since we saw him there has an implicit premise our
senses functioned normally, and that the argument that John was in Amsterdam
that morning in fact attacks this implicit premise, rather than its claim, thus reduc-
ing attacks on conclusions to attacks on premises? With regard to the third type of
attack, could we not say that instead of attacking the defeasible inference step from
Jan’s testimony to the claim that John was in Amsterdam, we could model this step
as deductive, and then add the premise that normally witnesses speak the truth,
and then direct the attack at this premise? In other words, can we reduce attacks
on inferences to attacks on premises? These informal arguments have some formal
backing since, as we will discuss in more detail in Section 5.2, [Dung and Thang,
2014] have shown that defeasible inference rules can in ASPIC+ be reduced to strict
rules.

In answer to these questions, we first claim that there is some merit in modelling
the everyday practice of ‘jumping to defeasible conclusions’ and of considering argu-
ments for contradictory conclusions. This is especially important given that one of
the argumentation paradigm’s key strengths is its characterisation of formal logical
modes of reasoning in a way that corresponds with human modes of reasoning and
debate.

We next note that some have argued that such deductive simulations are prone
to yielding counterintuitive results. To illustrate, consider a instantiation of AS-
PIC+ with no defeasible rules and in which the strict rules correspond to classical
propositional logic as defined in Section 3.1.2, and assume that natural-language gen-
eralisations ‘If P then normally Q’ are formalised as material implications P ⊃ Q in
Kp. The idea is that since P ⊃ Q is an ordinary premise, its use as a premise can be
undermined in exceptional cases. Observe that by classical reasoning we then have
a strict argument for ¬Q ⊃ ¬P . Some say that this is problematic. Consider the
following example: ‘This alarm in this building usually does not give false alarms’,
so (strictly) ‘false alarms in this building are usually not given by this alarm’. This
strikes some as counterintuitive, since the first generalisation is consistent with the
situation that this alarm is the only one in the building that gives false alarms, so
the contraposition of ‘If P then normally Q’ cannot be deductively valid.

A more refined classical approach is to give the material implication an extra
normality condition N , which informally reads as ‘everything is normal as regards
P implying Q’, and which is also put in Kp. The idea then is that exceptional cases
give rise to underminers of N . However, (P ∧N) ⊃ Q also deductively contraposes,
namely, as (¬Q ∧N) ⊃ ¬P , so we still have the controversial deductive validity of
contraposition for generalisations. In the false-alarm example the contraposition of
the rule with the added normality condition would read: ‘any false alarm in this
building which is usual with respect to false alarms in this building cannot be this
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alarm’, which is clearly not deductively entailed by the initial generalisation given
that it is consistent with the situation that this alarm is the only one in the building
that gives false alarms.

One way to argue why classical simulations may give counter-intuitive results
is to recall that a number of researchers provide statistical semantics for defeasible
inference rules. These semantics regard a defeasible rule of the form P ⇒ Q as a
qualitative approximation of the statement that the conditional probability of Q,
given P , is high. The laws of probability theory then tell us that this does not
entail that the conditional probability of ¬P , given ¬Q, is high. The problem with
the classical-logic approach is then that it conflates this distinction by turning the
conditional probability of Q given P into the unconditional probability of P ⊃ Q,
which then has to be equal to the unconditional probability of ¬Q ⊃ ¬P .

So far we have argued that contrapositive inferences with defeasible conditionals
cannot be deductively valid (for a more detailed argument see [Modgil and Prakken,
2014, Section 4.5]). One way to respect this is to formalise defeasible natural-
language conditionals as domain-specific defeasible inference rules in ASPIC+ (see
Section 3.1.3 above and in more detail [Modgil and Prakken, 2014]). However,
this makes it hard to capture some logical properties of defeasible conditionals.
For example, it might be argued that modus tollens and contraposition, although
deductively invalid, are still defeasibly valid. For instance, in crime investigations
the police often reason: if this person was at the crime, then we must be able to
find his DNA at the crime scene; we have not been able to find his DNA at the
crime scene, so presumably he was not at the crime scene. This seems a perfectly
rational way of reasoning, provided that the modus-tollens inference is regarded
as defeasible. Perhaps this can be captured by formalising generalisations with a
defeasible object level connective ;, as discussed above in Section 3.1.3 and by
adding the appropriate strict and defeasible inference rules for ; to Rs and Rd.
For example, defeasible modus tollens could be added as follows:

¬ψ,ϕ; ψ ⇒ ¬ϕ

However, doing so is not straightforward, since the above encoding of the defeasi-
ble modus pollens principle is in the form of an inference rule used in construction
of ASPIC+ arguments, while in contrast, the current nonmonotonic logics for de-
feasible conditionals model such principles at the level of the consequence relation
(which in ASPIC+ is defined in terms of the outcome of argument evaluation; cf.
Definition 2.18 above). This suggests the following topic for future research: how to
instantiate the sets of strict and defeasible rules in ASPIC+ in such a way that the
semantic insights on defeasible conditionals obtained in other areas of nonmonotonic
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logic are respected?
So far our discussion has focused on argumentation based reasoning as it applies

to beliefs (i.e., reasoning about what is the case, often called epistemic reasoning by
philosophers). However argumentation is often about what to do, prefer or value
(what philosophers often call practical reasoning). Here too it has been argued on
philosophical grounds that reasons for doing, preferring or valuing cannot be ex-
pressed in classical logic since they do not contrapose. This view can of course not
be based on a statistical semantics, since statistics only applies to epistemic reason-
ing. Space limitations prevent us from giving more details about these philosophical
arguments.

Finally, as further discussed in Section 4.1, [Dung and Thang, 2014] show for
the case without preferences and knowledge bases that ASPIC+ defeasible rules can
be equivalently translated into theories of assumption-based argumentation (ABA).
Since, as also discussed further in Section 4.1, ABA can be reconstructed as a special
case of ASPIC+ with no knowledge bases, defeasible rules or preferences, [Dung
and Thang, 2014]’s result implies that the defeasible rules of ASPIC+ SAFs with no
knowledge bases or preferences can be translated into strict ASPIC+ rules.

3.4.5 The value of translation results

Translation results like the ones of [Dung and Thang, 2014] and [Li and Parsons,
2015] on translating one type of rule into the other, and possible future results on
encoding preferences in rules, are theoretically interesting and may have practical
benefits. For example, [Dung and Thang, 2014]’s result makes it possible to use
ABA tools for implementing fragments of ASPIC+ without preferences. However,
such translation results should be interpreted with care. Logic is full of such results
and they do not necessarily mean that the translated system is less useful or less
interesting. For example, nobody would say that the fact that all connectives of
propositional logic can be translated into a single one means that presentations of
propositional logic with the usual five or six connectives are unnecessarily compli-
cated; on the contrary, versions with just one connective would lead to unnecessarily
complex knowledge representations. Likewise, versions of ASPIC+ with both strict
and defeasible rules and with preferences may lead to more compact and more nat-
ural representations. Moreover, nobody would say that translations of modal logic
into first-order predicate logic show that modal logic is superfluous. On the contrary,
modal logics often provide systematic treatments of modalities in ways that their
first-order translations do not. Likewise, ASPIC+ provides a theory of reasoning
with a combination of strict and defeasible rules and allows a general study of ar-
gumentation with preferences, something which formalisms with only strict or only
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defeasible rules or formalisms without preferences do not provide.

3.5 Argument schemes and critical questions
We concluded Section 3.1.3 by remarking on the use of defeasible inference rules as
principles of cognition in John Pollock’s work and as argument schemes in informal
argumentation theory. We now illustrate how both approaches can be formalised in
ASPIC+ and how strict inference rules can also be accommodated when doing so.

John Pollock formalised defeasible rules for reasoning patterns involving per-
ception, memory, induction, temporal persistence and the statistical syllogism, as
well as undercutters for these reasons. In ASPIC+ his principles of perception and
memory can be written as follows:

dp(x, ϕ): Sees(x, ϕ)⇒ ϕ
dm(x, ϕ): Recalls(x, ϕ)⇒ ϕ

In fact, these defeasible inference rules are schemes for all their ground instances
(that is, for any instance where x and ϕ are replaced by ground terms denoting a
specific perceiving agent and a specific perceived state of affairs). Therefore, their
names dp(x, ϕ) and dm(x, ϕ) as assigned by the n function are in fact also schemes
for names. A proper name is obtained by instantiating these variables by the same
ground terms as used to instantiate these variables in the scheme. Thus it becomes
possible to formulate undercutters for one instance of the scheme (say for Jan who
saw John in Amsterdam) while leaving another instance unattacked (say for Bob
who saw John in Holland Park). Note, finally, that these schemes assume a naming
convention for formulas in a first-order language, since ϕ is a term in the antecedent
while it is a well-formed formula in the consequent. In the remainder we will leave
this naming convention implicit.

Now undercutters for dp state circumstances in which perceptions are unreliable,
while undercutters of dm state conditions under which memories may be flawed.
For example, a well-known cause of false memories of events is that the memory is
distorted by, for instance, seeing pictures in the newspaper or watching a TV pro-
gramme about the remembered event. A general undercutter for distorted memories
could be

um(x, ϕ): DistortedMemory(x, ϕ)⇒ ¬dm(x, ϕ)

combined with information such as

∀x, ϕ(SeesPicturesAbout(x, ϕ) ⊃ DistortedMemory(x, ϕ))
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Pollock’s epistemic inference schemes are in fact a subspecies of argument
schemes. The notion of an argument scheme was developed in philosophy and is
currently an important topic in the computational study of argumentation. Argu-
ment schemes are stereotypical non-deductive patterns of reasoning, consisting of
a set of premises and a conclusion that is presumed to follow from them. Uses of
argument schemes are evaluated in terms of critical questions specific to the scheme.
An example of an epistemic argument scheme is the scheme from the position to
know [Walton, 1996, pp. 61–63]:

A is in the position to know whether P is true
A asserts that P is true
P is true

Walton gives this scheme three critical questions:

1. Is A in the position to know whether P is true?
2. Did A assert that P is true?
3. Is A an honest (trustworty, reliable) source?

A natural way to formalise reasoning with argument schemes is to regard them as
defeasible inference rules and to regard critical questions as pointers to counterargu-
ments. For example, in the scheme from the position to know, questions (1) and (2)
point to underminers (of, respectively, the first and second premise) while question
(3) points to undercutters (the exception that the person is for some reason not
credible).

Accordingly, we formalise the position to know scheme and its undercutter as
follows:

dw(x, ϕ): PositionToKnow(x, ϕ), Says(x, ϕ)⇒ ϕ
uw(x, ϕ): ¬Credible(x)⇒ ¬dw(x, ϕ)

We will now illustrate the modelling of both Pollock’s defeasible reasons and Wal-
ton’s argument schemes with our example from Section 2.1, focusing on a specific
class of persons who are in the position to know, namely, witnesses. In fact, witnesses
always report about what they observed in the past, so they will say something like
“I remember that I saw that John was in Holland Park”. Thus an appeal to a wit-
ness testimony involves the use of three schemes: first the position to know scheme
is used to infer that the witness indeed remembers that he saw that John was in
Holland Park, then the memory scheme is used to infer that he indeed saw that
John was in Holland Park, and finally, the perception scheme is used to infer that
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John was indeed in Holland Park. Now recall that John was a suspect in a robbery
in Holland Park, that Jan testified that he saw John in Amsterdam on the same
morning, and that Jan is a friend of John. Suppose now we also receive information
that Bob read newspaper reports about the robbery in which a picture of John was
shown. One way to model this in ASPIC+ is as follows.

The knowledge base consists of the following facts (since we don’t want to dispute
them, we put them in Kn):

f1: PositionToKnow(Bob, Recalls(Bob,
Sees(Bob, InHollandPark(John))))

f2: Says(Bob, Recalls(Bob, Sees(Bob, InHollandPark(John))))
f3: SeesPicturesAbout(Bob, Sees(Bob, InHollandPark(John)))
f4: ∀x, ϕ.(SeesPicturesAbout(x, ϕ) ⊃ DistortedMemory(x, ϕ))
f5: ∀x.InHollandPark(x) ⊃ InLondon(x)
f6: PositionToKnow(Jan, Recalls(Jan, Sees(Jan, InAmsterdam(John))))
f7: Says(Jan, Recalls(Jan, Sees(Jan, InAmsterdam(John))))
f8: Friends(Jan, John)
f9: SuspectedRobber(John)
f10: ∀x, y, ϕ.Friends(x, y) ∧ SuspectedRobber(y)∧

InvolvedIn(y, ϕ) ⊃ ¬Credible(x)
f11: InvolvedIn(John, Recalls(Jan, Sees(Jan, InAmsterdam(John))))
f12: ∀x¬(InAmsterdam(x) ∧ InLondon(x))

Combining this with the schemes from perception, memory and position to know,
we obtain the following arguments (for reasons of space we don’t list separate lines
for arguments that just take an item from K).

A3: f1, f2 ⇒dw Recalls(Bob, Sees(Bob, InHollandPark(John)))
A4: A3 ⇒dm Sees(Bob, InHollandPark(John))
A5: A4 ⇒dp InHollandPark(John)
A7: A5, f5 → InLondon(John)

This argument is undercut (on A4) by the following argument applying the under-
cutter for the memory scheme:

B3: f3, f4 → DistortedMemory(Bob, Sees(Bob, InHollandPark(John)))
B4: B3 ⇒um ¬dm(Bob, Sees(Bob, InHollandPark(John)))

Moreover, A7 is rebutted (on A5) by the following argument:
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C3: f6, f7 ⇒dw Recalls(Jan, Sees(Jan, InAmsterdam(John)))
C4: C3 ⇒dm Sees(Jan, InAmsterdam(John))
C5: C4 ⇒dp InAmsterdam(John)
C8: C5, f5, f12 → ¬InHollandPark(John)

This argument is also undercut, namely on C3, based on the undercutter of the
position to know scheme:

D4: f8, f9, f10, f11 → ¬Credible(Jan)
D5: D4 ⇒uw ¬dw(Jan, Recalls(Jan, Sees(Jan, InAmsterdam(John))))

Finally, C8 is rebutted on C5 by the following continuation of argument A7:

A8: A7, f5, f12 ⇒ ¬InAmsterdam(John)

A8 is in turn undercut by B4 (on A4) and rebutted by C8 (on A5).
Because of the two undercutting arguments, neither of the testimony arguments

are credulously or sceptically justified in any semantics. Let us now see what happens
if we do not have the two undercutters. Then we must apply preferences to the
rebutting attack of C8 on A5 and to the rebutting attack of A8 on C5. As it turns
out, exactly the same preferences have to be applied in both cases, namely, those
between the three defeasible-rule applications in the respective arguments. And this
is what we intuitively want.

Finally, we note that counterarguments based on critical questions of argument
schemes may themselves apply argument schemes. For example, we may believe that
Jan and John are friends because another witness told us so. Or we may believe that
Holland Park is in London because a London taxi driver told us so (an application
of the so-called expert testimony scheme).

4 Relationship with other Argumentation Formalisms
As shown in various publications on ASPIC+, its generality allows the reconstruction
of various other systems and frameworks as special cases of ASPIC+. In this section
we review this work in some detail. We also discuss the relationship of ASPIC+ with
various developments of abstract argumentation frameworks.

4.1 Assumption-based argumentation
Assumption-based argumentation (ABA) emerged from attempts to give an
argumentation-theoretic semantics to logic-programming’s negation as failure, and
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has developed into a general framework for nonmonotonic logics [Bondarenko et al.,
1993; Bondarenko et al., 1997; Toni, 2014]. ABA assumes a ‘deductive system’,
consisting of a set of inference rules defined over some logical language. Given a set
of so-called ‘assumptions’ formulated in the logical language, arguments are then
deductions of claims using rules and supported by sets of assumptions. In gen-
eral, ABA leaves both the logical language and set of inference rules unspecified, so
that like ASPIC+, it is an abstract framework for structured argumentation. How-
ever, unlike ASPIC+, ABA only allows attacks on an argument’s assumptions, so
that ABA’s rules are effectively strict inference rules. In order to express conflicts
between arguments, ABA makes a minimum assumption on the logical language,
namely, that each assumption has a contrary. That b is a contrary of a, written as
b = a, informally means that b contradicts a. An argument using an assumption
a is then attacked by any argument for conclusion a. In [Bondarenko et al., 1997]
an argumentation-theoretic semantics is then given which is very much like [Dung,
1995]’s abstract approach, except that [Bondarenko et al., 1997] considers sets of
assumptions rather than sets of arguments. However, [Dung et al., 2007] showed
that an equivalent fully argument-based formulation can be given.

In this section we first discuss how ABA can be reconstructed in ASPIC+ and
then how some instantiations of ASPIC+ can be reconstructed in ABA.

4.1.1 Reconstructing ABA in ASPIC+

Above we remarked that [Bondarenko et al., 1997]’s version of ABA is strictly speak-
ing not an instantiation of [Dung, 1995]’s abstract argumentation frameworks but
that [Dung et al., 2007] gave an equivalent formulation of ABA in such frameworks.
[Prakken, 2010] showed that this reconstructed version of ABA can in turn be re-
constructed as a special case of ASPIC+ extended with possibly non-symmetric
negation (see Section 2.3 above). In ASPIC+ as defined by [Prakken, 2010], the
ordinary premises were further divided into ‘really’ ordinary premises and assump-
tions and the assumption premises were used to model ABA assumptions. However,
as observed by [Modgil and Prakken, 2013, Section 3.1], one can do without such
specialised premises and model assumptions as ordinary premises. ABA can then
be reconstructed as the special case of ASPIC+ with empty sets of defeasible rules
and axiom premises and no preferences.

First the main definitions of ABA are recalled.

Definition 4.1 (Def. 2.3 of [Dung et al., 2007]). A deductive system is a pair (L,R)
where

• L is a formal language consisting of countably many sentences, and
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• R is a countable set of inference rules of the form α1, . . . , αn → α.13 α ∈ L
is called the conclusion of the inference rule, α1, . . . , αn ∈ L are called the
premises of the inference rule and n ≥ 0.

Definition 4.2 (Def. 2.5 of [Dung et al., 2007]). An assumption-based argumenta-
tion framework (ABF) is a tuple (L,R,A,−) where

• (L,R) is a deductive system.

• A ⊆ L, A 6= ∅. A is the set of assumptions.

• If α ∈ A, then there is no inference rule of the form α1, . . . , αn → α ∈ R.

• − is a total mapping from A into L. α is the contrary of α.

ABA arguments are then defined in terms of deductions. To remain as close
as possible to ASPIC+, we here give the tree-based definition of [Toni, 2014] (with
some minor stylistic rephrasings). The proofs of [Prakken, 2010] instead use [Dung
et al., 2007]’s sequence-based definition, which essentially presents one particular
order in which a tree-style argument can be constructed.

Definition 4.3 ([Toni, 2014]). A deduction for a conclusion α supported by premises
S ⊆ L is a finite tree with nodes labelled by sentences in L or by τ14. Each leaf is
either τ or a sentence in S. each non-leave α′ has, as children, the elements of the
body of some rule in R with head α′.

Then an assumption-based argument is defined as follows.

Definition 4.4 (Def. 2.6 of [Dung et al., 2007]). An argument for a conclusion
on the basis of an ABF is a deduction of that conclusion whose premises are all
assumptions (in A).

As for notation, the existence of an argument for a conclusion α supported
by a set of assumptions A is denoted by A ` α, or by A `ABF α if it has to
be distinguished from the existence of a strict argument according to Definition 2.4
with the same premises and conclusion; the latter will below be denoted by A `AT α.

Finally, Dung et al.’s notion of argument attack is defined as follows.

Definition 4.5 (Def. 2.7 of [Dung et al., 2007]).

• An argument A ` α attacks an argument B ` β if and only if A ` α attacks
an assumption in B;

13In [Dung et al., 2007] the arrows are from right to left.
14τ represents ‘true’ and stands for the empty body of rules.
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• an argument A ` α attacks an assumption β if and only if α is the contrary β
of β.

The ASPIC+ argumentation theory corresponding to an assumption-based ar-
gumentation framework is then in [Prakken, 2010] defined as follows.15

Definition 4.6 (Mapping ABFs to ATs). Given an assumption-based argumenta-
tion framework ABF = (LABF ,RABF ,A,−ABF ), the corresponding argumentation
theory ATABF = (AS ,K), where AS = (LAT ,−AT ,RAT , n) and K = Kn ∪ Kp, is
defined as follows:

• LAT = LABF
• ϕ ∈ ψAT iff ϕ = ψABF

• RAT = Rs = RABF
• Kn = ∅

• Kp = A

• n is undefined.

Then it can be shown that for all ABFs: there exists an argument A `ABF α if
and only if there exists an argument A `AT α. From this it follows for all ABFs and
for every argument A `ABF α and every argument A `AT α: A `ABF α is attacked
by an argument B `ABF β if and only if A `AT α is defeated by an argument
B `AT β. Then the main correspondence result can be proven:

Theorem 4.7 (Thm. 8.8 of [Prakken, 2010]). For all ABFs, and for any semantics
S subsumed by complete semantics and any set E:

1. if E is an S-extension of ABF then EAT is an S-extension of AT , where
EAT = {A `AT α | A `ABF α ∈ E};

2. if E is an S-extension of AT then EABF is an S-extension of ABF , where
EABF = {A `ABF α | A `AT α ∈ E}.

15In fact, in [Prakken, 2010] the ABA assumptions were translated into ASPIC + assumption-type
premises, which in [Prakken, 2010] was an additional category of premises. However, as remarked
by [Modgil and Prakken, 2013], the translation also succeeds when defined as below.
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Theorem 4.7 says that there is a one-to-one correspondence between the exten-
sions of an ABF and those of its corresponding AT . Note also that the above results
carry over to [Verheij, 2003]’s DefLog argumentation system since, as observed by
Verheij, DefLog can be translated into ABA.

One virtue of this reconstruction of ABA in ASPIC+ is that one can then iden-
tify conditions under which ABA satisfies rationality postulates (by requiring, for
instance, that the strict rules are closed under transposition).

4.1.2 Reconstructing instantiations of ASPIC+ in ABA

[Dung and Thang, 2014] have shown that their rule-based systems, which are a
special case of ASPIC+ with no knowledge base and no preferences, can be trans-
lated into ABA instantiations. They do this by translating every defeasible rule
p1, . . . , pn ⇒ q as a strict rule di, p1, . . . , pn, not¬q → q, where
• di = n(p1, . . . , pn ⇒ q) in ASPIC+;

• di, not¬q ∈ A (i.e., they are ABA assumptions);

• q = not¬q and for all ϕ: ϕ = ¬ϕ and ¬ϕ = ϕ

[Dung and Thang, 2014] then show (on the assumption that ASPIC+ rule names do
not occur as antecedents or consequents in ASPIC+ rules), that for each semantics
subsumed by complete semantics the resulting ABA framework validates the same
conclusions as the original ASPIC+ SAF . Generalising this result to cases with
preferences is still an open question.

4.2 Tarskian abstract logics and classical-logic argumentation
[Amgoud and Besnard, 2013] present an abstract approach to defining the structure
of arguments and attacks, based on Tarski’s notion of an abstract logic that only
assumes some unspecified logical language L, and a consequence operator over this
language, which to each subset of L assigns a subset of L (its logical consequences).
Tarski then assumed a number of constraints on Cn (see [Amgoud and Besnard,
2013] for a more detailed account of these constraints). Finally, Tarski defined a set
S ⊆ L as consistent iff Cn(S) 6= L. In [Amgoud and Besnard, 2013], an argument
is a pair (S, p) where S ⊆ L is consistent, p ∈ Cn(S) and S is a minimal (under
set inclusion) set satisfying these conditions. Then (S, p) attacks (T, q) iff {p, q′} is
inconsistent for some q′ ∈ T .

[Modgil and Prakken, 2013, Section 5.2] show that ASPIC+ can be used to
reconstruct, and extend with preferences, the Tarskian logic approach. For the
strict rules, they choose (for any finite S ⊆ L):
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S → p ∈ Rs iff p ∈ Cn(S)

Then given any Σ ⊆ L, they let Kp = Σ, Rd = ∅. Also, ∀φ ∈ L, φ has a con-
tradictory ψ, and if φ = −ψ then Cn({φ, ψ}) = L and if Cn({φ, ψ}) = L then
∃φ′ ∈ Cn({φ}) s.t. φ′ = −ψ. They then show that given a reasonable argument
preference ordering � (possibly defined on the basis of an ordering ≤′ over Σ), the
c-SAF is well defined. Hence one obtains an account of [Amgoud and Besnard,
2013]’s Tarskian logic abstract argumentation approach that is extended with pref-
erences and is well behaved with respect to rationality postulates. Two issues to
note are that the reconstruction employs ASPIC+ undermining attacks, which dif-
fer from the abstract logic attacks defined above which rely on showing that the
claim and attacked premises are inconsistent. However, [Modgil and Prakken, 2013]
show that the use of ASPIC+ attacks does not change the outcome in the sense
that the complete (and hence grounded, preferred and stable) extensions remain
the same irrespective of whether we use the abstract logic notion of an attack in-
stead. Moreover, ASPIC+ imposes no subset minimality conditions on the premises
of arguments. However, [Modgil and Prakken, 2013] show that if subset minimal
arguments are not strengthened by adding ‘irrelevant’ premises – i.e., if A is subset
minimal and A ⊀ B then A′ ⊀ B where Prem(A′) ⊃ Prem(A) – then the conclusions
of arguments in complete extensions remains the same whether or not we exclude
arguments that are not subset minimal.

[Modgil and Prakken, 2013] then applied this to a reconstruction of so-called clas-
sical argumentation [Cayrol, 1995; Besnard and Hunter, 2001; Besnard and Hunter,
2008; Gorogiannis and Hunter, 2011], which formalises arguments as minimal clas-
sical consequences from consistent and finite premise sets in standard propositional
or first-order logic. In particular, [Gorogiannis and Hunter, 2011] study classical
logic instantiations of abstract argumentation frameworks. [Modgil and Prakken,
2013] reconstruct this as a specific instance of the above formulation of the Tarskian
abstract logic approach, with Cn the classical consequence operator (below denoted
as |=). This yields the following instantiation of ASPIC+:

Definition 4.8 (Classical argumentation with preferences reconstructed in
ASPIC+). Let L′ be a classical-logic language, Σ ⊆ L′ and ≤′ a partial preorder
on Σ. A classical-logic argumentation theory based on (L′,Σ,≤′) is a pair (AS,K)
such that AS is an argumentation system (L,−,R, n) where:

1. L = L′;

2. ϕ ∈ ψ iff ϕ = ¬ψ or ψ = ¬ϕ;

3. Rd = ∅, and for all finite S ⊆ L and p ∈ L, S → p ∈ Rs iff S |= p.
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K is a knowledge base such that Kn = ∅ and Kp = Σ.
(A, C,�) is the c-SAF based on (AS,K) as defined in Definition 2.14 and where �
is defined in terms of ≤′ as in Section 3.2.

[Gorogiannis and Hunter, 2011] define seven attack relations and prove that
only the following two ensure satisfaction of the rationality postulate of indirect
consistency:

• Y directly undercuts X if Conc(Y ) ≡ ¬p for some p ∈ Prem(X)

• Y directly defeats X if Conc(Y ) `c ¬p for some p ∈ Prem(X)

Since classical logic can be specified as a Tarskian abstract logic, [Modgil and
Prakken, 2013] can prove via their reconstruction of abstract-logic argumentation,
that the ASPIC+ notion of undermining attacks is equivalent to direct undercuts
and defeats in that the complete extensions generated are the same. Moreover,
from the results described above in Section 3.2 it follows that their extension of
classical-logic argumentation with preferences satisfies the rationality postulates.
Indeed, [Modgil and Prakken, 2013] argue that the extension to include preferences
is needed if classical-logic argumentation is to be effectively used in arbitrating
amongst conflicts, since as shown in ([Cayrol, 1995; Gorogiannis and Hunter, 2011;
Amgoud and Besnard, 2013]), there is a one-to-one correspondence between the
(premises of arguments in in) preferred/stable extensions of abstract argumentation
frameworks instantiated by a classical-logic knowledge base and the maximal consis-
tent subsets of the knowledge base. This is to be expected, given the monotonicity
of classical logic (and thus the absence of logical mechanisms to withdraw previously
derivable contradictory inferences).

4.3 Carneades
As shown by [Van Gijzel and Prakken, 2011; Van Gijzel and Prakken, 2012], the
Carneades system of [Gordon et al., 2007; Gordon and Walton, 2009b] can be recon-
structed as a special case of basic ASPIC+ with a generalised contrariness relation.
A Carneades argument is a triple 〈P,E, c〉 where P is a set of premises, E a set of
exceptions and c the conclusion, which is either pro or con a statement s. Carneades
does not assume that premises and conclusions are connected by inference rules.
Also, all arguments are elementary, that is, they contain a single inference step; they
are combined in recursive definitions of applicability of an argument and acceptabil-
ity of its conclusion. In essence, an argument is applicable if (1) all its premises are
given as facts or else are acceptable conclusions of other arguments, and (2) none
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of its exceptions are given as facts or as acceptable conclusions of other arguments.
A statement is acceptable if it satisfies its proof standard. Facts are stated by an
audience, which also provides numerical weights for each argument plus thresholds
for argument weights and differences in argument weights. In the publications on
Carneades five proof standards are defined. One is preponderance of the evidence:

Statement p satisfies preponderance of the evidence iff there exists at
least one applicable argument pro p for which the weight is greater than
the weight of any applicable argument con p.

In the ASPIC+ reconstruction of Carneades the facts are reconstructed as elements
of Kn, while the Carneades notions of applicability and acceptability are encoded in
the ASPIC+ defeasible inference rules. For every Carneades argument a = 〈P,E, c〉,
a defeasible rule P ⇒appa arga is added, saying that if P then a is applicable16.
Moreover, a defeasible rule arga ⇒acca c is added, saying that if a is applicable, its
conclusion is acceptable. Here, appa and acca are the respective names of these rules
in L according to the naming convention n. Thus a Carneades argument 〈P,E, c〉
pro statement s induces an ASPIC+ argument:

A1: P
A2: A1 ⇒appa arga
A3: A2 ⇒acca s

It should be noted that effectively, a Carneades argument is analogous to a defeasible
inference rule, since the representation (P,E, c) does not assume that the facts P
are given as part of the argument; rather it is the applicability of the argument that
depends on facts or arguments for P . This justifies the translation of Carneades
arguments into ASPIC+ defeasible rules.

Next, for each exception e ∈ E, a rule e ⇒ ¬appa is added to Rd and ¬appa =
appa is added to the contrariness relation. So such rules can be used to undercut
the ASPIC+ version of an argument on its first step. Moreover, for each argument
b with a conclusion c′ that conflicts with s, we have that argb = acca if this is
dictated by the proof standard for s. For example, if the standard for s is prepon-
derance of the evidence, then argb = acca just in case weight(a) ≤ weight(b). Thus
the Carneades proof standards and argument weights are not incorporated in the
ASPIC+ argument ordering but in the ASPIC+ contrariness relation.

For example, a Carneades argument b = 〈P ′, E′, c′〉 where c′ is con s, induces an
ASPIC+ argument:

16The idea to make the applicability step explicit by means of an argument node was adapted
from [Brewka and Gordon, 2010].
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B1: P ′

B2: B1 ⇒appb argb
B3: B2 ⇒accb ¬s

Then A3 rebuts B3 if weight(b) < weight(a), B3 rebuts A3 if weight(a) < weight(b)
and both rebut each other if weight(a) = weight(b). Since in the ASPIC+ recon-
struction all defeasible arguments are equally strong, all these rebutting attacks
succeed as defeat.

[Van Gijzel and Prakken, 2011; Van Gijzel and Prakken, 2012] then prove that
under this reconstruction, ASPIC+ SAFs corresponding to a Carneades theory al-
ways have a unique extension, which is the same in all of [Dung, 1995]’s semantics.
This perhaps surprising result is partly due to strong non-circularity assumptions
made in Carneades on its ‘inference graph’, which contains all constructible argu-
ments. [Van Gijzel and Prakken, 2011; Van Gijzel and Prakken, 2012] also prove
that the conclusions of the justified arguments in ASPIC+ correspond to the con-
clusions of the acceptable arguments in Carneades.

4.4 Defeasible Logic Programming
Defeasible logic programming (DeLP) is a logic-programming-based argumentation
system originating from (but not equivalent to) [Simari and Loui, 1992]. The main
publication on DeLP is [Garcia and Simari, 2004], which we will take as the ba-
sis for our discussion. Although DeLP is similar to ASPIC+, it cannot be fully
reconstructed as an instance. Elements of DeLP that instantiate ASPIC+ are a
predicate-logic literal language with ordinary negation, a set of indisputable facts,
two sets of strict and defeasible rules, and a binary argument ordering. DeLP argu-
ments can be reconstructed as ASPIC+ arguments with the additional constraint
that their sets of conclusions are consistent under application of strict rules in that
for no ϕ it holds that Conc(A) ` ϕ,¬ϕ.

DeLP’s definition of attack is similar but not equivalent to ASPIC+’s notion of
rebutting attack. Instead (and translated to ASPIC+ vocabulary), A attacks B at
B’s subargument B′ if Conc(A) ∪ Conc(B′) ` ϕ,¬ϕ for some wff ϕ. Note that this
allows an attack on a conclusion of a strict rule, but such an attack will never exist
without an attack on a previous defeasible step in the argument as well. Apart from
this difference, DeLP’s notion of defeat is defined as in ASPIC+: A defeats B if
A attacks B on B′ and A 6≺ B′. It remains to be investigated whether adopting
DeLP’s notion of rebutting attack in ASPIC+ would lead to different outcomes.

A main difference with ASPIC+ is that DeLP as defined in [Garcia and Simari,
2004] does not evaluate arguments by generating abstract argumentation frame-
works. Instead, DeLP’s notion of warrant is defined in a way that is similar to
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the argument game of grounded semantics [Prakken, 1999; Modgil and Caminada,
2009] but with some significant differences. Briefly, the argument game for grounded
semantics is between a proponent and an opponent of an argument A, where the
proponent begins with A and then the players take turns such that the opponent
defeats or strictly defeats the proponent’s previous argument while the proponent
strictly defeats the opponent’s previous argument; in addition, the proponent is not
allowed to repeat his own arguments. An argument A is justified if the proponent
has a winning strategy in a game starting with A. DeLP’s notion of warrant is
equivalent to this notion of justification but its game rules are different. First, if
one player weakly defeats the previous argument then the next player must strictly
defeat that argument, while if one player strictly defeats the previous argument then
the next player may either weakly or strictly defeat it. Second, no player may reuse
a subargument from one of its earlier moves.

It would be interesting to adopt the game rules of grounded semantics in DeLP’s
notion of warrant, which would then establish a clear link between DeLP and the
theory of abstract argumentation. Among other things, this would facilitate the
study of the satisfaction of rationality postulates in DeLP.

4.5 ASPIC+ characterisations of non-monotonic reasoning
formalisms

A key reason for the prominence of argumentation (in particular Dung’s theory of
abstract argumentation frameworks) in knowledge representation and reasoning, is
its characterisation of non-monotonic reasoning in terms of the dialectical exchange
of argument and counter-argument. Indeed, in [Dung, 1995], argumentation-based
characterisations of logic programming, Reiter’s [1980] Default Logic and Pollock’s
[1987] argumentation system are formalised. The theory thus provides foundations
for reasoning by individual computational and human agents, and distributed non-
monotonic reasoning (‘dialogue’) amongst agents.

ASPIC+ continues in this tradition, formalising logic programming instantia-
tions of abstract argumentation frameworks, whereby the defeasible rules are rules
in a logic program, the strict rules and axiom premises are empty, the preference
relation is empty, and (as described in Section 2.3) the ordinary premises are the
negation as failure (∼) assumptions in the antecedents of defeasible rules, and we
define the contrary function ∀α ∈ L: α ∈ ∼ α.

Brewka’s Preferred Subtheories [Brewka, 1989] can also be formalised as an in-
stance of ASPIC+’s formalisation of classical-logic argumentation (as outlined in
Section 4.2). The arguments and attacks are defined by a base Σ of propositional
classical wff equipped with a total ordering ≤′ which is used by the set compari-
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son /Eli to define weakest link preferences over arguments. One then obtains an
argumentation-based characterisation of non-monotonic inference defined by Pre-
ferred Subtheories. The latter starts with a stratification (Σ1, . . . ,Σn) of the totally
ordered Σ (α, β ∈ Σi iff α ≡′ β and α ∈ Σi, β ∈ Σj , i < j iff β ∈ Σ <′ α ∈ Σ). A ‘pre-
ferred subtheory’ (ps) is obtained by taking a maximal under set inclusion consistent
subset of Σ1, maximally extending this with a subset of Σ2, and so on. Multiple
individually consistent preferred subtheories may be constructed, and [Modgil and
Prakken, 2013] show that each ps corresponds to the premises of arguments in a
stable extension. Hence, α is classically entailed from a ps iff α is the conclusion
of an argument in a stable extension. Then α is a sceptical (credulous) Preferred
Subtheories inference iff α is entailed by all (respectively at least one) ps, iff α is
sceptically (credulously) justified under the stable semantics (as defined in Definition
2.18).

More recently, ASPIC+ has been used to provide an argumentative characteri-
sation of Brewka’s Prioritised Default Logic (PDL) [Brewka, 1994a]. PDL upgrades
[Reiter, 1980]’s Default Logic to include a strict partial ordering <D on a finite set
D of first order normal defaults of the form θ:φ

φ . Then given a set W of first order
formulae, and a linearisation <+ of <D, one iteratively applies the highest ordered
default whose antecedent is in the first order closure of the result obtained in the
previous iteration. Intuitively, one starts with the classical consequences E0 of W ,
and then adds the consequent of the highest ordered default whose antecedent is
contained in E0. Then closure under classical consequence obtains E1, to which one
adds the consequent of the highest ordered default whose antecedent is contained in
E1, and so on, until En+1 = En is the unique extension of (D,W,<). In [Young et
al., 2016], an ASPIC+ SAF is defined in which the contrary function is defined so
as to formalise classical negation, Rs characterises inference in first order classical
logic, the axiom premises Kn is defined asW (Kp = ∅), Rd = {θ ⇒ φ| θ:φ

φ ∈ D} (with
the naming function n undefined), and <D the ordering on Rd. A linear ‘structure
preference’ ordering <SP is defined, which modifies <D so as to account for the
dependency amongst rules in Rd (i.e., for any set of rules applicable given all rules
thus far applied, <SP picks out the <D maximal rule, and the process is repeated for
the set of rules that are subsequently applicable). Then the disjoint elitist ordering
– Γ�DEli Γ′ iff ∃r ∈ Γ \Γ′, ∀r′ ∈ Γ′ \Γ : r <SP r′ – is used to define an ordering over
arguments according to the weakest link principle. [Young et al., 2016] then show
that the single extension E of (D,W,<) corresponds to the conclusions of arguments
in the (provably) unique stable extension of the corresponding ASPIC+ SAF.
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4.6 The relationship of ASPIC+ with developments of the theory
of abstract argumentation frameworks

ASPIC+ is designed to generate abstract argumentation frameworks in the sense of
[Dung, 1995]. Over the years, various extensions of abstract argumentation frame-
works with further elements have been proposed, such as with preferences ([Amgoud
and Cayrol, 1998]’s preference-based argumentation frameworks or PAFs), values
([Bench-Capon, 2003]’s value-based argumentation frameworks or V AFs), attacks
on attacks ([Modgil, 2009]’s extended argumentation frameworks or EAFs) and
abstract support relations between arguments (e.g. [Cayrol and Lagasquie-Schiex,
2009]’s bipolar argumentation frameworks or BAFs). The question arises as to
what extent ASPIC+ can be seen as instantiations of these frameworks. Moreover,
work has recently been done on the dynamics of abstract argumentation frameworks,
such as deleting or adding arguments or attacks; e.g. [Baroni and Giacomin, 2008;
Baroni et al., 2011b; Baumann and Brewka, 2010]. The question also arises as
to what extent can the dynamics of argumentation, as studied in these works, be
applied to ASPIC+. These questions are answered in this section.

4.6.1 E-ASPIC+: Structuring Extended Argumentation Frameworks

[Modgil, 2009] extended abstract argumentation frameworks to accommodate argu-
ments that attack attacks, and in so doing enabled integration of arguments that
express preferences over other arguments. The essential idea is that given an attack
from A to B, then if the argument C expresses a strict preference for B over A, C
attacks (and so invalidates the success of) the attack from A to B. A modified defini-
tion of the acceptability of arguments was defined for these Extended Argumentation
Frameworks (EAFs), and [Modgil, 2009] showed that one can reconstruct [Prakken
and Sartor, 1997]’s logic-programming-based argumentation system with defeasible
preferences as an instance of EAFs. In this reconstruction, arguments built from
rules expressing preferences over other ‘object level’ rules, constitute arguments ex-
pressing preferences over the arguments built from the object level rules.

However, as with Dung’s original abstract argumentation frameworks, the ab-
stract EAFs can in principle yield extensions that violate the rationality postulates.
Hence [Modgil and Prakken, 2010] define a version of ASPIC+ – E-ASPIC+ – that
generate a special class of bounded hierarchical EAFs in which the finite arguments
A can be stratified into A1, . . . ,An, such that if C ∈ Ai (i 6= 1) expresses a pref-
erence for B over A, then A,B ∈ Ai−1. As in ASPIC+ arguments are constructed
from strict and defeasible rules, and axiom and ordinary premises, and in addition
to the usual notions of attack, E-ASPIC+ defines a function over sets of arguments
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A′ ⊆ A, that maps A′ to a strict preference over some B,A ∈ A. In this way, EAFs
are conservatively modified to allow for attacks on attacks to originate from sets of,
rather than single, arguments. As well as the notion of a well-defined SAF17 [Modgil
and Prakken, 2010] additionally identify a condition that if A′ ⊆ A expresses that
A ≺ B and A′′ ⊆ A expresses that B ≺ A, then A′ and A′′ respectively contain
arguments X and Y that have contradictory conclusions, or some X and Y such
that X can be extended by strict rules to an argument X+ such that X+ and Y have
contradictory conclusions. [Modgil and Prakken, 2010] then show that the gener-
ated bounded hierarchical EAFs satisfy [Caminada and Amgoud, 2007]’s rationality
postulates.

4.6.2 Abstract support relations

There have been several recent proposals to extend abstract argumentation frame-
works with abstract support relations, such as [Cayrol and Lagasquie-Schiex, 2005;
Cayrol and Lagasquie-Schiex, 2009; Cayrol and Lagasquie-Schiex, 2013]’s Bipolar
Argumentation Frameworks (BAFs), the work of [Martinez et al., 2006] and [Oren
and Norman, 2008]’s Evidential Argumentation Systems (EASs). Various seman-
tics for such frameworks have been defined, claiming to capture different notions
of support. For example, [Boella et al., 2010a] study semantics of what they call
“deductive” support, which satisfies the constraint that if A is acceptable and A is
a deductive support of B, then B is acceptable. [Nouioua and Risch, 2011] consider
“necessary support”, which satisfies the constraint that if B is acceptable and A is
a necessary support of B, then A is acceptable.

One question is whether the ASPIC+ notion of a subargument instantiates any
of these notions. Here we first discuss [Dung and Thang, 2014]’s simple way of for-
malising [Nouioua and Risch, 2011] intuitions concerning necessary support, namely,
by adding a binary support relation S on A to AFs with the sole additional con-
straint that if B supports C and A defeats B then A also defeats C. The semantics
of the resulting abstract argumentation frameworks is simply defined by choosing
one of the semantics for the corresponding pair (A,D). Thus the support relation
S is only used to constrain the defeat relation D. [Prakken, 2014] calls the re-
sulting frameworks SuppAFs and notes that ASPIC+ can be reconstructed as an
instance of SuppAFs as follows. Take D to be ASPIC+’s defeat relation and S to
be ASPIC+’s subargument relation between arguments. It is then immediate from
Definitions 2.10 and 2.12 that ASPIC+’s notion of defeat satisfies [Dung and Thang,
2014]’s constraint on D in terms of S.

17Where the requirement that an argument ordering is reasonable is adapted to the setting of
EAFs.
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An equivalent reformulation of SuppAFs does make use of support relations in
its semantics. In [Prakken, 2013] ASPIC+ as presented above was reformulated in
terms of [Pollock, 1994]’s recursive labellings, and this reformulation was abstracted
to SuppAFs in [Prakken, 2014]. First, [Prakken, 2013] defines a notion of p-defeat
(for “Pollock-defeat”), which captures direct defeat between arguments:

Definition 4.9 (p-Attack). A p-attacks B iff A p-undercuts, p-rebuts or p-under-
mines B, where:
• A p-undercuts argument B iff Conc(A) = −n(r) and B has a defeasible top rule
r.
• A p-rebuts argument B iff Conc(A) = −Conc(B) and B has a defeasible top rule.
• Argument A p-undermines B iff Conc(A) = −ϕ and B = ϕ, ϕ 6∈ Kn.
Definition 4.10 (p-Defeat). A p-defeats B iff:A p-undercuts B, or; A p-rebuts/p-
undermines B and A ⊀ B.

Then [Prakken, 2013] proves that A defeats B according to Definition 2.12 iff A p-
defeats B or A p-defeats a proper subargument B′ of B. Now if the support relation
of a SuppAF is taken to be ASPIC+’s notion of an ‘immediate’ subargument and
the defeat relation of a SuppAF is taken to be p-defeat, then the following definition
is equivalent to [Dung, 1995]’s semantics for AFs (and so for SuppAFs).

Definition 4.11 (p-labellings for SuppAFs). Let (A,D,S) be a SuppAF correspond-
ing to a (c-)SAF = (A,D) where D is defined as p-defeat and where S is defined as
(A,B) ∈ S iff B is of the form B1, . . . , Bn → /⇒ ϕ and A = Bi for some 1 ≤ i ≤ n.
Then (In,Out) is a p-labelling of SuppAF iff In ∩ Out = ∅ and for all A ∈ A it
holds that:

1. A is labelled in iff:

(a) All arguments that p-defeat A are labelled out; and
(b) All B that support A are labelled in.

2. A is labelled out iff:

(a) A is p-defeated by an argument that is labelled in; or
(b) Some B that supports A is labelled out.

Exploiting the well-known correspondences between labelling- and extension-
based semantics [Caminada, 2006], [Prakken, 2014] shows that the complete exten-
sions defined thus for SuppAFs generated from ASPIC+ with p-defeat are exactly
the complete extensions of SuppAFs as generated above from ASPIC+ with defeat.
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[Prakken, 2014] also showed for preferred semantics that ASPIC+ instantiates
[Oren and Norman, 2008]’s evidential argumentation systems. One might expect
that classical-logic instantiations of ASPIC+ instantiate [Boella et al., 2010a]’s
version of bipolar argumentation frameworks for “deductive support”. However,
[Prakken, 2014] showed that this is not the case. This raises the question as to how
one might instantiate [Boella et al., 2010a]’s notion of deductive support.

More generally, the question arises as to the relation of the various accounts of
abstract support relations with formalisms for structured argumentation. To the
best of our knowledge, the only papers studying this question are [Prakken, 2014]
and [Modgil, 2014]. [Modgil, 2014] discusses this issue under the assumption that
arguments and their relations are constructed from a ASPIC+ argumentation theory.
He discusses how examples in the literature used to motivate the need for support
relations essentially amount to the supporting argument A concluding some φ that
is: 1) either a premise in the supported argument B; 2) the conclusion of a defeasible
rule in B, or; 3) A provides the missing sub-argument for the enthymeme B (i.e., B is
an incomplete argument). For example, letting A be an argument constructed from
α and α⇒r1 β then illustrating the three cases, B consists of: 1) β and β ⇒r2 δ; 2)
γ, γ ⇒r3 β and β ⇒r2 δ; 3) β ⇒r2 δ.

Given this analysis, the underlying premises and rules can then be seen to gen-
erate additional arguments without the need for support relations; for example, in
case 1) the additional argument B′ : A⇒r2 δ. Hence, one would expect that the jus-
tification status of arguments obtained by the modified definitions of acceptability in
abstract argumentation frameworks augmented by support relations, corresponds to
their evaluation in a standard abstract argumentation framework of arguments and
attacks, instantiated by the additional arguments generated by the same premises
and rules. In case 1), this would mean that the status of B in the augmented
framework in which B is supported by A, is the same as the status of B in the
original framework consisting of A, B and B′. However, [Modgil, 2014] shows that
this correspondence does not always hold18. He concludes from this that only when
examining abstract concepts in a structured approach can one gain some insight
into the appropriate use of these abstract level concepts in evaluating arguments.
Indeed, [Modgil, 2014] provides a similar analysis of collective attacks [Nielsen and
Parsons, 2007] and recursive attacks on attacks [Baroni et al., 2011a] that have

18Note that [Modgil, 2014] is careful to acknowledge that these observations apply to the case
where arguments and their relations are generated by instantiating sets of formulae, rather than by
human authoring of arguments. He argues that in the latter context additional relations between
arguments incorporated in abstract argumentation frameworks may well be warranted by human
oriented uses of argument, and goes on to argue the need for complementary empirical studies of
human argumentation.
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been incorporated at the abstract level and that have led to modified definitions of
acceptability.

4.6.3 Preference- and value-based argumentation frameworks

[Amgoud and Cayrol, 1998] added to abstract argumentation frameworks (AFs) a
preference relation on A, resulting in preference-based argumentation frameworks
(PAFs), which are triples of the form 〈A, attacks, �〉. An argument A then defeats
an argument B if A attacks B and A 6≺ B. Thus each PAF generates an AF of the
form 〈A, defeats〉, to which Dung’s theory of AFs can be applied. [Bench-Capon,
2003] proposed a variant called value-based argumentation frameworks (V AFs), in
which each argument is said to promote some (legal, moral or societal) value. Attacks
in an V AFs succeed only if the value promoted by the attacked argument is strictly
preferred to the value of the attacking argument, according to a given ordering on
the values (an audience).

The question arises as to what happens if ASPIC+ is reformulated so as to
generate PAFs instead of Dung’s original AF s. This can be easily done, since
ASPIC+ instantiations already generate a set of arguments with an attack relation
and define a binary argument ordering. However, this may lead to violation of
rationality postulates, even in cases where ASPIC+ satisfies them.

Consider the following example from [Prakken, 2012b; Modgil and Prakken,
2013].

A : p
B1 : ¬p
B2 : B1 ⇒ q

Here p and ¬p are ordinary premises. Note that B1 is a subargument of B2. In
ASPIC+ we then have that A and B1 directly attack each other while, moreover, A
indirectly attacks B2, since it directly attacks B2’s subargument B1. These attack
relations are displayed in Figure 5(a).

Assume next that B1 ≺ A and A ≺ B2 (such an ordering could be the result
of a last-link ordering). The PAF modelling then generates the following single
defeat relation: A defeats B1; see Figure 5(b). Then we have a single extension
(in whatever semantics), namely, {A,B2}. So not only A but also B2 is justified.
However, this violates [Caminada and Amgoud, 2007]’s rationality postulate of sub-
argument closure of extensions, since B2 is in the extension while its subargument
B1 is not. This problem is not restricted to subargument closure; [Prakken, 2012b]
also discusses examples in which the postulate of indirect consistency is violated.
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Figure 5: The attack graph

The cause of the problem is that the PAF modelling of this example cannot
recognise that the reason why A attacks B2 is that A directly attacks B1, which
is a subargument of B2. So the PAF modelling fails to capture that in order to
check whether A’s attack on B2 succeeds, we should compare A not with B2 but
with B1. Now since B1 ≺ A, then in ASPIC+ we also have that A defeats B2; see
Figure 5(c). So the single extension (in whatever semantics) is {A}, and so closure
under subarguments is respected.

This shows that under the assumption that PAFs (and also V AFs) are in-
stantiated by logical formulae, then these only behave correctly with respect to the
rationality postulates, if all attacks are direct. We can conclude that for a principled
analysis of the use of preferences to resolve attacks, the structure of arguments must
be made explicit, since the structure of arguments is crucial in determining how
preferences must be applied to attacks.

A more general word of caution is in order here. Although it is tempting to
extend abstract argumentation frameworks with additional elements, one should
resist the temptation to think that for any given argumentation phenomenon the
most principled analysis is at the level of abstract argumentation. In fact, it often is
the other way around, since at the abstract level crucial notions like claims, reasons
and grounds are abstracted away.
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4.6.4 Dynamics of argumentation

Recently much work has been done on the nature and effects of change operations
on a given argumentation state, e.g. [Modgil, 2006; Baroni and Giacomin, 2008;
Rotstein et al., 2008; Baumann and Brewka, 2010; Cayrol et al., 2010; Boella et
al., 2010b; Baroni et al., 2011b]. Among other things, enforcing and preservation
properties are studied. Enforcement concerns the extent to which desirable outcomes
can or will be obtained by changing an argumentation state, while preservation is
about the extent to which the current status of arguments is preserved under change.
Almost all this work is done for abstract argumentation frameworks. In particular,
the following operations on abstract argumentation frameworks have been studied:
addition or deletion of (sets of) arguments and addition or deletion of (sets of)
attack relations. Deleting attacks can here be seen as an abstraction from the use
of preferences to resolve attacks into defeats.

The question arises as to what extent this work is relevant for ASPIC+. Here
too our above word of caution applies. At first sight, it would seem that the most
principled analysis of argumentation dynamics is at the level of abstract argumen-
tation frameworks. However, upon closer inspection it turns out that such analyses,
because they ignore the structure of arguments, often implicitly make assumptions
that are not in general satisfied by ASPIC+ instantiations (and neither by other
formalisms for structured argumentation). For example, abstract models of ar-
gumentation dynamics do not recognise that some arguments are not attackable
(such as deductive arguments with certain premises) or that some attacks cannot be
deleted (for example between arguments that were determined to be equally strong),
or that the deletion of one argument implies the deletion of other arguments (when
the deleted argument is a subargument of another, as in Figure 5 above), or that
the deletion or addition of one attack implies the deletion or addition of other at-
tacks (for example, attacking an argument implies that all arguments of which the
attacked argument is a subargument are also attacked; in Figure 5 above attacking
B1 implies attacking B2). These considerations imply that formal results pertaining
to the abstract model are only relevant for specific cases, and fail to cover many
realistic situations in argumentation that can be expressed in ASPIC+. To give a
very simple example, in models that allow the addition of arguments and attacks,
any non-selfattacking argument A can be made a member of every extension by
simply adding non-attacked attackers of all A’s attackers. However, this result at
the abstract level does not carry over to instantiations in which not all arguments
are attackable. Here too, we see the importance of being aware of what the model
abstracts from.

For these reasons we have in [Modgil and Prakken, 2012] proposed a model
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of preference dynamics in ASPIC+, that arguably overcomes several limitations
of [Baroni et al., 2011b]’s resolution-based semantics for abstract argumentation
frameworks when applied to preference-based dynamics.19 The latter allows that
symmetric attacks are replaced by asymmetric attacks (i.e., the symmetric attacks
are ‘resolved’). We argued that from the perspective of instantiated abstract argu-
mentation frameworks, it is the use of preferences that provides the clearest moti-
vation for obtaining resolutions. But then studying the use of preferences at the
structured ASPIC+ level suggests that one must also account for the resolution of
asymmetric attacks, that preferences may also result in removal of both attacks in a
symmetric attack, and that certain resolutions may be impossible, because assum-
ing a preference that removes one attack may necessarily imply removal of another
attack, or because some attacks cannot be removed by preferences (e.g. undercut
attacks and attacks on contraries). These subtleties can only be appreciated at the
structured level, and are thus not addressed by the study of resolutions at the ab-
stract level adopted by [Baroni et al., 2011b], in which only resolutions of symmetric
attacks are considered, and all possible resolutions are considered possible.

5 Further Developments of ASPIC+
In Section 2 we presented what we called the ‘basic’ ASPIC+ framework in two
stages, first with symmetric negation and then generalising it with possibly asym-
metric negation. As a matter of fact, this basic framework is the result of var-
ious revisions and incremental extensions [Amgoud et al., 2006; Prakken, 2010;
Modgil and Prakken, 2013; Modgil and Prakken, 2014]. Also, in [Modgil and
Prakken, 2013], the basic framework in fact comes in four variants, resulting from
whether the premises of arguments are assumed to be c-consistent or not and whether
conflict-freeness is defined with the attack or the defeat relation (recall footnote 7).
So instead of a single ASPIC+ framework there in fact exists a family of such frame-
works. And this family is growing. In this section we discuss recent work that mod-
ifies the ASPIC+ framework in some respects, especially with new constraints on
arguments or with modified or generalised notions of attack. We consider this devel-
opment of variants of ASPIC+ a healthy situation, since it amounts to a systematic
investigation of the effects of different design choices within a common approach,
which may each be applicable to certain kinds of problems.

19We recognise that there may be other uses of resolution-based semantics to which our criticism
does not apply.
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5.1 Consistency and chaining restrictions motivated by contamina-
tion problems

Some recent work on ASPIC+ has studied further constraints on arguments in an
attempt to address the so-called contamination problem originally discussed by [Pol-
lock, 1994; Pollock, 1995].20 This problem arises if the strict inference rules are
chosen to correspond to classical logic and if they are then combined with defeasible
rules. The problem is how the trivialising effect of the classical Ex Falso principle
can be avoided when two arguments that use defeasible rules have contradictory
conclusions. The problem is especially hard since any solution should arguably pre-
serve satisfaction of the rationality postulates of [Caminada and Amgoud, 2007]. In
addition, [Caminada et al., 2012] claim that any solution should also satisfy a new
set of postulates that are meant to express the idea that information irrelevant to a
part of the argumentation system should not affect the conclusions drawn from that
part.

The following abstract example illustrates the problem. Assume that the strict
rules of an argumentation system correspond to classical logic, i.e. X → ϕ ∈ Rs if
and only if X ` ϕ and X is finite (where ` denotes classical consequence).

Example 5.1. Let Rd = {p⇒ q; r ⇒ ¬q; t⇒ s}, Kp = ∅ and Kn = {p, r, t}, while
Rs corresponds to classical logic. Then the corresponding abstract argumentation
framework includes the following arguments:

A1: p A2: A1 ⇒ q
B1: r B2: B1 ⇒ ¬q C: A2, B2 → ¬s
D1: t D2: D1 ⇒ s

Figure 6 displays these arguments and their attack relations. Argument C at-
tacks D2. Whether C defeats D2 depends on the argument ordering but plausible
argument orderings are possible in which C 6≺ D2 and so C defeats D2. This is
problematic, since s can be any formula, so any defeasible argument unrelated to
A2 or B2, such as D2, can, depending on the argument ordering, be defeated by C.
Clearly, this is extremely harmful, since the existence of just a single case of mutual
rebutting attack, which is very common, could trivialise the system. For instance, in
this example neither of A2 nor B2 are in the grounded extension, since they defeat
each other. But then the grounded extension does not defend D2 against C and
therefore does not contain D2.

20Some parts of this section have been taken or adapted from [Grooters and Prakken, 2016].
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Figure 6: Illustrating trivialisation

It should be noted that simply disallowing application of strict rules to incon-
sistent sets of formulas does not help, since then an argument for ¬s can still be
constructed as follows:

A3: A2 → q ∨ ¬s
C ′: A3, B2 → ¬s

Note that argument C ′ does not apply any strict inference rule to an inconsistent
set of formulas.

[Grooters and Prakken, 2016] propose the following formalisation of the property
of trivialisation.

Definition 5.2 (Trivialising argumentation systems). An argumentation system AS
is trivialising iff for all ϕ,ψ ∈ L and all knowledge bases K such that {ϕ,¬ϕ} ⊆ K
a strict argument on the basis of K can be constructed in AS with conclusion ψ.

The research problem then is identifying classes of non-trivialising argumentation
systems. The argumentation system in our example is clearly trivialising since Rs
contains strict rules ϕ,¬ϕ→ ψ for all ϕ,ψ ∈ L.

Example 5.1 does not cause any problems for preferred or stable semantics,
since A2 and B2 attack each other and at least one of these attacks will (with non-
circular argument orderings) succeed as defeat. Therefore, all preferred or stable
extensions contain either A2 or B2 but not both. Since both A2 and B2 attack C
(by directly attacking one of its subarguments), C is for each preferred or stable
extension defeated by at least one argument in the extension, so C is not in any of
these extensions, so D2 is in all these extensions. This is intuitively correct since
there is no connection between D2 and the arguments A2 and B2. [Pollock, 1994;
Pollock, 1995] thought that this line of reasoning for preferred semantics suffices
to show that his recursive-labelling approach (which was later in [Jakobovits and
Vermeir, 1999] proved to be equivalent to preferred semantics) adequately deals with
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this problem. However, [Caminada, 2005] showed that the example can be extended
in ways that also cause problems for preferred and stable semantics. Essentially, he
replaced the facts p and r with defeasible arguments for p and r and let both these
arguments be defeated by a self-defeating argument. On the one hand, such self-
defeating arguments cannot be in any extension, since extensions are conflict free.
However, if a self-defeating argument is not defeated by other arguments, it prevents
any argument that it defeats from being acceptable with respect to an extension.
In our example, if both A2 and B2 are defeated by a self-defeating argument that is
otherwise undefeated, then neither A2 not B2 is in any extension, so no argument
in an extension defends D2 against C. To solve the problem, two approaches are
possible. One is to change the definitions of the argumentation formalism, while the
other is to derive the strict inference rules from a weaker logic than classical logic.

The first approach is taken by [Wu, 2012] and [Wu and Podlaszewski, 2015], who
for the ASPIC+ framework require that for each argument the set of conclusions of
all its subarguments are classically consistent. They show that this solution partially
works for a restricted version of ASPIC+ without preferences, in that for complete
semantics, both the original postulates of [Caminada and Amgoud, 2007] and the
new ones of [Caminada et al., 2012] are satisfied. However, their results do not
cover stable, preferred or grounded semantics, while they give counterexamples to
the consistency postulates for the case with preferences.

A second approach to solve the problem is to replace classical logic as the source
for strict rules with a weaker, monotonic paraconsistent logic, in order to invalidate
the Ex Falso principle as a valid strict inference rule. [Grooters and Prakken, 2016]
explored this possibility. They first showed that two well-known paraconsistent
logics, the system Cω of [Da Costa, 1974] and the Logic of Paradox of [Priest, 1979;
Priest, 1989], cannot be used for these purposes, since they induce violation of the
postulate of indirect consistency. They then investigated Rescher and Manor’s 1970
paraconsistent consequence notion of weak consequence. A set S of wff’s weakly’
implies a wff ϕ just in case at least one consistent subset of S classically implies
ϕ. While thus initially taking the second approach, [Grooters and Prakken, 2016]
had to combine it with the first approach (changing the definitions). Chaining strict
rules in arguments has to be disallowed since the notion of weak consequence does
not satisfy the Cut rule. For a counterexample, consider the set Γ = {a,¬a ∧ b}.
Then Γ `W b and Γ, b `W a ∧ b, while it is not the case that Γ `W a ∧ b.

[Grooters and Prakken, 2016] proved that this solution avoids trivialisation and
for well-behaved c-SAFs satisfies all closure and consistency postulates (where the
strict-closure postulate has to be changed to closure under one-step application of
strict rules). Illustrating their solution with the above example, we see that the
contaminating argument C cannot be constructed since its conclusion ¬s follows
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from no consistent subset of {q,¬q}, while the contaminating argument C ′ cannot
be constructed since it chains two strict rules.

[Grooters and Prakken, 2016] also showed that with [Wu and Podlaszewski,
2015]’s stronger condition that the set of all conclusions of all subarguments of
an argument must be consistent, consistency and strict closure are not satisfied.
[Grooters and Prakken, 2016] did not attempt to prove Caminada et al.’s 2012
‘contamination’ postulates, for two reasons. First, they wanted to obtain results
for all of [Dung, 1995]’s semantics and, second, they argued that Caminada et al.’s
postulates in fact capture a stronger intuitive notion than the notion of trivialisation.

The work of [Grooters and Prakken, 2016] gives rise to some more general obser-
vations on [Caminada and Amgoud, 2007]’s original postulate of closure under strict
rules. Above we suggested that Rs can be chosen to correspond to any monotonic
logic with consequence notion ` by letting S → ϕ ∈ Rs if and only if S ` ϕ and S is
finite. However, the fact that the weak-consequence notion `W does not satisfy the
Cut rule illustrates that when Rs is thus defined, a system that is closed under Rs
as defined in Section 3.1.2, could allow for inferences that are invalid according to `.
For these reasons, [Grooters and Prakken, 2016] not only reformulated their defini-
tion of strict closure but also proposed a new rationality postulate of logical closure
and showed that their adapted version of ASPIC+ also satisfies this postulate for
well-behaved c-SAFs.

We also briefly note that [Grooters and Prakken, 2016] also studied minimality
constraints on strict-rule applications and the exclusion of circular arguments. They
show that if these two constraints are combined with their adoption of weak conse-
quence as the source of the strict rules, then if both the knowledge base and the set
of defeasible rules is finite, then each argument has at most a finite number of at-
tackers, i.e., their framework generates so-called finitary argumentation frameworks
in the sense of [Dung, 1995], which is computationally beneficial.

Finally, [D’Agostino and Modgil, 2016] provide a formalisation of classical argu-
mentation with preferences in which arguments are triples (∆,Γ, α) such that α is
classically entailed by ∆ ∪ Γ21, and where ∆ are the premises assumed true, and Γ
the premises supposed true ‘for the sake of argument’. The idea is that if a trivial-
ising argument ({q,¬q}, ∅, s) defeats ({s}, ∅, s) ∈ E (where E is an extension under
any semantics), then Y = (∅, {q,¬q},⊥) defeats X = ({q,¬q}, ∅, s) (Y supposes for
the sake of argument the premises of X). Moreover, since the premises whose truth
Y commits to are empty, Y cannot be defeated and so can be included in any E

21[D’Agostino and Modgil, 2016] allow for arguments with inconsistent premises, as they argue
that arguments with inconsistent premises, and hence the trivialising effect of such arguments,
should be excluded dialectically (as in real-world reasoning and debate), rather than checking for
consistency prior to inclusion of the argument in an abstract argumentation framework.
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in order to defend ({s}, ∅, s), thus negating the trivialising effect of X. [D’Agostino
and Modgil, 2016] then show that under certain conditions, the consistency and
closure postulates, as well as Caminada et al.’s additional contamination postulates
are satisfied. As the authors note, an interesting direction for future research would
be to see if their approach can be applied to the full ASPIC+ framework.

5.2 Dung (2016) on rule-based argumentation systems

Recently, [Dung, 2016] has continued the formal study of [Dung and Thang, 2014]’s
rule-based argumentation systems. Recall that these comprise of strict and defeasi-
ble inference rules over a propositional literal language, where axiom, respectively
ordinary, premises p are simulated with rules → p and ⇒ p. [Dung, 2016] adds
a transitive preference relation ≤ on Rd, so that he defines rule-based systems as
a triple (Rs,Rd,≤). In addition, he confines his study to knowledge bases with a
consistent strict closure. Above we explained that [Dung and Thang, 2014] adopt
the ASPIC+ definitions of argument and defeat (which they call attack) and thus
effectively study a class of ASPIC+ instantiations. [Dung, 2016] also adopts the AS-
PIC+ definition of an argument and still assumes that rule-based systems generate
abstract argumentation frameworks in the sense of [Dung, 1995] (in our notation
(A,D)). However, Dung now abstracts from particular definitions of defeat (D) and
instead defines properties that defeat relations should have, thus effectively gener-
alising ASPIC+ on its notion of defeat. He then studies conditions under which
defeat relations satisfy these properties.

Since this work is quite recent, we confine ourselves to a brief summary and
discussion. In doing so, we will replace Dung’s term ‘attack’ with ‘defeat’, in order
to be consistent with the terminology in this article. This replacement is justified
since in [Dung, 2016] it is the attack relation in terms of which arguments are
evaluated, so it plays the role of ASPIC+’s defeat relation.

Dung introduces two new rationality postulates. His postulate for attack mono-
tonicity informally says that strengthening an argument cannot eliminate an attack
of that argument on another. Let us illustrate this with Figure 2, interpreting the
horizontal arrows as defeat relations. Then this postulate says, for instance, that if
D4’s argument C2 for v is replaced with a necessary premise v (or in [Dung, 2016]’s
case a strict rule → v) or with a strict and firm argument from u to v, then the
new version of D4 still defeats B2. Next, Dung’s postulate of credulous cumulativity
informally means that changing a conclusion of an argument in some extension to a
necessary fact cannot eliminate that extension.

Dung then identifies several sets of conditions under which one or both of these
postulates and/or the original postulates of [Caminada and Amgoud, 2007] are sat-

2384



Abstract Rule-based Argumentation

isfied. For the details of these very valuable results we refer the reader to his
own publication. Dung then continues by investigating several definitions of de-
feat in terms of the preference relation ≤ on Rd on whether they satisfy these
various postulates. Since he also assumes here that strict arguments cannot be
defeated, this part of his study effectively concerns instantiations of ASPIC+ as
defined above in Section 2.2. Here Dung obtains both positive and negative re-
sults. For example, elitist orderings as defined in [Modgil and Prakken, 2013] are
shown to satisfy attack monotonicity but not credulous cumulativity and indirect
consistency, while democratic orderings as defined in [Modgil and Prakken, 2013]
and Definition 3.4 above are shown to satisfy credulous cumulativity and indirect
consistency but not attack monotonicity. As for Dung’s results on consistency, these
are a special case of [Modgil and Prakken, 2013]’s results for democratic order-
ings but they contain counterexamples to their results for the elitist orderings.
However, these counterexamples do not apply to [Prakken, 2010]’s original way
to define the elitist orderings, which has been incorporated in the above Defini-
tion 3.4, or to the erratum to [Modgil and Prakken, 2013] (which is available online
at https://nms.kcl.ac.uk/sanjay.modgil/AIJfinalErratum).

The question arises as to whether Dung’s two new postulates really are desirable
in general. Our answer is positive for attack monotonicity but, following [Prakken
and Vreeswijk, 2002, section 4.4], negative for credulous cumulativity. The point is
that strengthening a defeasible conclusion to an indisputable fact may make argu-
ments stronger than before, which can give them the power to defeat other arguments
that they did not defeat before. This may in turn result in the loss of the extension
from which the conclusion was promoted to an indisputable fact. We illustrate this
with [Dung, 2016]’s own example. Informally: professors normally teach, admin-
istrators normally do not teach, deans are normally professors and all deans are
administrators (so with transposition anyone who is not an administrator is not a
dean). The question is whether some particular dean teaches. In rules:

Dean ⇒d1 Professor Professor ⇒d2 Teach Administrator ⇒d3 ¬ Teach
Dean → Administrator ¬ Administrator → ¬ Dean→ Dean

Assume further that d1 < d3 < d2. We have the following arguments on whether
the dean teaches:

A1: → Dean B1: → Dean
A2: A1 ⇒d1 Professor B2: B1 → Administrator
A3: A2 ⇒d2 Teach B3: B2 ⇒d3 ¬ Teach

(A1 and B1 are, of course, the same argument; B3 is called A3 by [Dung, 2016], while
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he does not explicitly name A1/B1 and B2.) With the elitist or democratic weakest-
link ordering as defined in Definition 3.4 above, argument B3 strictly defeats A3, so
in all semantics a unique extension is obtained in which the dean is a professor but
does not teach.

Suppose now the defeasibly justified conclusion Professor is added as a fact.
This gives rise to a new argument:

C1: → Professor
C2: C1 ⇒d2 Teach

Now the elitist ordering yields that C2 strictly defeats B3, so again in all semantics a
unique extension is obtained but now it contains that the dean teaches. So we have
lost the original extension, which illustrates violation of credulous cumulativity.

In our opinion, this outcome is the intuitive one, since by adding Professor as
a fact, we have promoted its status from a defeasibly justified conclusion to an
indisputable fact; as a consequence, argument A3 can be strengthened by replacing
its defeasible subargument A2 with the strict-and-firm subargument C1; no wonder
then that the thus strengthened argument C2 has, unlike its weaker version A3, the
power to defeat B3.

Despite this minor criticism, we believe that Dung’s latest investigations are a
very valuable addition to the study of rule-based argumentation.

5.3 Variants of rebutting attack
Several papers have considered alternative definitions of rebutting attack in which
an argument can under specific conditions also be rebutted on the conclusions of
strict inferences.

5.3.1 Unrestricted rebuts

In ASPIC+ as presented so far, arguments can only be rebutted on conclusions
of defeasible-rule applications. [Caminada and Amgoud, 2007] call this restricted
rebut. They also study unrestricted rebut, which allows rebuttals on the conclusion
of a strict inference provided that at least one of the argument’s subarguments
is defeasible. Their replacement of restricted with unrestricted rebut leads to a
variant of their simplified version of ASPIC+ (which is in fact equivalent to [Dung
and Thang, 2014]’s rule-based systems). They prove that for grounded semantics
the rationality postulates are (under the usual conditions) satisfied but they provide
a counterexample for stable and preferred semantics, presented above in Section 3.3
with a modification of Example 3.1.
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[Caminada et al., 2014] argue in favour of unrestricted rebut on the grounds
that this would lead to more natural presentations of dialogues. They argue that
when applying argumentation in dialogical settings, the notion of restricted rebuts
sometimes forces agents to commit to statements they have insufficient reasons to
believe. In abstract terms, suppose an agent Ag1 submitting an argument A whose
top rule is a strict rule s1 = α1, . . . , αn → α, where for i = 1 . . . n, αi is an ordi-
nary premise in A or the head of a defeasible rule in A. Now suppose Ag2 has an
argument B that defeasibly concludes ¬α. Since B does not rebut A on α, then
to attack A requires that Ag2 construct, for some i = 1 . . . n, an argument B′ that
extends B and the arguments concluding αj , j 6= i, with the transposition si1 =
α1, . . . , αi−1,¬α, αi+1, αn → ¬αi. But then Ag2 is forced to commit to her inter-
locutors’ arguments concluding αj , j 6= i, for which she has no reasons to believe.

[Caminada et al., 2014] give the following concrete example.

John: “Bob will attend conferences AAMAS and IJCAI this year, as he
has papers accepted at both conferences.”
Mary: “That won’t be possible, as his budget of £1000 only allows for
one foreign trip.”

Formally, this discussion could be modelled using an argumentation theory with
Rd ⊇ {accA⇒attA; accI⇒attI; budget⇒¬(attA ∧ attI)} and Rs ⊇ {→ accA; →
accI; →budget; attA, attI→attA ∧ attI}.

A direct formalisation of the above arguments is then:

J1: → accA M1: → budget
J2: J1 ⇒ attA M2: M1 ⇒ ¬(attA ∧ attI)
J3: → accI
J4: J3 ⇒ attI
J5: J3, J4 → attA ∧ attI

In ASPIC+, Mary’s argument does not attack John’s argument, since the conclusion
Mary wants to attack (attA∧ attI) is the consequent of a strict rule. Mary can only
attack John’s argument by attacking the consequent of one of the defeasible rules,
that is, by uttering one of the following two statements.

Mary′: “Bob can’t attend AAMAS because he will attend IJCAI, and his
budget does not allow him to attend both.”
Mary′′: “Bob can’t attend IJCAI because he will attend AAMAS, and his
budget does not allow him to attend both.”
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The associated formal counterarguments are as follows.22

M1: → budget
M2: M1 ⇒ ¬(attA ∧ attI)
J3: → accI J1: → accA
J4: J3 ⇒ attI J2: J1 ⇒ attA
M ′5: M2, J4 → ¬attA M ′′5 : M2, J2 → ¬attI

According to [Caminada et al., 2014] the problem with this is that Mary does not
know which of the two conferences Bob will attend, but ASPIC+ with restricted
rebut forces her to assert that Bob will attend one or the other. They argue that
from the perspective of commitment in dialogue [Walton and Krabbe, 1995], this is
unnatural.

[Caminada et al., 2014] then define a restricted version of basic ASPIC+ as
presented above in Section 2.2 – which they call ASPIC− – that substitutes strict
rules with empty antecedents for axiom premises, and defeasible rules with empty
antecedents for ordinary premises. Moreover, ASPIC− allows unrestricted rebuts on
the conclusions of strict rules. They then show that under the assumption of a total
ordering on the defeasible rules, and assuming either the Elitist or Democratic set
comparisons used in defining weakest- or last-link preferences, all of [Caminada and
Amgoud, 2007]’s rationality postulates are satisfied for well-behaved SAFs, but only
for the grounded semantics. They have thus generalised [Caminada and Amgoud,
2007]’s results for some specific cases with preferences.

5.3.2 Weak rebuts and an alternative view on the rationality postulates

[Prakken, 2016] studies a weaker version of unrestricted rebut, motivated by the gen-
eral observation that deductive inferences may weaken an argument. His argument
is that when a deductive inference is made from the conclusions of at least two ‘fal-
lible’ (defeasible or plausible) subarguments, the deductive inference can be said to
aggregate the degrees of fallibility of the individual arguments to which it is applied.
This in turn means that the deductive inference may be less preferred than either of
these subarguments, so that a successful attack on the deductive inference does not
necessarily imply a successful attack on one of its fallible subarguments. And this in
turn means that there can be cases where it is rational to accept a set of arguments
that is not strictly closed and that violate indirect consistency. Note that this line
of reasoning does not apply to cases where a deductive inference is applied to at

22Assuming Rs ito be closed under transposition, the fact that Rs contains attA, attI→ attA∧
attI implies that Rs also contains ¬(attA ∧ attI), attI→ ¬attA and attA,¬(attA ∧ attI)→ ¬attI.
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most one fallible subargument: then the amount of fallibility of the new argument is
exactly the same as the amount of fallibility of the single fallible argument to which
the deductive inference is applied. Accordingly, [Prakken, 2016] defines weak rebut
as allowing rebuttals on the conclusion of a strict inference, provided that the strict
inference is applied to at least two fallible subarguments. Moreover, he argues that
there are cases where argument orderings cannot be required to satisfy all properties
of a reasonable argument ordering as defined in Definition 3.16.

[Prakken, 2016] illustrates this with the lottery paradox, a well-known paradox
from epistemology, first discussed by [Kyburg, 1961]. Imagine a fair lottery with
one million tickets and just one prize. If the principle is accepted that it is rational
to accept a proposition if its truth is highly probable, then for each ticket Ti it is
rational to accept that Ti will not win while at the same time it is rational to accept
that exactly one ticket will win. If we also accept that everything that deductively
follows from a set of rationally acceptable propositions is rationally acceptable, then
we have two rationally acceptable propositions that contradict each other: we can
join all individual propositions ¬Ti into a big conjunction ¬T1∧ . . .∧¬T1,000,000 with
one million conjuncts, which contradicts the certain fact that exactly one ticket will
win.

Many views on this paradox exist. [Prakken, 2016] wants to formalise the view
that for each individual ticket it is rational to accept that it will not win while at
the same time it is not rational to accept the conjunction of these acceptable beliefs.
He considers the following modelling of the lottery paradox in ASPIC+. Let L be a
propositional language built from the set of atoms {Ti | 1 ≤ i ≤ 1, 000, 000}. Then
let X denote a well-formed formula X1 Y . . . YX1,000,000 where Y is exclusive or and
where each Xi is of one of the following forms:

• If i = 1 then Xi = T1 ∧ ¬T2 ∧ . . . ∧ ¬Tn

• If i = n then Xi = ¬T1 ∧ ¬T2 ∧ . . . ∧ ¬Tn−1 ∧ Tn

• Otherwise Xi = ¬T1 ∧ . . . ∧ ¬Ti−1 ∧ Ti ∧ ¬Ti+1 ∧ . . . ∧ ¬Tn

Next we choose Kp = {¬Ti | 1 ≤ i ≤ 1, 000, 000}, Kn = {X}, Rs as consisting of all
propositionally valid inferences from finite sets and Rd = ∅.

The following arguments are relevant for any i such that 1 ≤ i ≤ 1, 000, 000.

¬Ti and ¬T1, . . . ,¬Ti−1,¬Ti+1, . . . ,¬T1,000,000, X → Ti (call it Ai)

[Prakken, 2016] then equates rational acceptability with sceptical justification (see
Definition 2.18 above). Making ¬Ti sceptically justified for all i requires for all i that
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Ai ≺ ¬Ti, to prevent Ai from defeating ¬Ti. Then we have a single extension in all
semantics containing arguments for all conclusions ¬Ti but not for their conjunction.

Note that adopting the above argument ordering requires that Condition (2) of
Definition 3.16 of reasonable argument orderings is dropped, since it excludes such
an argument ordering. On the other hand, Condition (1) of Definition 3.16 can be
retained. In particular, Condition (1.iii) captures that applying a strict rule to the
conclusion of a single argument A to obtain an argument A′ does not change the
‘preferedness’ of A′ compared to A. This is reasonable in general, since A and A′

have exactly the same set of fallible elements (ordinary premises and/or defeasible
inferences). [Prakken, 2016] calls argument orderings that satisfy Condition (1) of
Definition 3.16 weakly reasonable argument orderings. Finally, he proposes weakened
versions of the postulates of strict closure and indirect consistency, according to
which these properties are only required to hold for subsets of extensions with at most
one fallible argument. He then proves that if weak rebut is allowed in addition to
restricted rebut and argument orderings are required to be weakly reasonable, then
the original postulate of direct consistency plus the weakened postulates of strict
closure and indirect consistency are satisfied if AT is closed under contraposition or
transposition and Prem(A) ∪ Kn is indirectly consistent.

[Prakken, 2016] concludes with some general observations on the relation be-
tween deduction and justification. He argues to have shown that preservation of
truth (the definition of deductively valid arguments) does not imply preservation of
rational acceptance, since truth and rational acceptance are different things. How-
ever, he also argues that deduction still plays an important role in argumentation.
Deductive inference rules are still available as argument construction rules and if an
argument with a strict top rule has no attackers or all its attackers are less preferred,
then the argument may still be sceptically justified. The specifics of the adopted
argument ordering are essential here. For instance, in the lottery paradox the ar-
gument ordering might allow that application of the conjunction rule to a small
number of conclusions ¬Ti is still sceptically justified.

5.4 Attacks from sets of arguments to arguments
[Baroni et al., 2015] consider a variant of ASPIC+ by adapting an idea originally
proposed by [Vreeswijk, 1997] in the context of his ‘abstract argumentation systems’,
which are a predecessor of ASPIC+. In Vreeswijk’s systems a counterargument is
in fact a set of arguments: a set Σ of arguments is incompatible with an argument
τ iff the conclusions of Σ ∪ {τ} give rise to a strict argument for ⊥. [Baroni et al.,
2015] adapt this idea to ASPIC+, where the ‘nodes’ of the abstract argumentation
frameworks generated by the modification are sets of arguments instead of individ-
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ual arguments. They then prove satisfaction of [Caminada and Amgoud, 2007]’s
rationality postulates under similar conditions as in [Modgil and Prakken, 2013].

[Baroni et al., 2015]’s proposal is motivated by criticism of the ASPIC+ treat-
ment of generalised contrariness relations. However, we believe that they just criti-
cise specific uses of this generalised contrariness relation and that the problems they
discuss can be avoided by proper definitions of contrariness. Nevertheless, their
ideas are very interesting and also apply to basic ASPIC+ with ordinary negation.
For example, it would be interesting to see if their variant of ASPIC+ provides an
alternative way to model the examples discussed by [Caminada et al., 2014]. More
generally, it would be interesting to see if their variant of ASPIC+ can be recon-
structed as generating AFs that allow attacks from sets of arguments to arguments
as in e.g. [Bochman, 2003].

6 Implementations and applications
6.1 Implementations
Various implementations of instantiations of ASPIC+are available online, all with
domain-specific inference rules defined over literal-like languages, and with argument
orderings based on rule preferences.

The original ASPIC inference engine The original inference engine from the
ASPIC project (designed by Matthew South on the basis of a prototype of Gerard
Vreeswijk) is available online at http://aspic.cossac.org/, with a demonstra-
tor with example inputs available at http://aspic.cossac.org/Argumentation
System/. Rules can be formulated over a language with predicate-logic literals with
ordinary negation. The implementation allows for choosing between restricted and
unrestricted rebut. The implementation of restricted rebut deviates from its for-
mal definition in that it also allows rebuttals between two arguments that both
have a strict top rule. Arguments can be evaluated alternatively with a last- and a
weakest-link argument ordering and with sceptical grounded or credulous preferred
semantics.

Visser’s Epistemic and Practical Reasoner Wietske Visser took the ASPIC
deliverable ([Amgoud et al., 2006]) as the basis for her Epistemic and Practical Rea-
soner (EPR), available at http://www.wietskevisser.nl/research/epr/. Rules
can be formulated over a language of propositional literals with ordinary negation,
optionally augmented with a ‘desirable’ modality for modelling practical reasoning.
EPR implements argument games for sceptical grounded and credulous preferred
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semantics, as well as [Prakken, 2006]’s game for combined epistemic and practical
reasoning. It also implements as an option [Prakken, 2005]’s mechanism for accrual
of arguments.

ArgTech’s TOAST Mark Snaith of ArgTech at the University of Dundee, Scot-
land, developed an implementation called TOAST ([Snaid and Reed, 2012]) based on
[Prakken, 2010], available at www.arg-tech.org/index.php/toast-an-aspic-
implementation/. Rules can be formulated over a language of propositional lit-
erals with ordinary negation plus optionally a user-specified contrariness relation.
TOAST allows for argument evaluation with an elitist weakest- or last-link ordering
and in grounded, preferred, stable and semi-stable semantics. Interestingly, TOAST
can receive input specified in the AIF format, so that it can be connected to argu-
mentation tools that can export to AIF ([Bex et al., 2013a]). More on this will be
said in the following subsection.

6.2 Logical specifications of the Argument Interchange Format
There is substantial interest in the development of argumentation support tools
enabling the structuring of individual arguments and the dialogical exchange of
argument in offline and online tools supporting human reasoning and debate (for
example see www.arg-tech.org). A key aim is to then organise human authored
arguments into abstract argumentation frameworks, so ensuring that the assessment
of arguments is formally and rationally grounded and enabling ‘mixed initiative’
argumentation integrating both machine and human authored arguments [Modgil
et al., 2013]. These developments, as well as the burgeoning interest in logic-based
models of argument, have motivated formulation of a standardised format – the
Argument Interchange Format (AIF) [Chesñevar et al., 2006] – for representation of
human authored arguments and arguments constructed in logic.

The AIF is an ontology that broadly speaking distinguishes between information
(propositions and sentences) and schemes which are general patterns of reasoning
such as applications of inference rules, or conflict or preferences between informa-
tion. Instances of these information and schemes classes constitute nodes that can
be organised into AIF graphs representing argumentation knowledge. In [Bex et al.,
2013b], two-way translations are defined between AIF graphs and both ASPIC+

and E-ASPIC+ argumentation theories, and a number of information preserving
properties are proved in both cases. The latter essentially prove that given cer-
tain assumptions on the given AIF graphs, the translation functions are identity-
preserving (i.e. translating from the AIF graph to (E-)ASPIC+ and back again
yields the same graph as we started out with).
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One can then translate AIF representations of human authored arguments and
their interactions defined in the above-mentioned argumentation support tools, and
translate these to instantiations of (E-)ASPIC+ so enabling evaluation under Dung’s
semantics. This is explored in [Bex et al., 2013b], in which arguments and their
interactions authored in the Rationale tool [ter Berg et al., 2009] are translated
to the AIF and then to ASPIC+ arguments, attacks and defeats. In this way,
ASPIC+ is placed in the wider spectrum of not just formal but also philosophical
and linguistic approaches to argumentation.

6.3 Other applications of ASPIC+

ASPIC+ has been applied both in purely theoretical models and in implemented
architectures.

6.3.1 Theoretical applications

Some theoretical applications of ASPIC+ amount to the formulation of sets of ar-
gument schemes for specific forms of reasoning in ASPIC+. [van der Weide et al.,
2011] and [van der Weide, 2011] use a combination of ASPIC+ and [Wooldridge et
al., 2006]’s system for meta-argumentation for specifying argument schemes for rea-
soning about preferences in argumentation-based decision making. [Bench-Capon
and Prakken, 2010] and [Bench-Capon et al., 2011] formulate argument schemes for
policy debates in E-ASPIC+. [Prakken et al., 2015] and [Bench-Capon et al., 2013],
inspired by earlier AI & Law work of e.g. [Ashley, 1990] and [Aleven, 2003], model
factor-based legal reasoning with precedents in ASPIC+, with argument schemes
formalised as defeasible rules and auxiliary definitions concerning (sets of) factors,
their origins, their relations and their preferences as first-order axioms. This allows
the formalisation of arguments like the following:

Plaintiff The current case and precedent Bryce share pro-plaintiff fac-
tors {f1, f2} and pro-defendant factors {f3}, the pro-plaintiff factors out-
weigh the pro-defendant factors since Bryce was decided for the plaintiff;
therefore, the current case should be decided for me.
Defendant But unlike the current case, Bryce also contained pro-
plaintiff factor f4, so it is relevantly different from the current case, so
the outcome of Bryce does not control the current case.
Plaintiff But the current case contains factor f5 and both f4 and f5 are
a special case of the more abstract factor f6, so this difference between
Bryce and the current case is not relevant.
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Other theoretical applications of ASPIC+ concern case studies. [Prakken, 2012a]
modelled the legal and evidential reasoning in the American Popov v. Hayashi case,
an ownerships dispute between two baseball fans about a baseball hit in the 500th
homerun of a famous American baseball player. [Prakken, 2015] modelled a legisla-
tive debate and an American labour law dispute as argumentation-based decision
making involving goals, values and preferences.

Finally, some theoretical applications use ASPIC+ as a component of a more
general reasoning model. [Müller and Hunter, 2012] used a simple instantiation
of ASPIC+ with no knowledge base, only defeasible rules and no preferences as a
reasoning component in a formal model of decision making. [Prakken et al., 2013]
applied ASPIC+ in a dialogue model of collaborative IT security risk assessment.
Finally, [Timmer et al., 2017] used ASPIC+ for generating explanations of forensic
Bayesian networks.

6.3.2 Applications in implemented architectures

Some implemented architectures proposed in the literature have used implementa-
tions of ASPIC+ as a component. [Kok, 2013] used ASPIC+ as the agent rea-
soning mechanism in a testbed for inter-agent deliberation dialogue, meant for
testing whether the use of argumentation is beneficial to the individual agents or
to the group to which they belong. This testbed is available online at https:
//bitbucket.org/erickok/baidd. [Toniolo et al., 2015] used ASPIC+ as a rea-
soning component in their CISpaces sensemaking tool for intelligence analysis. [Yun
and Croitoru, 2016] used the original ASPIC inference engine for reasoning with pos-
sibly inconsistent ontologies in ontology-based data access. Finally, [van Zee et al.,
2016] used the TOAST implementation of ASPIC+ as a component of a framework
for rationalising goal models using argument diagrams.

7 Open problems and avenues for future research

The study of abstract rule-based argumentation with both strict and defeasible
rules has a long history, ultimately going back to the seminal work of [Pollock,
1987], passing through intermediate stages [Simari and Loui, 1992; Pollock, 1995;
Vreeswijk, 1997; Prakken and Sartor, 1997; Garcia and Simari, 2004] and currently
consolidated in the work on ASPIC+. As this article has shown, the approach is a
fruitful one, a mature metatheory is developing and there is a growing number of
implementations and applications. Yet many open questions and avenues for future
research remain. Here we list some of the (in our opinion) most important ones.
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• The study of argument preference relations and their properties is relatively
underdeveloped. More can be done here, for example, relating argument or-
derings to work in decision theory or to probability theory (see also the next
point), or combining different preference criteria for different kinds of prob-
lems, such as for epistemic versus practical reasoning.

• A recent research trend in formal argumentation is the combination of
argumentation-based inference with probability theory. This is not surpris-
ing, since argumentation has from the early days been proposed as a model for
reasoning under uncertainty. One question that arises here is how characteri-
sations of the strength or relative preference of arguments relate to probability
theory. Much recent work on probabilistic argumentation assigns probabilities
to arguments in abstract argumentation frameworks, as in [Li et al., 2012;
Hunter and Thimm, 2014]. However, assigning probabilities to arguments is
problematic, since in probability theory probabilities are assigned to the truth
of statements or to outcomes of events, and an argument is neither a state-
ment nor an event. What is required here is a precise specification of what
the probability of an argument means in terms of its elements. How to do this
in the context of abstract rule-based argumentation is still largely an open
question. A preliminary answer is given by [Hunter, 2013] but only for the
case of classical-logic argumentation.

• The contamination problems referred to in Section 5.1 remain to be solved for
the fully general ASPIC+framework. As briefly discussed at the end of Section
5.1, the work of [D’Agostino and Modgil, 2016] suggests directions for future
development of the ASPIC+framework such that one can establish conditions
under which the additional rationality postulates of [Caminada et al., 2012]
are satisfied.

• In contrast to abstract argumentation, the study of computational aspects
of rule-based argumentation and the various ways it can be instantiated is
seriously underdeveloped. Much work can still be done on algorithms and
complexity results for rule-based argumentation involving defeasible rules and
preferences.

• While there is a growing body of work on the dynamics of abstract argumenta-
tion, the work of [Modgil and Prakken, 2012] in ASPIC+ is to our knowledge
still the only account of the dynamics of structured argumentation. Much
remains to be done here.
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• Another important research topic is implementation of more expressive in-
stantiations than those existing today. It would, for example, be interesting
to integrate state-of-the art propositional, first-order or modal-logic theorem
provers in ASPIC+ implementations.

• Finally, with an eye to practical applications it is important to conduct compar-
ative case studies involving various formalisms, such as ASPIC+, assumption-
based argumentation, Carneades or [Brewka and Woltran, 2010]’s abstract
dialectical frameworks. It would be especially interesting to study issues like
naturalness and conciseness of representations.
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Abstract

Assumption-Based Argumentation (ABA) is a form of structured argumen-
tation with roots in non-monotonic reasoning. As in other forms of structured
argumentation, notions of argument and attack are not primitive in ABA, but
are instead defined in terms of other notions. In the case of ABA these other
notions are those of rules in a deductive system, assumptions, and contraries.

ABA is equipped with a range of computational tools, based on dispute trees
and amounting to dispute derivations, and benefiting from equivalent views of
the semantics of argumentation in ABA, in terms of sets of arguments and,
equivalently, sets of assumptions. These computational tools can also provide
the foundation for multi-agent argumentative dialogues and explanation of rea-
soning outputs, in various settings and senses.

ABA is a flexible modelling formalism, despite its simplicity, allowing to
support, in particular, various forms of non-monotonic reasoning, and reason-
ing with some forms of preferences and defeasible rules without requiring any
additional machinery. ABA can also be naturally extended to accommodate
further reasoning with preferences.

1 Introduction
Assumption-Based Argumentation (ABA) [Bondarenko et al., 1993; 1997; Dung et
al., 2009; Toni, 2014] is a form of structured argumentation [Besnard et al., 2014] with
roots in non-monotonic reasoning [Brewka et al., 1997]. Differently from abstract
argumentation [Dung, 1995] but as in other forms of structured argumentation,
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e.g. DeLP [García and Simari, 2014] and deductive arguments [Besnard and Hunter,
2014], notions of argument and attack are not primitive in ABA, but are instead de-
fined in terms of other notions. In the case of ABA these notions are those of rules
in an underlying deductive system, assumptions and their contraries: arguments
are supported by rules and assumptions and attacks are directed against (assump-
tions deducible from) assumptions supporting arguments, by building arguments
for the contrary of these assumptions. Semantics of ABA frameworks can be char-
acterised in terms of sets of assumptions (or extensions) [Bondarenko et al., 1993;
Bondarenko et al., 1997; Dung et al., 2007] meeting desirable requirements, in-
cluding, but not limited to, the two core requirements of closedness (where a set
of assumptions is closed iff it consists of all the assumptions deducible from it)
and conflict-freeness (where a set of assumptions is conflict-free iff it does not at-
tack itself). The closedness requirement is guaranteed to be fulfilled automatically
for all sets of assumptions for restricted kinds of ABA frameworks, referred to as
flat [Bondarenko et al., 1997]. The ABA semantics of admissible, preferred, com-
plete, well-founded, stable and ideal extensions [Bondarenko et al., 1997; Dung et
al., 2007] differ in which additional desirable requirements they impose upon sets
of assumptions, but can all be seen as providing argumentative counterparts of
semantics that had previously been defined for non-monotonic reasoning, by appro-
priately instantiating (flat and non-flat) ABA frameworks [Bondarenko et al., 1993;
Bondarenko et al., 1997] to “match” existing frameworks for non-monotonic reason-
ing.

Flat ABA is equipped with a range of computational tools, based on dispute trees
[Dung et al., 2006; Dung et al., 2007] and amounting to dispute derivations [Dung
et al., 2006; Dung et al., 2007; Toni, 2013], and benefiting from equivalent views
of the semantics of argumentation in flat ABA, in terms of sets of arguments and,
equivalently, sets of assumptions [Dung et al., 2007]. These computational tools
can also provide the foundation for inter-agent ABA dialogues in various settings
and senses [Fan and Toni, 2011b; Fan and Toni, 2011a; Fan and Toni, 2011c; Fan
and Toni, 2012b; Fan and Toni, 2012a; Fan and Toni, 2012c; Fan et al., 2014;
Fan and Toni, 2014b; Fan and Toni, 2016] and explanations of reasoning outputs,
in various settings and senses, e.g. to explain (non-)membership in answer sets of
logic programs [Schulz and Toni, 2016], to explain “goodness” of decisions [Fan and
Toni, 2014a; Fan et al., 2013; Zhong et al., 2014] and, more generically, to explain
admissibility of sentences in any flat instance of ABA [Fan and Toni, 2015c].

ABA is a flexible modelling formalism, despite its simplicity, allowing to support,
in particular, reasoning with some forms of preferences and defeasible rules without
requiring any additional machinery [Kowalski and Toni, 1996; Toni, 2008b; Thang
and Luong, 2013; Fan et al., 2013], but accommodating preferences at the “object-
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level”. ABA can also be naturally extended to accommodate further reasoning with
preferences, e.g. as in [Wakaki, 2014] or as ABA+ in [Čyras and Toni, 2016a; Čyras
and Toni, 2016b].

This paper is organised as follows. In Section 2 we recap the basic definitions of
ABA frameworks and semantics, focusing on semantics that have been inspired by
semantics for non-monotonic reasoning, and summarising properties of semantics,
distinguishing amongst generic and flat ABA frameworks. In Section 3 we illustrate
two instances of ABA, capturing autoepistemic logic and logic programming, and
respectively requiring non-flat and flat ABA frameworks. From Section 4 to Section 7
we focus on flat ABA frameworks. In particular, in Section 4 we summarise how
flat ABA frameworks can be equivalently understood, for all semantics considered
in this paper, as abstract argumentation frameworks [Dung, 1995], following the
results in [Dung et al., 2009], and, vice versa, abstract argumentation frameworks
can be equivalently understood, for all semantics considered in this paper, as flat
ABA frameworks, following the results in [Toni, 2012]. In Section 5 we provide an
overview and illustration of the basis of all computational machinery for ABA, in
the flat case, namely dispute trees [Dung et al., 2006; Dung et al., 2007] and dispute
derivations [Dung et al., 2006; Dung et al., 2007; Toni, 2013]. In this section we also
illustrate how this machinery can be adapted to provide a foundation for inter-agent
ABA dialogues [Fan and Toni, 2014b]. In Section 6 we overview various uses of (flat)
ABA to provide explanations of reasoning outputs [Schulz and Toni, 2016; Fan and
Toni, 2014a; Fan et al., 2013; Zhong et al., 2014; Fan et al., 2014; Fan and Toni,
2015c]. In Section 7 we overview various existing approaches to accommodating
preferences in (flat) ABA [Kowalski and Toni, 1996; Toni, 2008a; Toni, 2008b; Thang
and Luong, 2013; Fan et al., 2013] or extending ABA to accommodate reasoning with
preferences [Wakaki, 2014; Čyras and Toni, 2016a; Čyras and Toni, 2016b]. Finally,
in Section 8 we conclude, emphasising, in particular, omissions and future work.

This paper complements other earlier surveys of ABA [Dung et al., 2009; Toni,
2012; Toni, 2014]. In particular, all earlier surveys focused exclusively on flat ABA
frameworks. These are powerful knowledge representation mechanisms, as, for ex-
ample, they fully capture logic programming (see Section 3) and default logic [Reiter,
1980] (see [Bondarenko et al., 1997]), both widely used formalisms for non-monotonic
reasoning and knowledge representation and reasoning, as well as, for instance, some
forms of decision-making (see Section 7). However, non-flat frameworks allow to cap-
ture additional forms of reasoning, including the kind of non-monotonic reasoning
encapsulated by autoepistemic logic (see Section 3), as well as circumscription [Mc-
Carthy, 1980], amongst others (see [Bondarenko et al., 1997]). For example, in
non-flat ABA one can represent beliefs as assumptions that can be deduced via
rules from other assumptions.
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Moreover, differently from earlier surveys, this paper summarises uses of ABA for
non-monotonic reasoning (Section 3) and defeasible reasoning (Section 7) as well as
the explanatory power of ABA (Section 6) afforded by its computational machinery.
At the same time, this paper ignores other aspects of ABA, emphasised instead in
the earlier surveys, such as the equivalence between different presentations of ABA
in the literature, e.g. alternative views of arguments (as trees [Dung et al., 2009]
rather than as forward [Bondarenko et al., 1997] or backward [Dung et al., 2006]
deductions).

2 ABA frameworks and semantics
In this section we introduce ABA frameworks [Bondarenko et al., 1993; Bondarenko
et al., 1997; Dung et al., 2009; Toni, 2014] and their standard semantics of admissible,
preferred, complete, well-founded (called grounded in the specific case of flat ABA
frameworks), stable and ideal extensions [Bondarenko et al., 1993; Bondarenko et al.,
1997; Dung et al., 2007] as sets of assumptions. All the semantics considered have
counterparts in logic programming, in the sense that they correspond to semantics
of logic programs in the logic programming instance of ABA (see Section 3).

Definition 2.1. An ABA framework is a tuple 〈L,R,A, 〉 where

• 〈L,R〉 is a deductive system, with L a language (a set of sentences) and R
a set of (inference) rules, each with a head and a body, where the head is a
sentence in L, and the body consists of m ≥ 0 sentences in L;

• A ⊆ L is a (non-empty) set, with elements referred to as assumptions;

• is a total mapping from A into L; a is referred to as the contrary of a, for
a ∈ A.

Rules in R can be written in different formats, e.g. a rule with head σ0 and body
σ1, . . . , σm may be written as

σ0 ← σ1, . . . , σm or σ1, . . . , σm
σ0

.

Note that ← is not to be interpreted as logical implication, when used to represent
rules in ABA as above. In the remainder of this paper, we will use these two syntactic
conventions for writing rules interchangeably. Moreover, unless specified otherwise,
we will assume as given a generic ABA framework 〈L,R,A, 〉. Note also that
sentences have a contrary if, and only if, they are assumptions. This contrary is not
to be confused with negation, which may or may not occur in L.
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Rules in ABA frameworks can be chained to form deductions. These can be
defined in several ways, notably in a forward [Bondarenko et al., 1997], a backward
[Dung et al., 2006] or a tree-style manner [Dung et al., 2009]. We use here the latter
style, as follows:

Definition 2.2. A deduction for σ ∈ L supported by S ⊆ L and R ⊆ R, denoted
S

R
` σ (or simply S ` σ), is a (finite) tree with

• nodes labelled by sentences in L or by τ ,1

• the root labelled by σ,

• leaves either τ or sentences in S,

• non-leaves σ′ with, as children, the elements of the body of some rule in R
with head σ′, and R the set of all such rules.

Example 2.3. Consider an ABA framework 〈L,R,A, 〉 with R = {x ← c,
z ← y, b, y ←, a ← b} and A = {a, b, c}.2 The following are examples of deduc-
tions, denoted as indicated (first with the supporting rules and then without):

a a z y z

b y b τ y b

τ

{a}
{}
` a {b}

{a←b}
` a {y, b}

{z←y,b}
` z {}

{y←}
` y {b}

{z←y,b, y←}
` z

{a} ` a {b} ` a {y, b} ` z {} ` y {b} ` z

Note that deductions for assumptions have a non-empty rule support only if they
occur as head of rules, and sentences occurring as head of rules with an empty body
are always supported by an empty set of sentences (and a singleton set of rules).

Semantics of ABA frameworks are defined in terms of sets of assumptions meet-
ing desirable requirements. One such requirement is being closed under deduction,
defined as follows:

1τ /∈ L represents “true” and stands for the empty body of rules. In other words, each rule with
empty body can be interpreted as a rule with body τ for the purpose of presenting deductions as
trees.

2Throughout, we often omit to specify the language L, as it is implicit from the rules and
assumptions. Also, if the contraries of assumptions are not explicitly defined, then they are assumed
to be different from each other and any other explicitly mentioned sentences.
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Definition 2.4. The closure of a set of sentences S ⊆ L is

Cl(S) = {σ ∈ A | ∃ S′
R
` σ, S′ ⊆ S, R ⊆ R}.

A set of assumptions A ⊆ A is closed iff A = Cl(A).

In Example 2.3, {a, b} is closed whereas {b} is not.
Note that, in some ABA frameworks, sets of assumptions are guaranteed to be

closed. These ABA frameworks are referred to as flat and, as we will see later,
exhibit additional properties than generic ABA frameworks.

Definition 2.5. An ABA framework 〈L,R,A, 〉 is flat iff for every A ⊆ A, A is
closed.

The ABA framework in Example 2.3 is not flat, whereas the following is an
example of a flat ABA framework.

Example 2.6. An ABA framework with R = {r ← b, c, q ←, p ← q, a} and
A = {a, b, c} is guaranteed to be flat. Here, as in all flat ABA frameworks, deductions
for assumptions can only be supported by an empty set of rules, e.g. there is a single
deduction for a:

{a}
{}
` a .

It is easy to see that if no assumption is the head of a rule, then an ABA
framework is flat [Dung et al., 2006]. However, an ABA framework can be flat
even if some assumptions are heads of rules. For instance, in an ABA framework
with R = {a ← x} and A = {a}, the assumption a appears as the head of the
rule a ← x, but since x is not deducible from any set of assumptions, all sets
of assumptions in this ABA framework are guaranteed to be closed, and so the
framework is flat. Note, however, that “dummy” rules such as a← x above, whose
body is not deducible from any set of assumptions, could without loss of generality
be deleted from ABA frameworks, as they generate no conclusions. On the other
hand, the ABA framework in Example 2.3 has no such “dummy” rules and is not
flat (as, indeed, {b} is not closed).

The remaining desirable requirements met by sets of assumptions, as seman-
tics for ABA frameworks, are given in terms of a notion of attack between sets of
assumptions, defined as follows:

Definition 2.7. A set of assumptions A ⊆ A attacks a set of assumptions B ⊆ A
iff there are A′ ⊆ A and b ∈ B such that A′ ` b.
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The following definitions of semantics for ABA are adapted from [Bondarenko
et al., 1993; Bondarenko et al., 1997; Dung et al., 2007].

Definition 2.8. A set of assumptions (or extension) is conflict-free iff it does not
attack itself. A set of assumptions/extension A ⊆ A is

• admissible iff it is closed, conflict-free and, for every B ⊆ A, if B is closed
and attacks A, then A attacks B;

• preferred iff it is maximally (w.r.t. ⊆) admissible;

• complete iff it is admissible and contains all assumptions it defends, where A
defends a iff for every B ⊆ A, if B is closed and attacks {a}, then A attacks
B;

• stable iff it is closed, conflict-free and, for every a 6∈ A, A attacks {a};

• well-founded iff it is the intersection of all complete extensions;

• ideal iff A is maximal (w.r.t. ⊆) such that

(i) it is admissible, and
(ii) for all preferred extensions P ⊆ A, A ⊆ P .

Note that ideal sets of assumptions were originally defined, in [Dung et al.,
2007], in the context of flat ABA frameworks only. The original definition naturally
generalises to general, possibly non-flat, ABA frameworks as given above. Note also
that, in the case of flat ABA frameworks, the term grounded is conventionally used
instead of well-founded (e.g. in [Dung et al., 2007]): we will adopt this convention
too later in the chapter.

Example 2.9. Consider a non-flat ABA framework with rules R = {x ← c,
z ← b, a ← b}, A = {a, b, c} and a = x, b = y, c = z. Then, {c} is closed
and conflict-free. It is attacked by {b}, which cannot be counter-attacked but is not
closed and thus can be disregarded; it is also attacked by the closed {a, b}, which is
counter-attacked by {c}. Thus, {c} is admissible, as well as preferred and complete.
{} is also admissible and complete, and thus well-founded, but not preferred. {b}
is not admissible, because it is not closed. Moreover, the closed {a, b} is admissible
because it is conflict-free and {b} counter-attacks the closed {c} which attacks {a, b}.
Finally, {a, b} is preferred and complete, and thus {} is ideal.

Note that a set of assumptions/extension can be seen as characterising the set
of all sentences in the given ABA framework for which deductions exist supported
by (subsets of) the extension:
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Definition 2.10. The consequences of an extension A ⊆ A is

Cn(A) = {σ ∈ L | ∃ A′ ` σ, A′ ⊆ A}.

As an illustration, in Example 2.9, Cn({c}) = {c, x}.
In the remainder of the paper, when a sentence belongs to the consequences of

an admissible / preferred / stable / complete / well-founded / ideal extension we
will say that it is admissible / preferred / stable / complete / well-founded / ideal,
respectively. Thus, in Example 2.9, x is admissible.

The following properties on relationships amongst extensions according to vari-
ous semantics hold for generic (possibly non-flat) ABA frameworks:

Theorem 2.11. Let A ⊆ A be a set of assumptions.

(i) If A is stable, then it is preferred.

(ii) If A is admissible, then there is some P ⊆ A such that P is preferred and
A ⊆ P .

(iii) If A is stable, then it is complete.

(iv) If A is ideal and S ⊆ A is the intersection of all preferred extensions, then
A ⊆ S.

(v) If A is the intersection of all preferred extensions and admissible, then it is
ideal.

(vi) If A is ideal, then for each set of assumptions B attacking A there exists no
admissible set of assumptions B′ ⊆ A such that B′ ⊇ B.

(vii) If A is well-founded, then for every S ⊆ A, if S is stable, then A ⊆ S.

Proof.

(i) See proof of Theorem 4.6 in [Bondarenko et al., 1997].

(ii) See proof of Theorem 4.9 in [Bondarenko et al., 1997].

(iii) See proof of Theorem 5.5 in [Bondarenko et al., 1997].

(iv) By definition, A ⊆ P for every preferred P ⊆ A, so A ⊆ S.

(v) The intersection of all preferred extensionsA is a⊆-maximal set of assumptions
that is contained in every preferred extension, so if A is in addition admissible,
then it is by definition ideal.
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(vi) Assume A is ideal and let B attack A. By contradiction, assume there exists an
admissible B′ ⊇ B. Then, by (ii) above, there is a preferred set of assumptions
P such that B′ ⊆ P . By definition of ideal extension, A ⊆ P , hence P is not
conflict-free, contradicting its admissibility.

(vii) By definition, the well-founded extension is contained in every complete ex-
tension. Also, by (iii) above, every stable extension is complete. Therefore,
the well-founded extension must be contained in every stable extension.

Note that item (v) was given and proven in [Dung et al., 2007] (as Theo-
rem 2.1(iv)) in the case of abstract argumentation frameworks [Dung, 1995].

The following properties on existence of extensions according to various seman-
tics hold for generic (possibly non-flat) ABA frameworks.

Theorem 2.12.

(i) If there is an admissible extension, then there is at least one preferred exten-
sion.

(ii) If the empty set of assumptions is closed, then there is at least one preferred
extension.

(iii) If the empty set of assumptions is closed, then there exists an ideal extension.

Proof.

(i) Directly from Theorem 2.11(ii) (see also comments after the proof of Theo-
rem 4.9 in [Bondarenko et al., 1997]).

(ii) Directly from (i) above, as the empty set, if closed, is necessarily admissible
(see also comments after the proof of Theorem 4.9 in [Bondarenko et al., 1997]).

(iii) If {} is closed, then it is admissible. So by (i) above, there is a preferred
extension. Hence, the intersection S of preferred extensions exists too. Given
that {} is admissible, there must then be a ⊆-maximal admissible subset of S,
i.e. an ideal extension.

For a simple example of a (necessarily non-flat) ABA framework in which the
empty set is not closed, consider 〈L,R,A, 〉 with R = {a ←, x ← a}, A = {a}
and a = x: here, {} ` a, so that {} is not closed; note also that no set is admissible,
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because any admissible set needs to be a closed superset of the empty set, and since
there are deductions {} ` a as well as {} ` x, where x is the contrary of a, no closed
superset of {} is conflict-free.

Flat ABA frameworks fulfil the following property, often referred to as the Fun-
damental Lemma (see e.g. [Dung, 1995; Bondarenko et al., 1997]):

Theorem 2.13. Let 〈L,R,A, 〉 be a flat ABA framework, and let A ⊆ A be an
admissible set of assumptions that defends assumptions a, a′ ∈ A. Then A ∪ {a} is
admissible and defends a′.

Proof. See proof of Theorem 5.7 in [Bondarenko et al., 1997].

Note that non-flat ABA frameworks need not in general fulfil the Fundamental
Lemma: consider 〈L,R,A, 〉 with R = {c ← a, b}, A = {a, b, c} and a = x, b =
y, c = z; it is non-flat, because {a, b} ` c; observe that both {a} and {b} are closed
and unattacked, so, for instance, {a} is admissible and defends b; however, {a, b} is
not closed, and so not admissible.

Flat ABA frameworks also fulfil additional properties concerning relationships
between semantics, as follows:

Theorem 2.14. Let 〈L,R,A, 〉 be a flat ABA framework, and let A ⊆ A be a set
of assumptions.

(i) If A is preferred, then it is complete.

(ii) If A is grounded, then it is minimally (w.r.t. ⊆) complete.

(iii) If A is grounded, then for every P ⊆ A, if P is preferred, then A ⊆ P .

(iv) If A is ideal, then it is complete.

(v) If A is ideal and G ⊆ A is grounded, then A ⊇ G.

(vi) If A is maximally (w.r.t. ⊆) complete, then it is preferred.

(vii) If A is admissible, then it is ideal iff for each set of assumptions B attacking
A there exists no admissible set of assumptions B′ ⊆ A such that B′ ⊇ B.

Proof.

(i) Directly from Theorem 5.7 in [Bondarenko et al., 1997], see Corollary 5.8 in
[Bondarenko et al., 1997].

(ii) See proof of Theorem 6.2 in [Bondarenko et al., 1997].
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(iii) See proof of Theorem 6.4 in [Bondarenko et al., 1997].

(iv) Let I be ideal and suppose it defends a ∈ A. Due to flatness, I ∪ {a} is
admissible, and hence contained in every preferred extension. So a ∈ I by
⊆-maximality of I.

(v) Directly from (iv) and (ii) above.

(vi) If A was ⊆-maximally complete but not preferred, then, by Theorem 1(ii),
there would be some preferred yet not complete P such that A ( P ⊆ A,
contrary to (i) above.

(vii) See Theorem 3.3 in [Dung et al., 2007].

Note that items (iv) and (v) were given and proven in [Dung et al., 2007] (as
items (ii) and (iii) respectively in Theorem 2.1), in the case of abstract argumentation
frameworks. Also, (vii) was given and proven as Lemma 4(a) in [Dunne, 2009].

The following examples show that the properties in Theorem 2.14 may not hold,
in general, for non-flat ABA frameworks.

Example 2.15. Consider an ABA framework 〈L,R,A, 〉 with R = {d ← c},
A = {a, b, c, d} and a = p, b = a, c = b, d = d. Then {a} is preferred and ideal, but
not complete, as it defends c. (Cf. Theorem 2.14(i), (iv).) Note that {a, c} is not
admissible, as it is not closed whereas {a, c, d} is closed, but not admissible as not
conflict-free.

In this example, there is no complete extension and thus no well-founded exten-
sion, and thus the ideal extension is not a superset of the well-founded extension.

Example 2.16. Consider an ABA framework 〈L,R,A, 〉 with R = {p ← a,
p ← b, c ←}, A = {a, b, c, d} and a = b, b = a, c = d, d = p. Here, the
complete extensions are {a, c} and {b, c}, and thus {c} is well-founded, but it is
not (minimally) complete, as it does not defend itself against (the attacking) {d}.
(Cf. Theorem 2.14(ii).) This also shows that even if there is an admissible extension,
there need not be an ideal extension.

Example 2.17. Consider an ABA framework 〈L,R,A, 〉 with R = {d ← c,
f ← e, p ← d, p ← e}, A = {a, b, c, d, e, f} and a = f, b = a, c = b, d =
p, e = q, f = a. Then {e, f, b} is the only complete extension, and thus the well-
founded extension. Moreover {a} and {e, f, b} are (the only) preferred extensions,
and {e, f, b} 6⊆ {a}. Therefore, there exists a preferred extension that does not con-
tain the well-founded extension. (Cf. Theorem 2.14(iii).)
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Example 2.18. Consider an ABA framework 〈L,R,A, 〉 with R = {q ← a,
r ← b, c ← q, r, z ← a, z ← b, z ← c}, A = {a, b, c} and a = c, b = c, c = z.
Here, every A ⊆ A containing c is not conflict-free, so not admissible. Also, {a, b}
is not closed, so not admissible. However, {a} is admissible, but not complete, as
it defends b. Likewise {b} is admissible, but not complete. Indeed, both {a} and
{b} are preferred, yet not complete. Therefore, {} is ⊆-maximally complete, yet not
preferred. (Cf. Theorem 2.14(vi).)

Example 2.19. Consider an ABA framework 〈L,R,A, 〉 with R = {z ← c,
c ← a, b}, A = {a, b, c} and a = x, b = y, c = z. Then {a} is admissible (and
preferred) and unattacked. Observe that {a, x} is not closed, and {a, c}, {x, c},
{a, x, c} are not conflict-free. So {b} is preferred, yet {a} * {b}, so that A is not
ideal. (Cf. Theorem 2.14(vii).)

Flat ABA frameworks fulfil additional properties concerning existence of exten-
sions w.r.t. various semantics, as follows:

Theorem 2.20. Let 〈L,R,A, 〉 be a flat ABA framework.

(i) There is at least one preferred extension.

(ii) There is a unique ideal extension.

(iii) There is at least one complete extension.

(iv) There is a unique grounded extension and it is the least fixed point of Def,
where, for A ⊆ A, Def(A) = {a ∈ A | A defends a}.

Proof.

(i) Directly from the second item of Theorem 2.12, as, in the case of flat ABA
frameworks, the empty set (like any other set of assumptions) is guaranteed
to be closed (see also [Bondarenko et al., 1997]).

(ii) Follows from Theorem 2.12(iii).

(iii) Directly from (i) above and Theorem 2.14(i).

(iv) See proof of Theorem 6.2 in [Bondarenko et al., 1997].

Note that (ii) above was given and proven in [Dung et al., 2007] in the case of
abstract argumentation frameworks.

The following examples show that the properties in Theorem 2.20 may not hold,
in general, for non-flat ABA frameworks.
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Example 2.21. Consider an ABA framework 〈L,R,A, 〉 with R = {a ←}, A =
{a} and a = a. Here, {} is not closed and {a} is not conflict-free. Thus, no set
of assumptions is admissible. Hence, there is no preferred, complete, ideal or well-
founded extension.

Finally, consider an example which shows that, differently from flat ABA frame-
works, in general, an ideal extension need not be unique for non-flat ABA frame-
works.

Example 2.22. Consider an ABA framework 〈L,R,A, 〉 with assumptions A =
{a, a′, b, b′, c, d}, rules R = {c ← a, a′, c ← d, d ← a, b, d ← a′, b′,
a′ ← a, b, c, a← a′, b, c, a′ ← a, b′, c, a← a′, b′, c}, and contraries b = b′, b′ = b.3
Here, {} is closed, so admissible. There are two preferred extensions: {a, a′, b, c} and
{a, a′, b′, c}. Their intersection {a, a′, c} is not admissible, because it cannot defend
against (the closed attacking) {d}. Likewise, {a, c} and {a′, c} are not admissible.
Also, {a, a′} is not closed. However, both {a} and {a′} are admissible, and hence
ideal extensions.

Note that additional properties hold for (generic and/or flat) ABA frameworks
of restricted kinds, for instance, where “cycles” are not allowed (e.g. stratified and
order-consistent ABA frameworks, see [Bondarenko et al., 1997] for details). More-
over, additional properties hold for other special classes of ABA frameworks, in
addition to flat ABA frameworks, namely normal [Bondarenko et al., 1997] and
simple [Dimopoulos et al., 2002] ABA frameworks (see [Bondarenko et al., 1997;
Dimopoulos et al., 2002] for details).

3 ABA and non-monotonic reasoning
In this section we illustrate two instances of ABA for Non-Monotonic Reasoning,
namely Autoepistemic Logic (AEL) [Moore, 1985] and Logic Programming (LP).
The formal definitions of these instances, as well as correspondence results between
the semantics for ABA as given in Definition 2.8 and their original semantics, can
be found in [Bondarenko et al., 1997; Schulz and Toni, 2015]

For illustration, as well as a running example throughout the chapter, we will
use the following extract from the Nationwide4 building society’s 2016 policy for
UK/EU Breakdown Assistance:

3For readability, with an abuse of notation we may sometimes assume that the contraries (in
this case, c and d) of assumptions (in this case, c and d) are actually symbols in the language
(different from other explicitly mentioned sentences).

4www.nationwide.co.uk
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COVERED FOR: UK/EU Breakdown Assistance for account holder(s)
in any private car they are travelling in
NOT COVERED FOR: private cars not registered to the account
holder(s) unless the account holder(s) are in the vehicle at the time of
the breakdown

We consider a person, Mary (denoted simply as m), who is an account holder travel-
ling in a friend’s car (denoted as c) when the car breaks down somewhere in the EU.
In the remainder of this section we show how the application of the policy above to
Mary’s case can be represented in the AEL and LP instances of ABA, as given in
general in [Bondarenko et al., 1997]. In giving the concrete instantiations below we
will use the following abbreviations: ah stands for “account holder”; tr stands for
“travelling”; pr stands for “private vehicle”; cov stands for “covered”; reg stands for
“registered”; cov′ stands for “there is an exception to being not covered”.

3.1 Breakdown Assistance policy in the AEL instance of ABA
The application of the Breakdown Assistance policy to Mary’s case can be rep-
resented in the AEL instance of ABA as follows:

L = a modal language containing a modal operator L
(where Lσ stands for “σ is believed”) as well as atoms
ah(m), tr(m, c), pr(c), cov(m, c), reg(c,m), cov′(m, c), in(m, c)

R = a complete set of inference rules of classical logic for L together with
the following inference rules (all with an empty body):

ah(m) ∧ tr(m, c) ∧ pr(c) ∧ ¬L¬cov(m, c)→ cov(m, c)

¬reg(c,m) ∧ ¬Lcov′(m, c)→ ¬cov(m, c)

in(m, c)→ cov′(m, c) ah(m) tr(m, c)

pr(c) ¬reg(c,m) in(m, c)
A = {Lσ,¬Lσ |σ ∈ L}

Lσ = ¬Lσ and ¬Lσ = σ for any σ ∈ L

Note that, in this ABA framework, R includes domain-independent rules, e.g.

σ1 ∧ σ2
σ1

for any σ1, σ2 ∈ L,
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as well as domain-specific rules, e.g.

in(m, c) .

Note also that this ABA framework (as well as any other AEL instance of ABA) is
not flat [Bondarenko et al., 1997], as, for instance, the set of assumptions {Lcov(m),
¬Lcov(m)} is not closed, because it is classically inconsistent. Nonetheless, for this
instance, the empty set of assumptions is closed.

Given this representation in ABA, the problem of determining whether Mary
should be covered or not amounts to determining whether cov(m) is stable (follow-
ing the conventional AEL approach of determining whether cov(m) belongs to a
consistent stable expansion [Moore, 1985] of the theory consisting of the heads of
the domain-specific part of R), or preferred, or well-founded etc. (by adopting any of
the other ABA semantics). In this particular example, all ABA semantics agree that
Mary should be covered, by assuming ¬L¬cov(m, c), in agreement with the origi-
nal semantics of AEL, as predicted by the general correspondence Theorem 3.18
in [Bondarenko et al., 1997] and the fact that, in this example, all ABA semantics
agree with the semantics of stable extensions. As an illustration, {¬L¬cov(m, c)}
is admissible, since it is conflict-free, closed and the (closed) set of assumptions
{¬Lcov′(m, c)} attacking it, as well as all its (closed) supersets, are attacked by the
(closed) empty set of assumptions.

Note that, in the AEL instance of ABA, beliefs, of the form Lσ or ¬Lσ, are
assumptions that may occur as heads of rules. For example, the earlier AEL instance
of ABA may be extended so that R includes also

Lah(m)

to represent that Mary is believed to be an account holder. This kind of knowledge
cannot be directly represented in flat ABA.
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3.2 Breakdown Assistance policy in the LP instance of ABA

The application of the Breakdown Assistance policy to Mary’s case can be repre-
sented in the LP instance of ABA as follows:

R = {cov(m, c)← ah(m), tr(m, c), pr(c), not ¬cov(m, c),
¬cov(m, c)← ¬reg(c,m), not cov′(m, c),
cov′(m, c)← in(m, c),
ah(m)←, tr(m, c)←, pr(c)←, ¬reg(c,m)←, in(m, c)←}

A = {not p(t1, t2), not q(t) | p ∈ {cov, tr,¬cov,¬reg, cov′, in},
q ∈ {ah, pr},
t1, t2, t ∈ {m, c}}

L = A ∪ {x | not x ∈ A}
not x = x for any not x ∈ A

So, L is the Herbrand base of (the logic program) R together with all negation as
failure (NAF) literals that can be built from this Herbrand base, and A is the set
of all these NAF literals. Note that in this illustration we treat ¬cov and ¬reg as
predicate symbols.

Given this representation in ABA, the problem of determining whether Mary
should be covered or not amounts to determining, for instance, whether cov(m, c) is
stable (following the stable model semantics [Gelfond and Lifschitz, 1988] forR, seen
as a logic program, by virtue of the correspondence Theorem 3.13 in [Bondarenko
et al., 1997]), or admissible/preferred (following the preferred extension semantics
[Dung, 1991] for R, by virtue of the correspondence Theorem 4.5 in [Bondarenko
et al., 1997]), or grounded (following the well-founded model semantics [Gelder et
al., 1991] for R, by virtue of the correspondence Theorem 3.13 in [Bondarenko et
al., 1997]), or ideal (following the scenario semantics [Alferes et al., 1993] for R In
this particular example, all ABA semantics agree that Mary should be covered, by
assuming not cov(m, c). As an illustration, {not cov(m, c)} is admissible, since it is
conflict-free and the set of assumptions {not cov′(m, c)} attacking it, as well as all
its supersets, are attacked by the empty set of assumptions.

4 ABA versus abstract argumentation

In this section we focus on the relationship between flat ABA frameworks and Ab-
stract Argumentation (AA) frameworks [Dung, 1995]. In particular, flat ABA is an
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instance of AA, under all semantics considered in this paper and, conversely, AA is
an instance of (flat) ABA.

Flat ABA frameworks are instances of AA frameworks where arguments are de-
ductions supported by sets of assumptions and attacks are defined by appropriately
lifting the notion of attack between sets of assumptions to a notion of attack between
arguments [Dung et al., 2007; Toni, 2012].

Definition 4.1. Let ABA = 〈L,R,A, 〉 be a flat ABA framework.

• An argument for σ ∈ L supported by A ⊆ A and R ⊆ R, denoted A
R

`arg σ (or

simply A `arg σ), is such that there is a deduction A
R
` σ.

• An argument A `arg σ attacks an argument B `arg π iff there is b ∈ B such
that σ = b.

Then AA(ABA) = (Args, attack) is the corresponding AA framework of ABA with
Args the set of all arguments (as in the first bullet) and attack the set of all pairs
(a, b) such that a, b ∈ Args and a attacks b (as in the second bullet).

Note that Args contains an argument for every assumption in A as illustrated
by the following example.

Example 4.2. Consider an ABA framework ABA with rules and assumptions as
in Example 2.6 and a = r, b = q, c = p. Then AA(ABA) is (Args, attack) with
Args = {a, b, c, p, q, r} where a = {a} `arg a, b = {b} `arg b, c = {c} `arg c,
p = {a} `arg p, q = {} `arg q, r = {b, c} `arg r, and attack = {(p, c), (p, r), (q, b),
(q, r), (r, a), (r, p)}.

The semantics of an AA framework corresponding to a flat ABA framework can
be determined using the standard AA semantics [Dung, 1995; Dung et al., 2007]. For
all ABA semantics considered in this paper, the semantics of a flat ABA framework
corresponds to the semantics of its corresponding AA framework, as follows:

Theorem 4.3. Let ABA = 〈L,R,A, 〉 be a flat ABA framework and let AA(ABA)
be its corresponding AA framework.

(i) If a set of assumptions A ⊆ A is admissible / preferred / stable / complete
/ grounded / ideal in ABA, then the union of all arguments supported by
any A′ ⊆ A is admissible / preferred / stable / complete / grounded / ideal,
respectively, in AA(ABA).
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(ii) The union of all sets of assumptions supporting the arguments in an admis-
sible / preferred / stable / complete / grounded / ideal set of arguments in
AA(ABA) is admissible / preferred / stable / complete / grounded / ideal,
respectively, in ABA.

Proof. See the proof of Theorem 2.2 in [Dung et al., 2007] for admissible, grounded
and ideal extensions, the proof of Theorem 1 in [Toni, 2012]for stable extensions5,
and the proof of Theorem 6.1 and 6.3 [Caminada et al., 2015] for complete and
preferred extensions respectively.

Note that for the preferred, stable, complete, grounded, and ideal semantics the
correspondence between the extensions of a flat ABA framework and the extensions
of the corresponding AA framework is one-to-one. For the admissible semantics,
instead, the correspondence is one-to-many, i.e. the union of all sets of assumptions
supporting the arguments in an admissible extension may be the same for vari-
ous admissible extensions of the corresponding AA framework, as illustrated in the
following example.

Example 4.4. The ABA framework from Example 4.2 has two admissible exten-
sions: {} and {a}. In contrast, the corresponding AA framework has five admissible
extensions: A1 = {}, A2 = {q}, A3 = {p}, A4 = {p, q}, A5 = {p, a}, A6 = {q, a},
A7 = {p, q, a}. However, the union of all sets of assumptions supporting the argu-
ments in A1 and A2 is {}, so both correspond to the first admissible extension of the
ABA framework. Similarly, the union of all sets of assumptions supporting argu-
ments in the other admissible extensions (A3−−A7) of the AA framework is {a}, so
they all correspond to the second admissible extension of the ABA framework.

Theorem 4.3 shows that, under the semantics considered therein, flat ABA frame-
works are an instance of AA frameworks and the semantics of ABA can alternatively
be defined in terms of extensions as sets of arguments, as in [Dung et al., 2007], rather
than in terms of extensions as sets of assumptions, as in [Bondarenko et al., 1993;
Bondarenko et al., 1997]. This implies, for example, that existing machinery for
computing extensions of AA frameworks can be used to compute extensions of ABA
frameworks whose corresponding AA frameworks are finite. Conversely, as shown
below, AA frameworks are an instance of flat ABA frameworks, that is any AA
framework can be translated into a corresponding flat ABA framework such that
their respective extensions correspond [Toni, 2012]. This implies, in particular, that
existing machinery for determining whether sentences are admissible / preferred

5The proof of Theorem 1 in [Toni, 2012] actually considers a different notion of stable extension,
but can naturally be modified to prove the result indicated here.
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/ complete / grounded / ideal in flat ABA (see Section 5) can be used to deter-
mine whether arguments in an AA framework belong to an admissible / preferred
/ complete / grounded / ideal extension. The ABA framework corresponding to an
AA framework has the arguments in the AA framework as (the only) assumptions
and appropriate notions of contraries of these assumptions and rules to encode the
attacks between the arguments in the original AA framework, as follows:

Definition 4.5. Let AA = (Args, attack) be an AA framework. The corresponding
ABA framework of AA is ABA(AA) = 〈L,R,A, 〉 with
• A = Args;

• L = A ∪ {ac | a ∈ A};

• for all a ∈ A: a = ac;

• R = {bc ← a | (a, b) ∈ attack}.
Note that clearly the corresponding ABA framework of any AA framework is

flat since assumptions never occur in the head of a rule, by construction.
Since the set of arguments in a given AA framework coincides with the set of

assumptions of the corresponding ABA framework, there is a straight-forward one-
to-one correspondence between all semantics of the AA and ABA framework.

Theorem 4.6. Let AA = (Args, attack) be an AA framework and let ABA(AA)
be its corresponding ABA framework.

(i) If A ⊆ Args is admissible / preferred / stable / complete / grounded / ideal in
AA, then A is admissible / preferred / stable / complete / grounded / ideal,
respectively, in ABA(AA).

(ii) If A ⊆ A is admissible / preferred / stable / complete / grounded / ideal set of
arguments in ABA(AA), then A is admissible / preferred / stable / complete
/ grounded / ideal, respectively, in AA.

Proof. See proof of Theorem 2 in [Toni, 2012] for admissible. As noted in [Toni,
2012], the proof for other semantics is similar.

Example 4.7. Consider the AA framework AA with Args = {a, b, c} and attack =
{(a, b), (b, a), (b, c)}. The corresponding ABA framework is ABA(AA) with A =
{a, b, c}, a = ac, b = bc, c = cc, and R = {bc ← a, ac ← b,
cc ← b}. The admissible extensions of AA are {}, {a}, {b}, and {a, c}, which
are exactly the admissible extensions of ABA(AA). Correspondence as dictated by
Theorem 4.6 hold for the other semantics considered therein too.
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5 Dispute trees, dispute derivations and ABA dialogues
In this section we overview the main existing computational machinery for flat ABA
frameworks, allowing to determine whether sentences are admissible (and therefore
preferred, by Theorem 2.11 (ii), and complete, by Theorem 2.11 (ii) and Theo-
rem 2.14 (i)), grounded, or ideal.6 This machinery is based on the computation
of dispute trees (overviewed in Section 5.1), using dispute derivations (illustrated
in Section 5.2) that, in particular, can be executed amongst agents to form ABA
dialogues (illustrated in Section 5.3).

5.1 Dispute trees
Dispute trees [Dung et al., 2006; Dung et al., 2007] provide an abstraction of the
problem of determining whether arguments in AA frameworks belong to an admissi-
ble / grounded / ideal extension. Since flat ABA frameworks correspond to special
instances of AA frameworks (see Section 4), dispute trees can be used to determine
whether sentences are admissible / grounded / ideal, respectively, as well as identi-
fying assumptions in admissible / grounded / ideal extensions for ABA, respectively,
supporting arguments for these sentences. Dispute trees can be defined abstractly
for any abstract argumentation framework as follows:

Definition 5.1. Let (Args, attack) be any abstract argumentation framework. A
dispute tree for a ∈ Args is a tree T such that:

(i) every node of T is of the form [L : x], with L ∈ {P, O}, x ∈ Args: the node
is labelled by argument x and assigned the status of either proponent (P) or
opponent (O);

(ii) the root of T is a P node labelled by a;

(iii) for every P node n, labelled by some b ∈ Args, and for every c ∈ Args such
that c attacks b, there exists a child of n, which is an O node labelled by c;

(iv) for every O node n, labelled by some b ∈ Args, there exists exactly one child
of n which is a P node labelled by some c ∈ Args such that c attacks b;

(v) there are no other nodes in T except those given by 1–4.

6In general, this machinery cannot be used to determine whether a sentence is stable, as this
requires the computation of a full extension, as discussed in [Dung et al., 2002]. However, for
restricted types of flat ABA frameworks whose preferred extensions are guaranteed to be stable,
determining whether a sentence is admissible amounts to determining whether it is stable, too.
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The defence set of a dispute tree T , denoted by D(T ), is the set of all arguments
labelling P nodes in T .

Example 5.2. Given the AA framework with Args = {a, b, c, d, e, f, g} and
attack = {(a, b), (b, c), (d, e), (d, f), (e, d), (e, f), (f, g), (g, f)}, consider the trees in
the figure below. The tree on the left is not a dispute tree since an opponent node
is a leaf node, thus violating condition (iv) in Definition 5.1. In contrast, the trees
in the middle and on the right satisfy all conditions and are thus dispute trees for c
and d, respectively.

P : b

O : a

P : c

O : b

P : a

P : d

O : e

P : d
...

Figure 1: Only the middle and right of the three trees are dispute trees.

In order to help determine membership of arguments in admissible / grounded /
ideal extensions of AA frameworks, dispute trees need to fulfil special requirements,
as follows:

Definition 5.3. Let (Args, attack) be any abstract argumentation framework. A
dispute tree T (for some argument in Args) is

• admissible iff no argument in T labels both P and O nodes;

• grounded iff it is finite;

• ideal iff for no argument a in T labelling an O node there exists an admissible
dispute tree for a.

Example 5.4. Consider again the AA framework from Example 5.2. The dispute
tree shown in the middle of Figure 1 is admissible since no argument labels both a
proponent and an opponent node, as well as grounded since it is finite. Furthermore,
the dispute tree is ideal since its only opponent node is labelled with b and there are
no dispute trees for b, and thus there are no admissible dispute trees for b. The

2427



Čyras, Fan, Schulz and Toni

dispute tree for d on the right of Figure 1 is admissible, but not grounded since it
is infinite. It is furthermore not ideal since there is an admissible dispute tree for e
(obtained by exchanging d and e in the dispute tree for d on the right of Figure 1).

The left of Figure 2 gives an example of a dispute tree which is ideal but not
grounded. The opponent nodes of this dispute tree are all labelled by argument f.
Since the only dispute tree for f is the one displayed in the middle of Figure 2,
which is not an admissible dispute tree since argument d (as well as e) labels both
an opponent and a proponent node, the dispute tree for g on the left of Figure 2 is
ideal. Note that there are other admissible dispute trees for g which are not ideal. For
example the one on the right of Figure 2 is not ideal since there exists an admissible
dispute tree for e.

P : g

O : f

P : g

...

P : f

O : d O : e O : g

P : fP : e P : d

O : eO : d
...

...

...

P : g

O : f

P : d

O : e

P : d
...

Figure 2: Three dispute trees constructed from the AA framework in Example 5.2.

Theorem 5.5. Let (Args, attack) be any abstract argumentation framework.

(i) If T is an admissible dispute tree for an argument a then the defence set of T
is admissible.

If a ∈ A for some admissible set of arguments A ⊆ Args then there exists an
admissible dispute tree for a with defence set A′ such that A′ ⊆ A and A′ is
admissible.
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(ii) If T is an ideal dispute tree for an argument a then the defence set A of T is
such that A is admissible and A ⊆ I with I the ideal extension of (Args, attack).
If a ∈ I with I the ideal extension of (Args, attack), then there exists an ideal
dispute tree for a with defence set A and A ⊆ I.

(iii) If T is a grounded dispute tree for an argument a then the defence set A of
T is such that A is admissible and A ⊆ G with G the grounded extension of
(Args, attack).
If a ∈ G with G the grounded extension of (Args, attack), then there exists a
grounded dispute tree for a with defence set A and A ⊆ G.

Proof. (i) See proof of Theorem 3.2 in [Dung et al., 2007].

(ii) See proof of Theorem 3.4 in [Dung et al., 2007].

(iii) Follows directly from Theorem 3.7 in [Kakas and Toni, 1999].

Example 5.6. As discussed in Example 5.4, the dispute tree in the middle of Fig-
ure 1 is admissible and grounded. As stated in Theorem 5.5 the defence set, {a, c},
is admissible and is a subset of the grounded extension of the AA framework from
Example 5.2, in fact in this case it coincides with the grounded extension. The ideal
extension of the AA framework is {a, c, g} and we saw that there exists an ideal
dispute tree for g (on the left of Figure 2) whose defence set is {g}, which is a subset
of the ideal extension.

In order to determine whether a sentence is admissible / grounded / ideal, given
a flat ABA framework, a dispute tree for an argument for that sentence can be used,
by virtue of the correspondence results overviewed in Section 4 and Theorem 5.5
above. For example, given the ABA framework in Section 3.2, the dispute tree in
Figure 3 for argument {not¬cov(m, c)} `arg cov(m, c) can be used to determine
that cov(m, c) is admissible, grounded and ideal. Indeed, this is a dispute tree
since the leaf node cannot be attacked and no other opponent node can attack
the root. Moreover, it is trivially admissible and, since it is finite, it is grounded.
Finally, it is ideal as no admissible dispute tree for its only opponent node exists (as
{} `arg cov′(m, c) cannot be attacked).

5.2 Dispute derivations
Dispute derivations [Dung et al., 2006; Dung et al., 2007; Toni, 2013; Craven and
Toni, 2016] are algorithms for determining whether a given sentence, in the language
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P : {not ¬cov(m, c)} `arg cov(m, c)

O : {not cov′(m, c)} `arg ¬cov(m, c)

P : {} `arg cov′(m, c)

Figure 3: A dispute tree for {not¬cov(m, c)} `arg cov(m, c) for the flat ABA
framework in Section 3.2.

of a flat ABA framework, is admissible, grounded or ideal. Different kinds of dispute
derivations can be defined for the different semantics, as in [Dung et al., 2006;
Dung et al., 2007], or the same template of dispute derivations can be instantiated
differently for the different semantics, as in [Toni, 2013; Craven and Toni, 2016]
and, for the LP instance of ABA, in [Kakas and Toni, 1999]. Dispute derivations for
determining whether a sentence is admissible can also be used to determine whether
the sentence is complete or preferred [Toni, 2013]. All given notions of dispute
derivations are defined as games between (fictional) proponent (P) and opponent (O)
players, as for dispute trees. All given notions are sound and, for restricted types of
flat ABA frameworks (referred to as p-acyclic [Dung et al., 2006]), complete [Dung et
al., 2006; Dung et al., 2007; Toni, 2013]. The most recently defined types of dispute
derivations are complete in general [Craven and Toni, 2016], for the admissible and
grounded semantics. Different types of dispute derivations also differ in the data
structures they deploy as well as their outputs:

• the dispute derivations of [Dung et al., 2006; Dung et al., 2007] deploy sets
of assumptions and output admissible sets of assumptions in all cases, and, in
the case of grounded/ideal semantics, these sets of assumptions are contained
in the grounded/ideal extension, respectively;

• the dispute derivations of [Toni, 2013; Craven and Toni, 2016] deploy a mix-
ture of sets of assumptions and sets of potential arguments, i.e. deductions
supported by any sets of sentences (rather than assumptions) and with sen-
tences in the support possibly marked as “seen”, and output admissible sets
of assumptions in all cases, as for the previous types of dispute derivations, as
well as dialectical structures from which admissible / grounded / ideal dispute
trees can be obtained.
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We illustrate dispute derivations for the LP instance of ABA representation of the
Breakdown Assistance policy, in Section 3.2, and refer to the original papers for
formal definitions and results. In the illustration, we focus on the dispute derivations
of [Toni, 2013], since they are generalisations of the earlier dispute derivations of
[Dung et al., 2006; Dung et al., 2007] but still in the same spirit. Instead, the
dispute derivations of [Craven and Toni, 2016] are based on a different conceptual
model for ABA, where arguments and sets of arguments are defined as graphs instead
(see [Craven and Toni, 2016] for details).

The (flat) ABA framework of Section 3.2 can be used to determine whether Mary
should be covered, by determining whether cov(m, c) is admissible (and thus, for this
particular ABA framework, grounded, ideal etc.), i.e. if it belongs to an admissible
extension. This can be determined in turn by means of a dispute derivation for
cov(m, c). This dispute derivation starts with a potential argument by P:7

{} `p{cov(m,c)} cov(m, c),

namely a deduction {cov(m, c)} ` cov(m, c) with no sentence in the support
{cov(m, c)} marked as “seen” (and the sentence cov(m, c) in the support still “un-
seen”). In the first step of the derivation, then, P needs to “expand” its potential
argument, while O is watching and can only put forward new potential arguments
when P has sufficiently expanded its own potential arguments so as to have identified
assumptions in their “unseen” support that O can attack (automatically rendering
them “seen”). In this simple illustration, P will necessarily expand the initial poten-
tial argument to

{} `p{ah(m),tr(m,c),pr(c),not¬cov(m,c)} cov(m, c)

and identify the assumption not¬cov(m, c) as an element of the defence set of the
dispute tree that the dispute derivation will output (if successful). At this stage
O may opt to eagerly attack this assumption or patiently wait for P to carry on
“expanding” its potential argument until it becomes an actual argument. This choice
for O (and, in an analogous situation, for P) is dictated by the selection function, a
parameter in the definition of dispute derivations. Whichever this selection function,
at some later stage in the derivation the initial potential argument by P will become
the actual argument

{not¬cov(m, c)} `p{} cov(m, c) (Pcov)
7In general, a potential argument is of the form A `p

S σ, for A ⊆ A, S ⊆ L, and σ ∈ L, where
the superscript p stands for “potential”. Given A `p

S σ, there is a deduction for σ supported by
A ∪ S (and some set of rules), with S the set of “unseen” sentences in this support and A the set
of “seen” assumptions, as illustrated later.
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attacked by a potential argument by O

{not cov′(m, c)} `pU ¬cov(m, c) (O¬cov(U))

where, depending on the selection function, U may be as follows:

• U = {¬reg(c,m)}, or
• U = {}.

In both cases, at some earlier stage, P will have chosen not cov′(m, c), in the “un-
seen” support of a potential argument by O, as a culprit, causing that assumption
to be marked as “seen” from that stage onwards. Note that O’s potential argu-
ment O¬cov(U), whichever U , is necessarily obtained by “expanding” the potential
argument

{} `p{¬cov(m,c)} ¬cov(m, c)
put forward earlier by O to attack P’s defence set element not¬cov(m, c). Also, when
P “sees” not cov′(m, c) and chooses it as a culprit in O¬cov(U), it creates a potential
argument

{} `p{cov′(m,c)} cov′(m, c)
which is later “expanded” to

{} `p{} cov′(m, c). (Pcov′)

Since O cannot possibly attack this argument, the derivation terminates success-
fully, returning, as output, the defence set {not¬cov(m, c)} as well as the dialectical
structure

Pcov

O¬cov′(U)

OO

Pcov′

OO

from which the dispute tree in Figure 3 is obtained.
In general, the defence set and the set of culprits are used to perform various

kinds of filtering to save computation (to prevent players from attacking assumptions
they have already attacked) as well as to guarantee that the computed defence set
is conflict-free. Different semantics require different combinations of these filtering
mechanisms. Moreover, the ideal semantics requires additional subcomputation to
guarantee that the dispute tree is indeed ideal (namely that there exists no admissible
dispute tree for the argument held at any opponent node).
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5.3 ABA dialogues
ABA dialogues, as given in [Fan and Toni, 2014b; Fan and Toni, 2012a; Fan and
Toni, 2011a], can be viewed as a distributed computation of dispute trees amongst
agents, holding different ABA frameworks, but with the same underlying language
L.8 An ABA dialogue is a sequence of utterances. The content of utterances may be
a rule, an assumption, a contrary, or a claim whose “acceptability” (under admissible
/ grounded / ideal semantics) needs to be ascertained. The dialogue model can be
used to support several dialogue types, e.g. information seeking and persuasion [Fan
and Toni, 2011c; Fan and Toni, 2012a; Fan and Toni, 2012c; Fan et al., 2014].

Syntactically, given two agents ai and aj , let ID be a (non-empty, possibly
infinite) set that is totally ordered, with the ordering given by <, and contains a
special element ID0 which is the least element w.r.t. <. Then, utterances are denoted
as tuples:

〈ai, aj , T, C, ID〉,

where

• ai is the agent making this utterance;

• aj is the recipient;

• C (the content) is of one of the following forms:
- claim(χ) for some χ ∈ L (a claim),
- rl(σ0 ← σ1, . . . , σm) for some σ0, . . . , σm ∈ L with m ≥ 0 (a rule),
- asm(α) for some α ∈ L (an assumption),
- ctr(α, σ) for some α, σ ∈ L (a contrary),
- a pass sentence π, such that π /∈ L.

• ID ∈ ID \ {ID0} (the identifier).

• T ∈ ID (the target); we impose that T < ID.

Through a dialogue δ, the participating agents construct a joint ABA framework
Fδ drawn from δ. This Fδ contains all information that the two agents have uttered

8Here, as in [Gaertner and Toni, 2008], we (equivalently) define the contrary of an assumption
as a total mapping from an assumption to a (non-empty) set of sentences, instead of a mapping
from an assumption to a sentence as in the original ABA. This lends itself better to a dialogical
setting, as agents may hold different sentences as contrary to the same assumption.
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in the dialogue and gives the context for examining the “acceptability” of the claim
of the dialogue. Conceptually, a dialogue is “successful” if its claim is “acceptable”
in Fδ. Note that the claim of a dialogue may be a belief, and acceptability thereof an
indication that the agents may legitimately uphold the belief, or a course of actions,
and acceptability thereof an indication that the agents may legitimately choose to
adhere to it. Indeed, “acceptability” has so far shown to be an important criterion
for assessing the outcome of various types of dialogues [Fan and Toni, 2011c; Fan and
Toni, 2012a; Fan and Toni, 2012c; Fan et al., 2014], and thus “successful” dialogues
can be seen as building blocks of a widely deployable framework for distributed
interactions in multi-agent systems.

Rather than checking “success” retrospectively, this can be guaranteed construc-
tively by means of legal-move functions (see [Fan and Toni, 2011a; Fan and Toni,
2014b] for details) guaranteed to generate “successful” dialogues if a limited form of
retrospective checking by means of outcome functions succeeds [Fan and Toni, 2011a;
Fan and Toni, 2014b]. Dialogue goals, e.g. information-seeking, inquiry or persua-
sion, can be modelled with strategy-move functions [Fan and Toni, 2012a]. Given a
dialogue, a legal-move function returns a set of allowed utterances that can be ut-
tered to extend the dialogue. Legal-move functions can thus be viewed as dialogue
protocols. Outcome functions are mappings from dialogues to true / false. Given
a dialogue, an outcome function returns true if a certain property holds for that
dialogue. From utterances allowed by legal-move functions, strategy-move functions
further select the ones advancing dialogues towards their goals.

We illustrate ABA dialogues for information seeking, persuasion and inquiry for
the flat ABA framework in Section 3.2 again, and refer to the original papers for
formal definitions and results.

Informally, information seeking dialogues are dialogues with the inquirer agent
seeking some specific information from the inquiree agent. In an information seeking
dialogue, the inquirer agent does nothing but posing its query, whereas the inquiree
agent puts forward information it possesses in answering the query. With the break-
down assistance policy example, suppose that the inquirer agent a1 asks the inquiree
agent a2 about the existence of argument for the sentence cov′(m, c), as follows:

〈a1, a2, 0, claim(cov′(m, c)), 1〉
〈a2, a1, 1, rl(cov′(m, c)← in(m, c)), 2〉
〈a2, a1, 2, rl(in(m, c)←), 3〉

We can see that with a1 and a2 each using suitable strategy-move functions [Fan and
Toni, 2012a], a1 puts forward cov′(m, c) as the claim of this dialogue and a2 puts
forward utterances 2 and 3 establishing the argument (in the ABA framework Fδ
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drawn from the dialogue) for cov′(m, c) supported by the empty set of assumptions
and the two rules:

cov′(m, c)← in(m, c) and in(m, c)←.

Persuasion dialogues are dialogues between two agents posing “incompatible” views
towards some topic with the persuader trying to “prove” the topic and the persuadee
trying to “disprove” it. Illustrating with the running example, we may have (for a1
the persuader and a2 the persuadee):

〈a1, a2, 0, claim(not cov′(m, c)), 1〉
〈a1, a2, 1, asm(not cov′(m, c)), 2〉
〈a2, a1, 2, ctr(not cov′(m, c), cov′(m, c)), 3〉
〈a2, a1, 3, rl(cov′(m, c)← in(m, c)), 4〉
〈a2, a1, 4, rl(in(m, c)←), 5〉

Here, a1 tries to establish the acceptability of not cov′(m, c) by claiming it as an
assumption, thus forming the argument {not cov′(m, c)} ` not cov′(m, c), whereas
a2 puts forward the attacking argument {} ` cov′(m, c) with utterances 3, 4 and
5. The presented persuasion behaviours of both agents are formally defined with
strategy-move functions in [Fan and Toni, 2012c].

Inquiry dialogues are about two agents jointly “proving” or “disproving” the
acceptability of some claim. Both agents put forward information supporting or
attacking the claim. Again illustrated with the breakdown assistance policy example,
we may have:

〈a1, a2, 0, claim(cov(m, c)), 1〉
〈a1, a2, 1, rl(cov(m, c)← ah(m), tr(m, c), pr(c), not ¬cov(m, c)), 2〉
〈a1, a2, 2, rl(ah(m)←), 3〉
〈a1, a2, 2, rl(tr(m, c)←), 4〉
〈a1, a2, 2, rl(pr(c)←), 5〉
〈a1, a2, 2, asm(not ¬cov(m, c)), 6〉
〈a2, a1, 6, ctr(not ¬cov(m, c),¬cov(m, c)), 7〉
〈a2, a1, 7, rl(¬cov(m, c)← ¬reg(c,m), not cov′(m, c)), 8〉
〈a2, a1, 8, rl(¬reg(c,m)←), 9〉
〈a2, a1, 8, asm(not cov′(m, c)), 10〉
〈a2, a1, 10, ctr(not cov′(m, c), cov′(m, c)), 11〉
〈a2, a1, 11, rl(cov′(m, c)← in(m, c)), 12〉
〈a2, a1, 12, rl(in(m, c)←), 13〉
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With utterances 1-6, the argument {not ¬cov(m, c)} ` cov(m, c) is formed. Ut-
terances 7-10 form an attacking argument {not cov′(m, c)} ` ¬cov(m, c), which is
attacked by {} ` cov′(m, c). The inquiry behaviour of agents is formally defined in
[Fan and Toni, 2012a].

6 ABA and explanation
It is widely acknowledged that there is a strong interplay between argumentation
and explanation, as for example discussed in [Seselja and Straßer, 2013]. In this
section we overview existing proposals [Fan and Toni, 2015c; Schulz and Toni, 2016]
using dispute trees in ABA (see Section 5) to provide (argumentative) explanations
for why sentences should be concluded. Dispute trees for (flat) ABA can also serve
as the basis for explanations in other settings, including various forms of decision-
making [Fan and Toni, 2014a; Fan et al., 2014; Zhong et al., 2014; Fan et al., 2013]
and case-based reasoning [Čyras et al., 2016] (see the original papers for details).
In particular, natural language explanations can be drawn automatically from the
dispute trees (see [Zhong et al., 2014; Mocanu et al., 2016] for details).

6.1 Dispute trees as explanations in flat ABA
We have seen (in Section 5) that dispute trees can be used to determine whether a
sentence is admissible / grounded / ideal (and, as a consequence, preferred / com-
plete). These dispute trees can also provide a computational counterpart for provid-
ing explanations for these sentences (being consequences of admissible / grounded
/ ideal / preferred / complete extensions, respectively). For example, the dispute
tree in Figure 3 can be seen as providing an explanation for cov(m, c), in the spirit
of [Newton-Smith, 1981]:

. . . if I am asked to explain why I hold some general belief that p, I answer
by giving my justification for the claim that p is true.

Hence, if a belief q does not contribute to the justification of p, q should not be
in the explanation of p. Dispute trees are explanations for (the argument in their
root supporting) a sentence in that everything in them contribute to justifying the
sentence. This informal notion can be formalised in terms of a notion of related
admissibility of ABA arguments [Fan and Toni, 2015c],9 in turn defined using a
notion of r-defence [Fan and Toni, 2015c], given as follows:

9The notions defined in this section can be defined trivially for any AA framework too, as in
[Fan and Toni, 2015c]. The notions for AA frameworks corresponding to ABA frameworks, given
below, are an instantiation of the notions for any AA frameworks.
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Definition 6.1. Given an ABA framework ABA = 〈L,R,A, 〉, let AA(ABA) =
(Args, attack) be the corresponding AA framework of ABA.

• Given a, b ∈ Args, a r-defends b iff:

(i) a = b, or
(ii) there exists c ∈ Args such that a attacks c and c attacks b, or
(iii) there exists c ∈ Args such that a r-defends c and c r-defends b.

• Given a ∈ Args and σ ∈ L, a r-defends σ iff there exists b ∈ Args such that
b supports σ and a r-defends b.

As an illustration, given the ABA framework in Section 3.2:

{} `arg cov′(m, c) r-defends {} `arg cov′(m, c),
{} `arg cov′(m, c) r-defends {not ¬cov(m, c)} `arg cov(m, c),
{} `arg cov′(m, c) r-defends cov′(m, c),
{not ¬cov(m, c)} `arg cov(m, c) r-defends cov(m, c),
{} `arg cov′(m, c) r-defends cov(m, c).

The notion of related admissibility is obtained by combining the r-defence rela-
tion and standard admissibility as follows:

Definition 6.2. Given an ABA framework ABA, let AA(ABA) = (Args, attack)
be the corresponding AA framework of ABA. A set of arguments A ⊆ Args is related
admissible iff:

(i) A is admissible, and

(ii) there exists a topic sentence σ (of A) such that σ is supported by some argument
in A and for all b ∈ A, b defends σ.

Intuitively, for a related admissible set of arguments A with topic sentence σ, no
argument in A is “unrelated” to σ as all arguments in A r-defend σ.

As an illustration, given the ABA framework in Section 3.2,

{{} `arg cov′(m, c)}

is related admissible, with topic sentence cov′(m, c), and

{{} `arg cov′(m, c), {not ¬cov(m, c)} `arg cov(m, c)}
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is related admissible, with topic sentence cov(m, c). Instead,

{{} `arg cov′(m, c), {not cov′(m, c)} `arg ¬cov(m, c)}

is not related admissible as it is not admissible; and

{{} `arg ah(m), {} `arg pr(c)}

is not related admissible as there does not exists a topic sentence σ such that it is
defended by both {} `arg ah(m) and {} `arg pr(c).

Dispute trees correspond to explanations in that their defence sets are related
admissible:

Theorem 6.3. Given an ABA framework ABA = 〈L,R,A, 〉, let AA(ABA) =
(Args, attack) be the corresponding AA framework of ABA. Let σ ∈ L.

(i) Let a = A `arg σ ∈ Args and T be a dispute tree for a. If T is admissible /
grounded / ideal, then D(T ) is related admissible.

(ii) If A ⊆ Args is related admissible, with topic sentence σ, then there is an
admissible dispute tree T such that A′ = D(T ) and A′ ⊆ A.

Proof. (i) By definition 6.1, all arguments labelling P nodes (D(T )) in a dispute
tree r-defend the argument labelling the root note. By Theorem 5.5, all argu-
ments labelling P nodes in an admissible / grounded / ideal dispute tree are
admissible. Thus, by Definition 6.2, D(T ) is related admissible.

(ii) If A is related admissible, by Definition 6.2, A is also admissible. By Theo-
rem 5.5, there exists an admissible dispute tree T such that A′ = D(T ) and
A′ ⊆ A.

6.2 Explanations for answer set programming
We have seen in Section 3.2 that a logic program can be encoded as an (equivalent)
ABA framework such that the semantics of the ABA framework coincide with the
semantics of the underlying logic program [Bondarenko et al., 1997], for a wide
range of semantics including the stable model (or answer set) semantics [Schulz and
Toni, 2016; Schulz and Toni, 2015; Caminada and Schulz, 2015]. Logic programs
under the answer set semantics (or answer set programming ) can be applied in a
wide range of scenarios [Baral and Uyan, 2001; Lifschitz, 2002; Eiter et al., 2008;
Delgrande et al., 2009; Ricca et al., 2010; Gebser et al., 2011b; Boenn et al., 2011;
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Erdem, 2011; Ricca et al., 2012; Terracina et al., 2013], thanks also to the availability
of efficient solvers for the computation of answer sets [Leone et al., 2006; Gebser et
al., 2011a; Alviano et al., 2015; Calimeri et al., 2016]. These however do not provide
any explanation of the answer sets computed. In particular, given one such answer
set, there is no indication as to why a literal is or is not part of an answer set: this
would instead be beneficial in human-computer interaction scenarios where logic
programming is used for example to support human decision making.

As seen in Section 6.1, dispute trees do not only provide a way of determining
whether or not a sentence is, for instance, admissible, but also an explanation as to
why this is so.

Given that answer sets of a logic program correspond to stable extensions of
the ABA framework encoding this logic program [Bondarenko et al., 1997] and that
if an answer set is guaranteed to exist then it is preferred (See Theorem 2.11 (i)),
dispute trees can be used to determine, for a computed answer set and sentence in
it, an explanation (in the form of a dispute tree) for why this is so. However, for
the purpose of extracting explanations for literals in terms of other literals (rather
than arguments, see [Schulz and Toni, 2016]), it is useful to single out, from the set
of rules supporting ABA arguments, the rules with an empty body (referred to as
facts in LP):

Definition 6.4. Given a flat ABA framework 〈L,R,A, 〉, we say that
(A,F ) `arg σ is a fact-based-argument for σ ∈ L supported by A ⊆ A and F ⊆ {π ←
| π ← ∈ R}, if there is an argument A

R
`arg σ such that F = R ∩ {π ← | π ← ∈ R}.

A generalisation of dispute trees, which we call explanation trees [Schulz and
Toni, 2016], where nodes are labelled by fact-based-arguments10 can be used to
explain why a literal is contained in a given answer set.

As an example, consider the ABA framework in Section 3.2, and the logic pro-
gram amounting to its rules. This logic program has only one answer set: {ah(m),
tr(m, c), pr(c), ¬reg(c,m), in(m, c), cov(m, c), cov′(m, c)}.

The explanation tree in Figure 4 justifies why Mary is covered, i.e. why cov(m, c)
is contained in the answer set. It expresses that there is evidence that Mary is
covered (given by the argument with conclusion cov(m, c) in the root proponent
node) since Mary is the account holder and she is travelling in a car which is a
private vehicle (facts supporting the argument), and since it can be assumed that
there is no evidence that Mary is not covered (not ¬cov(m, c) is an assumption).
Even though there is evidence against this assumption, i.e. there is evidence that
that Mary is not covered (given by the argument with conclusion ¬cov(m, c) in

10For better readability we will omit the symbol ← for all facts in the set F .
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P : ({not ¬cov(m, c)}, {ah(m), tr(m, c), pr(c)}) `arg cov(m, c)

O : ({not cov′(m, c)}, {¬reg(c,m)}) `arg ¬cov(m, c)

P : ({}, {in(m, c)}) `arg cov′(m, c)

Figure 4: An explanation tree justifying why Mary is covered in the running example

the opponent node) because she is not registered on the car, this evidence can be
disregarded since Mary was in the car at the time of the breakdown (given by
the proponent argument with conclusion cov′(m, c), which attacks the assumptions
not cov′(m, c) of the opponent node). Note that this explanation tree is the same as
the dispute tree in Figure 3 except that it uses fact-based-arguments.

In contrast to dispute trees which are used to justify only the containment of an
argument in an extension, explanation trees can also explain why a literal is not in
an answer set. In that case, explanation trees have an opponent node as their root,
as illustrated by the explanation tree below which justifies why it is not the case
that Mary is not covered (why ¬cov(m, c) is not part of the answer set)

O : ({not cov′(m, c)}, {¬reg(c,m)}) `arg ¬cov(m, c)

P : ({}, {in(m, c)}) `arg cov′(m, c)

Note that this explanation tree is a sub-tree of the previous explanation tree in
Figure 4 justifying why cov(m, c) is contained in the answer set.

Since explanation trees whose root node is a proponent node are dispute trees and
since arguments which are in a stable extension are also in an admissible extension
(Theorem 2.11 (i)), it follows from the relationhip between admissible extensions
and admissible dispute trees given in Theorem 5.5 (i) that explanation trees starting
with proponent nodes are admissible dispute trees. Thus, for literals contained in the
answer set, explanation trees illustrate that the literal is supported by an admissible
subset of this answer set.
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Explanation trees whose root node is an opponent node have an explanation
tree for a literal contained in the answer set as its direct sub-tree. Thus, this direct
sub-tree is an admissible dispute tree. This means that literals not contained in
the answer set are justified by illustrating that they are attacked by an admissible
subset of the answer set.

In summary, explanation trees provide justifications of literals with respect to an
answer set in terms of admissible subsets of this answer set [Schulz and Toni, 2016].

7 ABA and reasoning with preferences

Argumentation and preferences come a long way, see e.g. [Simari and Loui, 1992].
In general, preferences can be used to express, for instance, agents’ degrees of be-
lief, imperatives (moral, legal, etc.), aims, wishes. There are numerous methods in
knowledge representation and reasoning to account for preference information, see
e.g. [Prakken and Sartor, 1999; Kakas and Moraitis, 2003; Delgrande et al., 2004;
Brewka et al., 2010; Domshlak et al., 2011], and, in particular, several argumen-
tation formalisms handling preferences, see e.g. [Bench-Capon, 2003; Modgil, 2009;
Modgil and Prakken, 2014; García and Simari, 2014; Besnard and Hunter, 2014;
Amgoud and Vesic, 2014; Baroni et al., 2011], where preferences help to discriminate
amongst information such as extensions, arguments, assumptions, rules, decisions
and goals [Wakaki, 2014; Besnard and Hunter, 2014; Čyras and Toni, 2016a; Modgil
and Prakken, 2014; Fan et al., 2013]. There are various ways to deal with prefer-
ences in ABA too [Kowalski and Toni, 1996; Toni, 2008b; Thang and Luong, 2013;
Fan et al., 2013; Wakaki, 2014; Čyras and Toni, 2016a; Čyras and Toni, 2016b]. In
this section we illustrate (by way of examples) these latter approaches. At a high-
level, they can be divided in two groups: meta level approaches ([Wakaki, 2014;
Čyras and Toni, 2016a; Čyras and Toni, 2016b], see Section 7.1), which, roughly,
account for preferences at the semantic level, and object level approaches ([Kowalski
and Toni, 1996; Toni, 2008b; Thang and Luong, 2013; Fan et al., 2013], see Sec-
tion 7.2), which, roughly, encode preferences within the existing ABA components
(e.g. rules and assumptions) and avoid the need to modify the semantics of ABA
frameworks.

Note that the examples chosen for the illustrations in this section have been
selected for their simplicity, to give a high-level idea of the various approaches
overviewed, and may not convey the full sophistication and usefulness of these ap-
proaches: the interested reader can find details as well as formal results in the
original papers.
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7.1 Handling preferences in ABA at the meta-level
[Wakaki, 2014] follows the ideas of prioritized logic programming [Sakama and Inoue,
2000] and equips ABA with explicit preferences by introducing a binary preference
relation 6 over the language L. (For a, b ∈ L, a 6 b expresses that ‘a is less or
equally preferred than b’.) This ordering 6 is then used to compute, by compar-
ing consequences of extensions, a preference ordering v over extensions so as to
select the most “preferable” extensions (i.e. the v-maximal ones) of the underlying
ABA framework. Such meta-level preference treatment can be well illustrated via
scenarios of decision making with preferences, as in the following example.

Example 7.1. Mary needs to decide what insurance policy to buy. Following the
approach of [Fan et al., 2013], information relevant to the decision making is repre-
sented via two tables, TDA and TGA, as illustrated in Table 1, where

• TDA describes relations between decision candidates (Policy 1 (P1), Policy 2
(P2)) and attributes (£50, £70, no exceptions (no_ex));

• TGA describes relations between goals ( cheap and full coverage ( full)) and at-
tributes.

£50 £70 no_ex
P1 0 1 1
P2 1 0 0

£50 £70 no_ex
cheap 1 0 0

full 0 0 1

Table 1: TDA(left) and TGA(right), for Example 7.1.

Intuitively, each decision candidate has certain attributes (P1 has £70 and
no_ex; P2 has £50); and each goal can be met by certain attributes ( cheap is met
by £50; full is met by no_ex).

In addition, suppose that the goal full is preferred over cheap. In p_ABA, we
can represent this information as a framework 〈L,R,A, ,6〉, with the underlying
ABA framework 〈L,R,A, 〉 with

R = {£70← P1, no_ex ← P1, £50← P2, cheap ← £50,
full ← no_ex , P2 ← P1, P1 ← P2},

A = {P1, P2}, and
cheap 6 full , cheap 6 cheap , full 6 full.
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〈L,R,A, 〉 has two preferred / stable extensions {P1} and {P2}, with conclu-
sions Cn({P1}) = {P1,£70, no_ex, full } and Cn({P2}) = {P2,£50, cheap }. We
then find {P2} v {P1} and {P1} 6v {P2}, so that {P1} is a v-maximal extension,
and is hence selected as the “preferable” one. Buying Policy 1 is thus deemed the
better decision to take.

Preferences in ABA can also be utilized to modify the attack relation between
sets of assumptions, akin to approaches to argumentation with preferences such as
[Bench-Capon, 2003; Modgil and Prakken, 2014; Amgoud and Vesic, 2014; Besnard
and Hunter, 2014]. For instance, ABA+ [Čyras and Toni, 2016a; Čyras and Toni,
2016b] equips ABA with a binary preference relation 6 over assumptions, and in-
corporates preferences directly into the attack relation so as to reverse attacks that
stem from sets containing assumptions less preferred than the one whose contrary
is deduced, as illustrated next.

Example 7.2. Suppose that Mary has decided to buy Policy 1, as suggested in
Example 7.1. However, Mary has also found some information on the Internet about
the policy: source C says that under certain circumstances (c), the policy applies
only to citizens of certain specified countries; source B says that sometimes (say,
assuming c), the policy applies only to UK residents (UK ← b, c); source A says that
sometimes (assuming c) the policy applies only to non-UK residents (non_UK ←
a, c). Mary trusts the source A the least (i.e. a < b, a < c). What is Mary justified
believing in about the applicability of the policy, given certain circumstances?

We can formalize this in ABA+ as follows: consider 〈L,R,A, ,6〉 with

A = {a, b, c},
R = {non_UK ← a, c, UK ← b, c},
a = UK, b = non_UK,
a < b, a < c,

where the assumptions stand for the possibility to trust the sources and preferences
indicate their relative credibility, rules are drawn given that information from sources
A and B is applicable under certain circumstances (c), also given that sources A and
B are in conflict.

The underlying ABA framework 〈L,R,A, 〉 admits both {a, c} and {b, c} as
stable / preferred extensions. In ABA+, attacks from {a, c} to (any set of assump-
tions containing) b are reversed, due to the a’s lower credibility in comparison with b.
Hence, {b, c} is a unique stable / preferred extension, arguably the desirable outcome.
This can be seen clearly given the graph depicted below, omitting, for readability, as-
sumption sets {} and {a, b, c}, as well as attacks to and from them:
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{a}

{b}

{c}

{a, b}

{a, c}

{b, c}

7.2 Handling preferences in ABA at the object-level

Instead of equipping ABA frameworks with explicit preference relations as in Sec-
tion 7.1, and then modifying the semantics of ABA (by either comparing extensions
or modifying the attack relation), preferences can be encoded within the existing
components (rules, assumptions and contraries) without modifying the semantics.

For instance, [Kowalski and Toni, 1996; Toni, 2008b] deal with preferences be-
tween rules by adding conditions (i.e. assumptions) to the body of rules expressing
that the rules are not attacked by other higher preference rules, by appropriately
defining contraries of these assumptions. For illustration, consider the following
example:

Example 7.3. In our breakdown policy example of Section 3, the rules in the ABA
instance for LP of section 3.2 can be modified by adding assumptions as follows:

cov(m, c)← ah(m), tr(m, c), pr(c), not ¬cov(m, c), acov(m,c),

¬cov(m, c)← ¬reg(c,m), not cov′(m, c), a¬cov(m,c).

If a preference of the second rule over the first one is to be expressed, then one could
assign contraries

acov(m,c) = ¬cov(m, c), a¬cov(m,c) = ac,

where ac is new to L.
More generally (as in [Toni, 2008b]), one can assume a naming function as-

signing distinguished names to elements (e.g. rules) of a given domain, and given
preferences over the elements of the domain, consider a language that includes sen-
tences expressing those preferences. For example, the two rules above can be given
names r and r′ respectively, and the language L would contain a “preference sen-
tence” r < r′ expressing that the second rule is preferred over the first one. Then,
when mapping the domain into an ABA framework, a rule

¬cov(m, c)← r < r′, a¬cov(m,c),
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could be added, so as to account for preferences, which could be stated e.g. via a
rule r < r′ ←. This way, ABA can also account for dynamic preferences (see
e.g. [Prakken and Sartor, 1999]), i.e. preferences that are themselves deducible using
rules, possibly from other assumptions.

Yet another way to deal with preferences in ABA on the object level is used in
[Thang and Luong, 2013] when translating Brewka’s preferred subtheories [Brewka,
1989] into ABA. To capture the interplay between classically inconsistent sentences
and partial preference information among them, [Thang and Luong, 2013] introduce
assumptions for representing sentences in the domain language as well as for de-
termining their acceptance status in the construction of preferred subtheories, and
further introduce rules for: deriving sentences from their corresponding assump-
tions; deriving contraries of the least preferred elements of minimally inconsistent
subsets; enforcing (non-)acceptance of an assumption iff the statuses more preferred
assumptions are determined. This is illustrated next.

Example 7.4. Let us rewrite the rules from Example 7.2 as

α, γ → ¬UK, β, γ → UK

(where → is material implication) to constitute the facts (world knowledge), and let
T = {α, β, γ} be the theory representing the defeasible knowledge, with preferences
α < β and α < γ. This partial order < admits two extensions to total orders, namely
α < β < γ and α < γ < β, both of which result in the same preferred subtheory of
T , namely {β, γ}.

The domain can be mapped into an ABA framework 〈L,R,A, 〉 with (for read-
ability treating contraries of assumptions as symbols in the language)

A ={aα, aβ, aγ} ∪ {bα, bβ, bγ},
R ={α← aα, β ← aβ, γ ← aγ} ∪ {aα ← aβ, bβ, aγ , bγ}∪
{aα ← bα, aβ ← bβ, aγ ← bγ}∪
{bβ ←, bγ ←, bα ← aβ, bβ, aγ , bγ ,

bα ← aβ, bβ, aγ , bγ , bα ← aβ, bβ, aγ , bγ , bα ← aβ, bβ, aγ , bγ}.

This 〈L,R,A, 〉 has a unique stable extension {aβ, aγ}, corresponding to the
unique preferred subtheory of T .

Another example of preferences dealt with in ABA within the object-level is
to support decision making with preferences over goals. Differently from the other
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approaches overviewed in this section, this method is specific to decision making
settings, and uses preferences over sentences (the goals) within decision criteria
(e.g. various kinds of “dominance”, see [Fan et al., 2013]) for choosing “best” deci-
sions. This can be illustrated in the context of the same decision making setting of
Example 7.1:

Example 7.5. Given the two tables, TDA and TGA, in Table 1, as well as the pref-
erence full > cheap, the problem of identifying the “best” decisions, namely those
“meeting the more preferred goals that no other decisions meet”, can be represented
in ABA with

R = { has(P1,£70)←, has(P1, no_ex)←, has(P2, 50)←,
satBy(cheap,£50)←, satBy(full)← no_ex,
prefer(full, cheap)←} ∪

{ met(X,Y )← has(X,Z), satBy(Y,Z) | X ∈ {P1, P2},
Y ∈ {cheap, full}, Z ∈ {£50,£70, no_ex } } ∪

{ sel(X)← met(X,Y ), noBetterThan(X,Y ) | X ∈ {P1, P2},
Y ∈ {cheap, full} } ∪

{ better(X,Y )← met(X ′, Y ′), prefer(Y ′, Y ), X 6= X ′ |
X,X ′ ∈ {P1, P2}, Y, Y ′ ∈ {cheap, full} }

A = { noBetterThan(X,Y ) | X ∈ {P1, P2}, Y ∈ {cheap, full} }
not x = better(X,Y ) for any x = noBetterThan(X,Y ) ∈ A

Then
{{noBetterThan(P1, full)} `arg sel(P1)}

is admissible whereas

{{noBetterThan(P2, cheap)} `arg sel(P2)}

is not, as the latter is attacked by {} `arg better(P2, cheap). Indeed, Policy 1 is the
“best” decision in this simple setting.

8 Conclusion
This paper overviews research, spanning over more than two decades (from [Bon-
darenko et al., 1993] onwards), on Assumption-Based Argumentation (ABA), a
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framework for structured argumentation motivated by and emerging from non-
monotonic reasoning. We have focused on the semantic foundations of ABA, in the
general case as well as for the special case of flat ABA frameworks, while also provid-
ing an overview of the computational machinery (flat) ABA is equipped with as well
as its uses for explaining argumentative conclusions. Finally, we have overviewed,
with the aid of examples, uses and generalisations of ABA to support reasoning with
preferences.

This paper is meant as a taster of ABA rather than a comprehensive technical
presentation, and complements other earlier overviews [Dung et al., 2009; Toni,
2012; Toni, 2014]. In particular, it focuses on the case of general (possibly non-flat)
frameworks rather than flat frameworks as in the earlier overviews, and provides a
taster of explanation and the treatment of preferences in ABA.

We omitted to mention several aspects of ABA. For instance, there are sev-
eral other instances of ABA for non-monotonic reasoning (see [Bondarenko et al.,
1997]), and ABA has also been shown to admit Adaptive Logic and ASPIC+ with-
out preferences as instances [Heyninck and Straßer, 2016]. Other ABA semantics
have been presented in the literature, e.g. the semi-stable semantics [Caminada et
al., 2015]. Moreover, formulation of (some) ABA semantics in terms of labellings,
in the spirit of those proposed for abstract argumentation [Caminada and Gabbay,
2009], have been proposed [Schulz and Toni, 2014; Schulz and Toni, 2015; Schulz and
Toni, 2017]. Further, the computational complexity of several reasoning problems in
several instances of ABA is known [Dimopoulos et al., 2002; Dunne, 2009], and sev-
eral systems for (flat) ABA are publicly available (see robertcraven.org/proarg/
and www-abaplus.doc.ic.ac.uk). Recent work also shows that (sets of) argu-
ments in ABA can be re-interpreted as graphs, with conceptual and computational
advantages [Craven and Toni, 2016]. We have seen in Section 7 that ABA has
been extended to accommodate reasoning with preferences: other extensions of
ABA also exist, notably the probabilistic ABA of [Dung and Thang, 2010]. Fi-
nally, we have not delved into applications of ABA: these are overviewed in earlier
surveys [Dung et al., 2009; Toni, 2012; Toni, 2014] or other papers [Gao et al., 2016;
Fan and Toni, 2016]. In particular, [Gao et al., 2016] uses related admissibility in
ABA (see Section 6.1) to coordinate and resolve conflicts amongst agents, while also
guaranteeing that privacy is preserved, in some sense, whereas [Fan and Toni, 2016]
reinterprets the problem of determining solutions in games in normal form in ABA,
using ABA dialogues (as summarised in Section 5.3) to determine these solutions in
a distributed fashion, without agents fully disclosing their preferences.

There are several open issues in ABA as well as several directions for future work.
We have seen, in Section 6.2, that explanations as to why sentences are not “accept-
able” may be useful [Schulz and Toni, 2016]. The concept of “not-explanations”
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can be defined, in general, in abstract argumentation [Fan and Toni, 2015b]: it
would be useful to define this notion also for ABA. Other forms of explanations
have been defined, notably for explaining inconsistencies in LP [Schulz et al., 2015]:
it would be interesting to define a notion of explanation for the lack of (e.g. stable)
extensions in generic ABA. Some preliminary work [Zhong et al., 2014; Mocanu et
al., 2016] indicates that natural language explanations can be naturally drawn from
dispute trees computed by dispute derivations: it would be interesting to develop
this work further and test the usefulness of the generated explanations in practice.
Further, in multi-agent settings, it would be interesting to further study strategic
behaviour of agents using ABA as their language of interaction [Fan and Toni, 2012c;
Fan and Toni, 2015a; Gao et al., 2016; Fan and Toni, 2016]. From a computational
viewpoint, (flat) ABA is equipped with several (sound and complete) algorithms for
determining the “acceptability” of sentences (and compute extensions “supporting”
them): it would be interesting to see how these algorithms can be generalised to the
case of any, possibly non-flat, ABA frameworks and/or deployed when preferences
are given, e.g. in the spirit of Gorgias (see gorgiasb.tuc.gr/index.html) and
dealt with at the meta-level (as in Section 7.1). Moreover, it would be interesting to
identify (sound and complete) computational machinery for determining extensions
of ABA, without having to resort to implementations of abstract argumentation by
using the mapping described in Section 4.
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Abstract

In the current review paper, we provide an overview of how mainstream
argumentation semantics can be interpreted in terms of structured discussion.
The idea is that an argument is justified according to a particular argumentation
semantics iff it is possible to win a discussion of a particular type. Hence,
different argumentation semantics correspond to different types of discussion.
Our aim is to provide an overview of what these discussions look like, and their
formal correspondence to argumentation semantics.

1 Introduction
The term “argumentation”, when used in an informal way, calls upon intuitions of
arguments being exchanged in some kind of interactive discussion. Yet, the notion
of discussion plays a relatively limited role in abstract argumentation theory, which
mainly focuses on various principles (called “argumentation semantics”) for selecting
nodes from a graph. As such, there seems to be quite a gap between (abstract)
argumentation theory as described in much of the literature, and as it occurs in
everyday life.

In order to address this gap, attempts have been made to express argumentation
semantics in terms of structured discussion. More precisely, the idea is that an
argument is accepted w.r.t. a particular argumentation semantics iff it is possible
to successfully defend the argument using a particular kind of discussion. In the
current paper we provide an overview of what the different kinds of discussion are,
and how they formally relate to their associated argumentation semantics.

Although the discussion protocols (which we will often refer to as “discussion
games”) can serve as proof procedures of their associated argumentation semantics,

The current paper will also be published as a chapter in the Handbook of Formal Argumentation.
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their potential application is much wider than that. One could for instance use
the discussion games for the purpose of human computer interaction. Suppose a
knowledge-based system has determined that a particular argument (say, about
how to treat a patient) should be accepted, and communicates this to its user (say,
a doctor). When the user asks why this is the case, what should probably be avoided
is a highly technical answer of the form “because the argument is in the minimal
fixpoint of monotonic function F”.1 Instead, one would like the user to critically
question the answer, and be able to utter counter arguments to see whether these
are properly addressed (by the system providing counter counter arguments). As an
example of such a human-computer discussion, consider the following dialogue:
System: The patient is best off with medicine X, because this is the most effective.
User: But the patient is diabetic, for which medicine X could have side effects.
System: Recent studies have shown that these side effects are relatively minor.
So instead of the system immediately providing the full justification for its answer
(say, by providing the entire grounded extension) in engages in a discussion with its
user. Ideally, such a discussion should be “natural” in the sense that the human-
computer interaction looks as much as possible as human-human interaction (say, if
the doctor were to discuss the case with a more senior colleague).

Apart from being natural, the discussion should also be sound and complete.
That is, the ability to win the discussion for a particular argument (that is, to have
a winning strategy for the argument in the discussion game) should coincide with
the argument being justified according to a pre-defined argumentation semantics.
Soundness and completeness imply that if the system provides an answer (“argument
A is (or is not) justified according to a particular argumentation semantics”) the
system can successfully defend itself in the discussion with the user. When this
discussion is also perceived as natural by the user, this will hopefully increase the
user’s confidence in the system’s answer.

Soundness and completeness also imply that what we are looking for are essen-
tially proof procedures for particular argumentation semantics. Several of these have
been stated in the literature. Inclusion in the current review paper is done based on
two criteria:

(1) does the discussion game have any link with natural discussion concepts, like
described in philosophy or linguistics?

(2) is the discussion game such that it guarantees the absence of any exponential
blowups, in either time or space?

1Which basically says the argument is in the grounded extension.
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Criterion (1) is the reason why for instance we have not included any discussion
games for sceptical preferred semantics (like those of Doutre and Mengin [2004] and
Dung and Thang [2007]). Criterion (2) is the reason why we did not include a
detailed treatment of tree-based discussion games (like those of Prakken and Sartor
[1997], Caminada [2004], Modgil and Caminada [2009] and Dung et al. [2007].2

The remaining part of this paper is structured as follows. First, in Section 2
we briefly recall some basic definitions and results from abstract argumentation
theory. Then, in Section 3 we describe a discussion game for (credulous) preferred
semantics [Caminada et al., 2014a], and explain that it contains aspects of Socratic
discussion. Then, in Section 4 we briefly state how this discussion game can be
reapplied in the context of ideal semantics [Caminada et al., 2014a]. In Section 5 we
subsequently describe a discussion game for stable semantics [Caminada and Wu,
2009], basically by making minor modifications to the earlier described discussion
game for (credulous) preferred semantics. In Section 6 we then describe a different
discussion game in the context of grounded semantics [Caminada, 2015a] and explain
its relationship with persuasion dialogue. Then, in Section 7 we briefly examine tree-
based discussion games and explain one of their main disadvantages: the possibility
of an exponential blowup in time or space. We round off with a discussion in Section
8.

2 Formal Preliminaries
In the current section, we briefly recall some basic definitions from abstract argu-
mentation theory. For current purposes, we restrict ourselves to finite argumentation
frameworks.

Definition 1 (argumentation framework). An argumentation framework is a pair
(Ar , att) where Ar is a finite set of entities called arguments and att is a binary
relation on Ar .

Given an argumentation framework (Ar , att), A, A′ ∈ Ar and Args, Args′ ⊆ Ar ,
we say that (1) A attacks A′ iff (A, A′) ∈ att, (2) A attacks Args iff A attacks some
argument in Args, (3) Args attacks A iff some argument in Args attacks A, and (4)
Args attacks Args′ iff some argument in Args attacks some argument in Args′.

Definition 2 (preliminaries, extension-based). Let (Ar , att) be an argumentation
framework. A set Args ⊆ Ar is conflict-free iff Args does not attack itself. A set
Args ⊆ Ar defends A ∈ Ar iff for each B ∈ Ar that attacks A, it holds that Args
attacks B.

2How tree-based discussion games can lead to an exponential blowup is explained in Section 7.
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Figure 1: An argumentation framework to illustrate strong admissibility.

Definition 3 (admissibility, extension-based). Let (Ar , att) be an argumentation
framework. A set Args ⊆ Ar is admissible iff Args is conflict-free and each A ∈ Args
is defended by Args.

Definition 4 (strong admissibility, extension-based). Let (Ar , att) be an argumen-
tation framework. A set Args ⊆ Ar is strongly admissible iff each A ∈ Args is
defended by some Args′ ⊆ Args \ {A} which in its turn is again strongly admissible.

It has been proved that each strongly admissible set is conflict-free as well as
admissible [Baroni and Giacomin, 2007; Caminada, 2014].

As an example, consider the argumentation framework of Figure 1. Here, the set
{A, C} is strongly admissible as A is defended by ∅ ⊆ {A, C}\{A} which is trivially
strongly admissible, and C is defended by {A} ⊆ {A, C} \ {C} which is strongly
admissible (as A is defended by ∅ ⊆ {A}\{A}). The set {G}, however, is admissible
but not strongly admissible as G is not defended by any subset of {G} \ {G}.

Definition 5 (completeness, extension-based). Let (Ar , att) be an argumentation
framework. A set Args ⊆ Ar is a complete extension iff Args is conflict-free and
the set of arguments defended by Args is equal to Args.

Definition 6 (semantics, extension-based). Let (Ar , att) be an argumentation
framework. A set Args ⊆ Ar is called

1. a grounded extension iff Args is the minimal (w.r.t. ⊆) complete extension

2. a preferred extension iff Args is a maximal (w.r.t. ⊆) complete extension

3. a stable extension iff Args is a complete extension that attacks each argument
in Ar \ Args

4. an ideal extension iff Args is the maximal (w.r.t. ⊆) complete extension that
is not attacked by any complete extension

2460



Argumentation Semantics as Formal Discussion

We recall that each argumentation framework has precisely one grounded ex-
tension, precisely one ideal extension, one or more preferred extensions and zero or
more stable extensions.

The above definition describes grounded, preferred, stable and ideal semantics
uniformly in terms of complete semantics. However, for our purposes it is sometimes
useful to describe these semantics in terms of (strong) admissibility.

Theorem 1 (semantics, extension-based). Let (Ar , att) be an argumentation frame-
work. A set Args ⊆ Ar is

1. a preferred extension iff Args is a maximal (w.r.t. ⊆) admissible set

2. a grounded extension iff Args is the maximal (w.r.t. ⊆) strongly admissible
set

3. a stable extension iff Args is an admissible set that attacks each argument in
Ar \ Args

4. an ideal extension iff Args is the maximal (w.r.t. ⊆) admissible set that is not
attacked by any admissible set

Apart from the extension-based view on argumentation semantics, there is also
the labelling-based view [Caminada, 2006; Caminada and Gabbay, 2009; Caminada,
2011; Baroni et al., 2011] of which we now provide a brief overview.

Definition 7 (preliminaries, labelling-based). Let (Ar , att) be an argumentation
framework. An argument labelling is a function Lab : Ar → {in, out, undec}. We
define in(Lab) as {A ∈ Ar | Lab(A) = in}, out(Lab) as {A ∈ Ar | Lab(A) = out}
and undec(Lab) as {A ∈ Ar | Lab(A) = undec}. We sometimes write a labelling as
a triple (in(Lab), out(Lab), undec(Lab)). If Lab1 and Lab2 are labellings, we write
Lab1 v Lab2 when in(Lab1) ⊆ in(Lab2) and out(Lab1) ⊆ out(Lab2). Moreover, we
write Lab1 ≈ Lab2 when in(Lab1) ∩ out(Lab2) = ∅ and out(Lab1) ∩ in(Lab2) = ∅.

Definition 8 (admissibility, labelling-based). Let Lab be a labelling of argumenta-
tion framework (Ar , att). Lab is called an admissible labelling iff for each A ∈ Ar
it holds that

1. if Lab(A) = in then for each B ∈ Ar that attacks A it holds that Lab(B) = out

2. if Lab(A) = out then there exists a B ∈ Ar that attacks A such that Lab(B) =
in
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In order to define strong admissibility in the context of argument labellings, we
first need to introduce the concept of a min-max numbering.

Definition 9 (min-max numbering). Given an admissible labelling Lab of argumen-
tation framework (Ar , att), a min-max numbering is a functionMMLab : in(Lab)∪
out(Lab)→ N ∪ {∞} such that for each A ∈ in(Lab) ∪ out(Lab) it holds that

• if Lab(A) = in then MMLab(A) = max({MMLab(B) | B attacks A and
Lab(B) = out}) + 1 (with max(∅) defined as 0)

• if Lab(A) = out then MMLab(A) = min({MMLab(B) | B attacks A and
Lab(B) = in}) + 1 (with min(∅) defined as ∞)

It can be proved that each admissible labelling has a unique min-max numbering
[Caminada, 2014].3

Definition 10 (strong admissibility, labelling-based). Let Lab be a labelling of argu-
mentation framework (Ar , att). Lab is called a strongly admissible labelling iff it is
an admissible labelling whose associated min-max numbering yields natural numbers
only (so no argument is numbered ∞).

From Definition 10 it trivially follows that each strongly admissible labelling is
also an admissible labelling.

As an example, consider the argumentation framework shown in Figure 1. Here
Lab1 = ({A, C, E, G}, {B, D, H}, {F}) is an admissible labelling with associated
min-max numbering MMLab1 = {(A: 1), (B : 2), (C : 3), (D : 4), (E : 5), (G:∞), (H :
∞)}, which implies that Lab1 is not strongly admissible. Furthermore, Lab2 =
({A, C, E}, {B, D, F}, {G, H}) is an admissible labelling with associated min-max
numbering MMLab2 = {(A: 1), (B : 2), (C : 3), (D : 4), (E : 5), (F : 2)}, which implies
that Lab2 is indeed a strongly admissible labelling.

Definition 11 (completeness, labelling-based). Let Lab be a labelling of argumen-
tation framework (Ar , att). Lab is called a complete labelling iff for each A ∈ Ar it
holds that

1. if Lab(A) = in then for each B ∈ Ar that attacks A it holds that Lab(B) = out

3The min-max numbering can be constructed in an iterative way, starting from the unnumbered
in-labelled arguments without attackers (these are numbered 1), then the unnumbered out-labelled
arguments that are attacked by these (these are numbered 2), etc. When a particular iteration
provides no new argument numbers, the remaining unnumbered in and out-labelled arguments are
numbered ∞. See the work of Caminada [2014] for details.
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2. if Lab(A) = out then there exists a B ∈ Ar that attacks A such that Lab(B) =
in

3. if Lab(A) = undec then not for each B ∈ Ar that attacks A it holds that
Lab(B) = out and there does not exist a B ∈ Ar that attacks A such that
Lab(B) = in

Definition 12 (semantics, labelling-based). Let (Ar , att) be an argumentation
framework. A labelling Lab is called

1. a grounded labelling iff it is the minimal (w.r.t. v) complete labelling

2. a preferred labelling iff it is a maximal (w.r.t. v) complete labelling

3. a stable labelling iff it is a complete labelling with undec(Lab) = ∅

4. an ideal labelling iff it is the maximal (w.r.t. v) complete labelling that is
compatible (≈) with every complete labelling

We recall that each argumentation framework has precisely one grounded la-
belling, precisely one ideal labelling, one or more preferred labellings and zero or
more stable labellings.

The above definition describes grounded, preferred, stable and ideal semantics in
terms of complete labellings. However, it is sometimes useful to be able to describe
these semantics in terms of (strong) admissibility, similar to what was done earlier
for the extension-based semantics.

Theorem 2 (semantics, labelling-based). Let (Ar , att) be an argumentation frame-
work. A labelling Lab is called

1. a preferred labelling iff it is a maximal (w.r.t. v) admissible labelling

2. a grounded labelling iff it is the maximal (w.r.t. v) strongly admissible la-
belling

3. a stable labelling iff it is an admissible labelling with undec(Lab) = ∅

4. an ideal labelling iff it is the maximal (w.r.t. v) admissible labelling that is
compatible (≈) with every admissible labelling

To be able to easily switch between the labelling-based approach and the
extension-based approach, we introduce two functions Lab2Ext and Ext2Lab, such
that for an admissible labelling Lab, Lab2Ext(Lab) is defined as in(Lab), and for
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an admissible set Args, Ext2Lab(Args) is defined as (Args, {A ∈ Ar | A is at-
tacked by Args}, {A ∈ Ar | A 6∈ Args and A is not attacked by Args}) where Ar
is the set of all arguments in the argumentation framework. It holds that if Lab
is a (strongly) admissible labelling (resp. a complete, grounded, preferred, stable
or ideal labelling) then Lab2Ext(Lab) is a (strongly) admissible set (resp. a com-
plete, grounded, preferred, stable or ideal extension). It also holds that if Args is
a (strongly) admissible set (resp. a complete, grounded, preferred, stable or ideal
extension) then Ext2Lab(Args) is a (strongly) admissible labelling (resp. complete,
grounded, preferred, stable or ideal labelling). Moreover, when restricted to com-
plete (or resp. grounded, preferred, stable or ideal) extensions and labellings, the
functions Lab2Ext and Ext2Lab become bijections that are each other’s inverses
[Caminada, 2006; Caminada and Gabbay, 2009].

The above results imply that:

• in order to determine whether an argument is in a preferred extension, it
suffices to determine whether the argument is labelled in by an admissible
labelling

• in order to determine whether an argument is in the grounded extension, it suf-
fices to determine whether the argument is labelled in by a strongly admissible
labelling

• in order to determine whether an argument is in a stable extension, it suffices
to determine whether the argument is labelled in by an admissible labelling
without undec

• in order to determine whether an argument is in the ideal extension, it suffices
to determine whether the argument is labelled in by an admissible labelling
that is compatible with every admissible labelling

In the sections that follow, we will apply the above observations to provide discussion
games for preferred, grounded, stable and ideal semantics.

3 Preferred Semantics
In the current section, we describe the discussion game for preferred semantics as
stated by Caminada et al. [2014a].4 The idea of the preferred discussion game is to

4The discussion game of Caminada et al. [2014a] consists of a labelling-based reinterpretation
of the work of Vreeswijk and Prakken [2000].
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show membership of a preferred extension by constructing an admissible labelling
where the argument in question is labelled in.

The preferred discussion game has two players which we will refer to as M and S.
Player M starts; his task is to defend the fact that he has a reasonable position (ad-
missible labelling) in which a particular argument is accepted (labelled in). Player
S then tries to confront M with the consequences of M’s own position, and asks for
these consequences to be resolved. Player M is successful if he is able to address all
the issues pointed out by player S, without being led to a contradiction.

As an example of how such a discussion can take place, consider the argumen-
tation framework of Figure 2.

E

A B
C

D

Figure 2: An argumentation framework

Here, the player M can win the discussion game for argument D in the following
way.

Example 1.
M: in(D)

“I have an admissible labelling in which D is labelled in.”
S: out(C)

“But then in your labelling it must also be the case that D’s attacker C
is labelled out. Based on which grounds?”

M: in(B)
“C is labelled out because B is labelled in.”

S: out(A)
“But then in your labelling it must also be the case that B’s attacker A
is labelled out. Based on which grounds?”

M: in(B)
“A is labelled out because B is labelled in.”

As is shown in the above example, the discussion moves of player M are state-
ments that particular arguments are labelled in in M’s labelling. The moves of
player S, on the other hand, are meant to confront M with the consequences of his
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own position: “if you think that argument X is labelled in then you must also hold
that X’s attacker Y is labelled out in your labelling.” That is, by uttering out(Y ),
player S points out that player M is implicitly committed to the fact that Y should
be rejected. This means that player M has to explain why Y should be rejected.
That is, the moves of player S can be seen as questions about why a particular
argument Y should be labelled out. The moves of player M (except his first move)
can then be interpreted as the answers to the questions of player S. Each answer
follows directly to the question raised by player S. That is:

Each move of M (except the first) contains an attacker of the argument in the di-
rectly preceding move of S. (1)

Every time player M claims that an argument is labelled in, player S should be
given the opportunity to state that as a consequence of this, player M is implicitly
committed that all attackers of the argument are labelled out. The problem, how-
ever, is that each move of player S is a statement about just one argument. In order
to deal with this problem, player S should be given the opportunity to react on
the same in-labelled argument several times, each time confronting player M with
a different out-labelled argument. This means that player S should be allowed to
react not just on the immediately preceding move of player M, but on any previous
move of player M.

Each move of player S contains an attacker of an argument contained in some (not
necessarily the directly preceding) move of player M. (2)

Another issue is whether player S should be allowed to repeat his own moves. Recall
that each move essentially contains a question (“Based on which grounds is argu-
ment Y labelled out?”). At the moment player S repeats one of his moves, this
question has already been answered by player M, so there is no good reason to ask
again. In order to avoid the discussion from going round in circles, it does not make
sense to allow player S to repeat his moves.

Player S is not allowed to repeat his moves. (3)

On the other hand, Example 1 does illustrate the need for player M to be able
to repeat his moves (like in(B)). This is because some of the questions of S (like
“why is argument C out” and “why is argument A out”) can have the same answer
(“because argument B is in”).
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Player M is allowed to repeat his moves. (4)

The argumentation framework of Figure 2 can also be used for an example of a
game won by player S:

Example 2.
M: in(E)

“I have an admissible labelling in which E is labelled in.”
S: out(D)

“But then in your labelling it must be the case that E’s attacker D is
labelled out. Based on which grounds?”

M: in(C)
“D is labelled out because C is labelled in.”

S: out(E)
“But then in your labelling it must be the case that C’s attacker E is
labelled out. This contradicts your earlier claim that E is labelled in.”

The above example illustrates that when player S manages to use an argument
uttered previously by player M, player S has won the game. After all, if player M
claims an argument to be in and player S subsequently manages to confront player
M with the fact that in M’s own position, the same argument should be labelled
out, then player S has successfully pointed out a contradiction in M’s position.

If player S uses an argument previously used by player M, then player S wins the
discussion game. (5)

One can ask a similar question regarding what happens when player M uses one
of the arguments previously used by player S. The fact that player S performed an
out move means that the argument must be labelled out in the labelling of player
M. If player M then subsequently claims that the same argument is labelled in, then
he has directly contradicted himself.

If player M uses an argument previously used by player S, then player S wins the
discussion game. (6)

There also exists a third condition under which player S wins the game. This is
when player M is unable to answer one of the questions of S. This can be the case
when there exists no attacker against an argument uttered by player S. Hence, player
S asks why a particular argument is labelled out but player M is unable to come up
with any attacker to be labelled in. In that case, player M has lost the game, for
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not being able to answer the critical questions of player S.

If player M cannot make a move any more, player S wins the discussion game.
(7)

Similarly, one might examine what happens when it is player S who cannot make a
move any more. This essentially means that player S has run out of questions. All
possible relevant questions have already been asked; all relevant issues have already
been raised. Moreover, player M has managed to answer all questions in a satisfac-
tory way. Therefore, player M has survived the process of critical questioning, hence
winning the discussion.

If player S cannot make a move any more, player M wins the discussion game.
(8)

A

B

C

Figure 3: An argumentation framework with floating attack

As a last illustration of how the discussion game functions, consider the argu-
mentation framework of Figure 3. Argument C is not in any admissible set. It is
illustrative to see what happens if player M tries to defend C.

Example 3.
M: in(C)

“I have an admissible labelling in which C is labelled in.”
S: out(A)

“But then in your labelling C’s attacker A must be labelled out. Based
on which grounds?”

M: in(B)
“A is labelled out because B is labelled in.”

S: out(B)
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“But from the fact that you hold C to be in, it follows that C’s attacker
B must be labelled out. This contradicts with your earlier claim that
B is labelled in.”

The above example illustrates the need for player S to be able to respond not
only to the immediately preceding move, but to any past move of player M; in the
example, out(B) is a response to in(C). This is because, as we have mentioned
before, for an argument to be labelled in, all its attackers have to be out, so player
S may need to respond to a move of player M with more than one countermove.

When putting observations (1) to (8) together, we obtain the following descrip-
tion of the discussion game

Definition 13. Let (Ar , att) be an argumentation framework. A preferred discussion
is a sequence of moves [∆1, ∆2, . . . , ∆n] (n ≥ 0) such that:

• each move ∆i (1 ≤ i ≤ n) where i is odd is called an M-move and is of the
form in(A), where A ∈ Ar

• each move ∆i (1 ≤ i ≤ n) where i is even is called an S-move and is of the
form out(A), where A ∈ Ar

• for each S-move ∆i = out(A) (2 ≤ i ≤ n) there exists an M-move ∆j = in(B)
(j < i) such that A attacks B

• for each M-move ∆i = in(A) (3 ≤ i ≤ n) it holds that ∆i−1 is of the form
out(B), where A attacks B

• there exist no two S-moves ∆i and ∆j with i 6= j and ∆i = ∆j

A preferred discussion [∆1, ∆2, . . . , ∆n] is said to be finished iff (1) there exists
no ∆n+1 such that [∆1, ∆2, . . . , ∆n, ∆n+1] is a preferred discussion, or there exists
an M-move and an S-move containing the same argument, and (2) no subsequence
[∆1, . . . , ∆m] (m < n) is finished. A finished preferred discussion is won by player S
if there exist an M-move and an S-move containing the same argument. Otherwise,
it is won by the player making the last move (∆n).

The soundness and completeness of the game described above is stated in the
following theorem.

Theorem 3 (Caminada and Wu [2009]; Caminada et al. [2014a]). Let (Ar , att) be
an argumentation framework and A ∈ Ar .

1. If there exists a preferred discussion for A that is won by player M, then there
exists a preferred extension that contains A.
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2. If there exists a preferred extension that contains A then player M has a win-
ning strategy5 for the preferred discussion game.

The correctness of Theorem 3 can be seen as follows. As for point 1, it has to
be observed that what the game essentially does is to build an admissible labelling
of which the in-labelled arguments coincide with the M-moves and the out-labelled
arguments coincide with the S-moves (all the other arguments are labelled undec).
The resulting labelling is well-defined in the sense that no argument is labelled
both in and out (otherwise there would be an argument that is subject to both
an M-move and an S-move, in which case player S would have won the discussion).
Moreover, the fact that player M wins the discussion also means that he made the
last move, which implies that (i) each out-labelled argument has an in-labelled
attacker. Also, the fact that player S cannot move anymore implies that (ii) each
in-labelled argument has all its attackers labelled out. From (i) and (ii) it follows
that the labelling yielded by the game is indeed an admissible one, satisfying the
conditions of Definition 8. In this admissible labelling, argument A is labelled in
(since A was the subject of the first M-move). This implies that A is element of an
admissible set, and therefore also element of a preferred extension.

As for point 2, it should be mentioned that the fact that A is in a preferred
extension by definition implies that A is in an admissible set (Args), which then
implies that A is labelled in by an admissible labelling Lab = Ext2Lab(Args). This
makes it possible for player M to win the game simply by staying within the borders
of admissible labelling Lab. That is, as long as player M only plays arguments that
are labelled in by Lab, each move of player S has to be an argument that is labelled
out by Lab, which then implies that player M can always react with an argument
that is labelled in by Lab, etc. If player M follows such a strategy, there will never
be an M-move and an S-move for the same argument (this is because Lab is a well-
defined labelling, meaning that no argument is labelled both in and out). Moreover,
the fact that player S cannot repeat himself means that the game has to finish in a
finite number of moves. As player M can always react on a move of player S, this
means that the last move has to be an M-move. Hence, player M wins the game.

From points 1 and 2 together, it follows that if there is at least one preferred
discussion that is won by player M, then M has a winning strategy for the preferred
discussion game. This is not the case in alternative discussion games for preferred
semantics, like the one described by Modgil and Caminada [2009]. In their approach,
a single discussion game does not prove membership (for this, the presence of a

5Winning strategy in the sense of [Caminada et al., 2014a, Definition 5.6]. Informally this means
that player M has a way of winning the discussion, regardless of what moves player S decides to
play.
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winning strategy is really necessary). From informal perspective, this is rather odd,
as in everyday life the aim of a (persuasion) discussion is to convince the other party
in a single discussion. This means that at the end of the discussion, the other party
has to have heard sufficient evidence to accept the main claim. This is the case in
the above described preferred discussion game, but not in the alternative discussion
game of Modgil and Caminada [2009].

As we have observed, an admissible labelling can serve as a “roadmap” for win-
ning the preferred discussion game.6 However, an argument can be labelled in
by more than one admissible labelling, which raises the question of which admissi-
ble labelling to choose as a basis to play the game. It can be verified that given
an admissible labelling Lab (with Lab(A) = in and out(Lab) being minimal w.r.t.
set inclusion) the number of moves required in the game for main argument A is
2 · |out(Lab)| + 1 (see [Caminada et al., 2014a] for details). Hence, in order to be
able to finish the game in as few moves as possible (which could be desirable from
the perspective of human-computer interaction if the aim of the game is to convince
a human user) one should try to find an admissible labelling Lab where |out(Lab)|
is minimal. This is a computationally hard problem, as even verifying whether a
particular admissible labelling has this property is coNP complete [Caminada et al.,
2014a].

The essential nature of the preferred discussion game is that of critically question-
ing a particular position, and to see whether the proponent of this position (player
M) can avoid being led to a contradiction (by player S). As such, the preferred dis-
cussion game bears a close resemblance to the concept of Socratic discussion, as well
as to its modern variants like critical interviews or cross-examinations in court.7 The
general idea is to have somebody take a position and then iteratively confront him
(through questioning) with what appears to be the consequences of this position,
in the hope of ultimately leading him to a contradiction. We refer to the work of
Caminada et al. [2014a] for a details.

4 Ideal Semantics
An ideal set of arguments, as was originally defined by Dung et al. [2007], is an
admissible set that is a subset of each preferred extension. It can be proved that
the maximal ideal set (commonly known as the ideal extension) is unique and is a
complete extension as well.

6For details, we refer to the work of Caminada et al. [2014a].
7In fact, in the work of Caminada et al. [2014a] player S stands for Socrates and player M stands

for Menexenus, which is one of Socrates’s historic discussion partners.
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An alternative but equivalent way of characterising the ideal extension is as the
maximal admissible set that is not attacked by any admissible set (like is done in
Theorem 1) or as the maximal complete extension that is not attacked by any com-
plete extension (like is done in Definition 6). It can be proved that for each admissible
sets Args1 and Args2 it holds that Args1 attacks Args2 iff Args2 attacks Args1. This
gives rise to the labelling-based descriptions of ideal semantics of Theorem 2 and
Definition 12.8

For current purposes, our characterisation of the ideal extension is as the maximal
admissible set that is not attacked by any admissible set. To determine membership
of the ideal extension, one then needs to find an admissible set (although not neces-
sarily the maximal one) that contains the argument in question and is not attacked
by any admissible set. This makes it possible to express ideal semantics using the
preferred discussion game. Basically, the discussion whether an argument is in an
ideal extension consists of two phases. In the first phase, one runs the preferred dis-
cussion game, as is described in the previous section. This is to determine whether
the argument is in an admissible set. Then, in the second phase of the discussion,
one needs to determine whether this set is attacked by another admissible set. This
is done by again running the preferred discussion game for each of the arguments
that were rejected (labelled out) during the first phase of the discussion, this time
trying to defend (label in) the argument.

As an example, consider again the argumentation framework of Figure 2. Now
consider the question of whether argument D is in an ideal set. The first phase of
the discussion would be like Example 1 (page 9). Then, in the second phase of the
discussion, one has to try to find an argument that was labelled out during the first
phase9 (say A) and can be defended in a new preferred discussion game. Such a
game would be as follows.
M: in(A)

“I have a reasonable position (admissible labelling) in which A is accepted
(labelled in).”

S: out(B)
“Then in your position, argument B must be rejected (labelled out).
Based on which grounds?”

M: in(A)
“B is rejected (labelled out) because A is accepted (labelled in).”

Hence, we have an admissible set {A} that attacks the admissible set {B, D}
found during the first phase, so the admissible set {B, D} of the first phase is not

8Recall that each complete extension (labelling) is also an admissible set (labelling).
9Recall that the preferred game is such that the out-labelled arguments are the attackers of the

in-labelled arguments (which is not necessarily the case for admissible labellings in general).
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an ideal set.10

The overall procedure for ideal semantics puts an extra burden on the proponent
of the argument. Not only does he have to win the preferred discussion game in the
first phase, but he has to win it in such a way11 that the resulting position (labelling)
cannot be argued against in the second phase.

5 Stable Semantics
In the current section, we describe a discussion game for credulous stable semantics
based on the work of Caminada and Wu [2009]. Before doing so, it may be illustra-
tive to see why the preferred discussion game does not work for stable semantics.
Consider again the argumentation framework of Figure 2. Even though A is in an
admissible set and in a preferred extension ({A}), A is not in a stable extension. To
see why A is in an admissible set, consider the following discussion:
M: in(A) “I have an admissible labelling where A is labelled in.”
S: out(B) “Then in your labelling, argument B must be labelled out. Based on
which grounds?”
M: in(A) “B is labelled out because A is labelled in.”
The point is, however, that once it has been decided that A is labelled in and B
is labelled out, it is not possible anymore to label the remaining arguments such
that final result will be a stable labelling. This can be seen as follows. Suppose
C is labelled in. Then E must be labelled out, so D should be labelled in, which
means that C would be labelled out. Contradiction. Similarly, suppose that C is
labelled out. Then E must be labelled in, so D should be labelled out, so C should
be labelled in. Again, contradiction.

There exist many ways to characterize a stable extension [Caminada and Gabbay,
2009]. For our purposes, the most useful characterization is that of an admissible set
which attacks every argument that is not in it (Theorem 1). When one translates
this to labellings, one obtains an admissible labelling where each argument is labelled
either in or out (that is, no argument is labelled undec, Theorem 2).

It appears that a discussion game for stable semantics requires an additional type
of move: question. To illustrate the role of this new move, imagine a politician
being interviewed for TV. At first the discussion may be about financial matters (say,
whether the banking system should be nationalized). Then, the discussion may be
about the consequences of the politician’s opinion (“If you accept to nationalize the

10In fact, for the argumentation framework of Figure 2, the only ideal set is the empty set.
11Since an argument can be element of more than one admissible set, there can be different ways

to win the preferred discussion game.

2473



Caminada

banks, then you must reject the possibility to improve healthcare, because there will
not be enough money left to do so.”). However, at some moment, the interviewer
could choose to totally change topic (“By the way, what are your opinions about
abortion?”). It is this change of topic that is enabled by the question move.12

For the discussion game for stable semantics, we use the question move to
involve those arguments that have never been uttered before so that we are able to
label all the arguments in Ar . By questioning an argument (question(A)), player S
(the opponent) asks player M (the proponent) to give an explicit opinion on whether
A should be labelled in or out. If player M thinks that A should be labelled in
then he should respond with in(A). If, on the other hand, player M thinks that A
should be labelled out then he should respond with in(B) where B is a attacker of
A. The discussion game for stable semantics can thus be described as follows:

• Player M (the proponent) and player S (the opponent) take turns. Player M
starts.

• Each move of player S is either of the form out(A), where A is a attacker
of some (not necessarily the directly preceding) move of player M, or of the
form question(A), where A is an argument that has not been uttered in the
discussion before (by either player M or player S).

• The first move of player M is of the form in(A), where A is the main argument
of the discussion. The following moves of player M are also of the form in(A)
although A no longer needs to be the main claim. If the directly preceding
move of player S is of the form out(B) then A is a attacker of B. If the directly
preceding move of player S is of the form question(B) then A is either equal
to B or a attacker of B.

• Player S is not allowed to repeat any of his out moves.

• Player M is allowed to repeat his own in moves.

Player S wins if there is an argument A that has been subject to both an in move
(by player M) and an out move (by player S). Otherwise, the discussion continues
until one of the players cannot move anymore, in which case the discussion is won
by the player making the last move.

12One of the reasons the question move is needed is because stable semantics does not satisfy
the property of directionality [Baroni and Giacomin, 2007]. This means that for determining the
status of an argument, not just the “ancestors” (the attackers, the attackers of these attackers, etc)
are relevant but also the “offspring” (the attacked, the attacked of the attacked, etc) as well as
arguments from unconnected parts of the graph.
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To illustrate the use of the discussion game, consider the argumentation frame-
work depicted in Figure 4.

A B C D

Figure 4: Another argumentation framework

Suppose player M would like to start a discussion about A.
M: in(A) “I have a stable labelling in which A is labelled in.”
S: out(B) “Then in your labelling, A’s attacker B must be labelled out. Based on
which grounds?”
M: in(A) “B is labelled out because A is labelled in.”
S: question(C) “What about C?”
M: in(C) “C is labelled in.”
S: out(D) “Then C’s attacker D must be labelled out. Based on which grounds?”
M: in(C) “D is labelled out because C is labelled in.”
Player M wins the discussion, since player S cannot move anymore.

The above example also shows that the outcome of a discussion may depend on
player M’s response to a question move. For instance, if player M would have replied
to question(C) with in(D), then he would have lost the discussion, since player S
would then move out(D).

As an example of a discussion that cannot be won by player M, consider the
discussion for argument B. This discussion has to be lost by player M since the
argumentation framework of Figure 4 has only one stable extension: {A, C}, which
does not include B.
M: in(B) “I have a stable labelling in which B is labelled in.”
S: out(A) “Then in your labelling, B’s attacker A must be labelled out. Based on
which grounds?”
M: in(B) “A is labelled out because B is labelled in.”
S: question(C) “What about C?”
M: in(D) “C is labelled out because its attacker D is labelled in.”
S: out(D) “Then D’s attacker D (itself) must be labelled out. Contradiction.”
Player M would still have lost the discussion if he had responded to question(C)
with in(C) instead of with in(D). This is because then player S would have reacted
with out(B) and would therefore still have won the discussion.

Formally, the stable discussion game can be described as follows.
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Definition 14. Let (Ar , att) be an argumentation framework. A stable discussion
is a sequence of moves [∆1, ∆2, . . . , ∆n] (n ≥ 0) such that:

• each ∆i (1 ≤ i ≤ n) where i is odd (which is called an M-move) is of the form
in(A), where A ∈ Ar .

• each ∆i (1 ≤ i ≤ n) where i is even (which is called an S-move) is of the form
out(A) where A ∈ Ar , or of the form question(A) where A ∈ Ar .

• For each S-move ∆i = out(A) (2 ≤ i ≤ n) there exists an M-move ∆j = in(B)
(j < i) where A attacks B.

• For each M-move ∆i = in(A) (3 ≤ i ≤ n) it either holds that (1) ∆i−1 =
out(B) where A attacks B, or (2) ∆i−1 = question(B) where either A = B
or A attacks B.

• For each S-move ∆i = out(A) (1 ≤ i ≤ n) there does not exist an S-move
∆j = out(A) with j < i.

• For each S-move ∆i = question(A) (1 ≤ i ≤ n) there does not exist any move
∆j (j < i) of the form in(A), out(A) or question(A).

• For each M-move ∆i = in(A) (1 ≤ i ≤ n) there does not exist an S-move
∆j = out(A) with j < i.

A stable discussion [∆1, ∆2, . . . , ∆n] is said to be finished iff (1) there exists no ∆n+1
such that [∆1, ∆2, . . . , ∆n, Mn+1] is a stable discussion, or there exists an M-move
in(A) and an S-move out(A) for the same argument A, and (2) no subsequence
[∆1, . . . , ∆m] (m < n) is finished. A finished stable discussion is won by player S
if there exists an M-move in(A) and an S-move out(A) for the same argument A.
Otherwise it is won by the payer making the last move ∆n.

It turns out that an argument is in at least one stable extension iff the proponent
can win the stable discussion game for it.

Theorem 4. Let (Ar , att) be an argumentation framework and A ∈ Ar .

1. If there exists a stable discussion for A that is won by player M, then A is in
a stable extension.

2. If A is in a stable extension, then player M has a winning strategy for the
stable discussion game.
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As for point 1, it can be observed that what the discussion game essentially
does is to build a stable labelling Lab with in(Lab) = {A | there exists an M-move
in(A)} and out(Lab) = {A | there exists an S-move out(A)} ∪ {A | there exists
an S-move question(A) that was responded to with in(B) where B attacks A}.
It can be verified that Lab is an admissible labelling without any argument being
labelled undec. Hence, Lab is a stable labelling in the sense of Theorem 2. As A is
labelled in by Lab (since A is the subject of the first M-move) it holds that A is in
Lab2Ext(Lab). Hence, A is in a stable extension.

As for point 2, it should be mentioned that player M can win the game simply by
staying within the borders of the stable labelling Lab = Ext2Lab(Args) (with Args
being the stable extension that contains A, the argument that the discussion will
start with). That is, as long as player M only plays arguments that are labelled in
by Lab, each out move of player S will be labelled out by Lab, which then implies
that player M can always react with an argument that is labelled in by Lab, etc.
Moreover, when player S does a question(A) move, either A itself or an attacker
of A is labelled in by Lab, which again means that player M can always respond
with an argument that is labelled in by Lab. As the argumentation framework is
finite and player S cannot repeat himself, it follows that the game will finish in a
finite number of moves. As player M can always react to the moves of player S, this
means that the last move has to be an M-move. Hence, player M wins the game.13

Definition 14 describes the discussion game for credulous stable semantics (that
is, it can used to determine whether an argument is in at least one stable extension).
It is, however, relatively straightforward to re-apply this game in the context of
sceptical stable semantics (that is, to determine whether an argument is in every
stable extension). The idea is that an argument A is in each stable extension iff
no attacker of A is in any stable extension. So in order to determine whether A
is in every stable extension, one could try to play the stable discussion game for
each attacker of A. If for none of these attackers the discussion game can be won,
argument A is in each stable extension.

6 Grounded Semantics
So far, we have mainly focussed on the preferred discussion game and its slightly
modified variants for ideal and stable semantics. In the current section we will focus
on a fundamentally different type of discussion game, in the context of grounded
semantics.

One of the main differences between the preferred discussion game and the

13A more elaborate proof can be found in [Caminada and Wu, 2009].
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grounded discussion game to be introduced in the current section is a conceptual
one. To properly understand this difference, it is useful to take the perspective of
complete labellings. We recall that a complete labelling (Definition 11) is a labelling
where one has reasons for each argument one accepts (because all its attackers are
rejected), reasons for each argument one rejects (because it has an attacker that
is accepted), and reasons for each argument one abstains from having an explicit
opinion about (because there are insufficient grounds to accept it and insufficient
grounds to reject it). As such, a complete labelling can be seen as a reasonable
position on how to evaluate the conflicting information represented in the argumen-
tation framework. The preferred discussion game determines whether an argument
is accepted (labelled in) by at least one such reasonable position.14 The grounded
discussion game, to be introduced in the current section, determines whether an
argument is accepted (labelled in) by every such reasonable position.15 That is,
from the perspective of complete labellings, the preferred discussion game is about
whether an argument can be accepted, whereas the grounded discussion game is
about whether an argument has to be accepted.

The difference between determining whether an argument can be accepted and
whether an argument has to be accepted is reflected in the nature of the associated
discussion game. If the discussion is merely about whether an argument can be
accepted (that is, about whether there exists a reasonable position in which the
argument is accepted) then arguing against this means pointing out that any position
in which the argument is accepted is somehow not reasonable. That is, the opponent
tries to lead the proponent of such a position towards a contradiction.16 Hence,
the admissible discussion game has at least some properties of Socratic discussion
[Caminada, 2008; Caminada et al., 2014a]. If, on the other hand, the discussion is
about whether an argument has to be accepted (that is, about whether the argument
is accepted in each reasonable position) then the discussion gets a totally different
nature. If an argument is accepted in each reasonable position, then in particular
one’s discussion partner, by being reasonable, should accept the argument. So the
discussion becomes one of trying to convince the discussion partner that he has to
accept a particular argument. That is, the discussion partner should be shown that
by being reasonable, he cannot avoid having to accept the argument in question. As
such, the nature of the discussion becomes that of persuasion dialogue [Walton and

14This is because an argument is labelled in by some admissible labelling iff it is labelled in by
some complete labelling.

15This is because an argument is labelled in by the grounded labelling iff it is labelled in by
every complete labelling.

16like saying, “if you think that argument X is labelled in, then it follows that X’s attacker Y
should be labelled out, but previously you claimed that Y should be labelled in.”
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Krabbe, 1995].
Now that the conceptual difference between the preferred discussion game and

the grounded discussion game has been explained, we will take a closer look at
the technical differences. Although the preferred discussion game is used to deter-
mine membership of a preferred extension, it does so by determining membership
of an admissible set (labelling).17 This has the advantage of not having to con-
struct the entire preferred extension (labelling), as constructing an admissible set
(labelling) will be sufficient. Similarly, although the grounded discussion game is
used to determine membership of the grounded extension, it does so by determining
membership of a strongly admissible set (labelling) [Baroni and Giacomin, 2007;
Caminada, 2014].18 This has the advantage of not having to construct the entire
grounded extension (labelling) as constructing a strongly admissible set (labelling)
will be sufficient.

The grounded discussion game [Caminada, 2015a,b] that we will described in
the current section has two players (proponent and opponent) and is based on four
different moves, each of which has an argument as a parameter.

HTB(A) (“A has to be the case”)
With this move, the proponent claims that A has to be labelled in by every
complete labelling, and hence also has to be labelled in by the grounded
labelling.

CB(B) (“B can be the case, or at least cannot be ruled out”)
With this move, the opponent claims that B does not have to be labelled
out by every complete labelling. That is, the opponent claims there exists a
complete labelling where B is labelled in or undec, and that B is therefore
not labelled out by the grounded labelling.

CONCEDE(A) (“I agree that A has to be the case”)
With this move, the opponent indicates that he now agrees with the proponent
(who previously did an HTB(A) move) that A has to be the case (labelled in
by every complete labelling, including the grounded).

RETRACT (B) (“I give up that B can be the case”)
With this move, the opponent indicates that he no longer believes that B can

17Recall that an admissible set (labelling) can always be extended to a preferred extension
(labelling), as a preferred extension (labelling) is a maximal admissible set (labelling).

18Recall that a strongly admissible set (labelling) can always be extended to the grounded ex-
tension (labelling), as the grounded extension (labelling) is the maximal strongly admissible set
(labelling) (see Theorem 2 and the work of Baroni and Giacomin [2007] and Caminada [2014].
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be in or undec. That is, the opponent acknowledges that B has to be labelled
out by every complete labelling, including the grounded.

One of the key ideas of the discussion game is that the proponent has burden of
proof. He has to establish the acceptance of the main argument and make sure the
discussion does not go around in circles. The opponent merely has to cast sufficient
doubts.

The game starts with the proponent uttering an HTB statement. After each
HTB statement (either the first one or a subsequent one) the opponent utters a
sequence of one or more CB, CONCEDE and RETRACT statements, after which
the proponent again utters an HTB statement, etc. In the argumentation framework
of Figure 1 the discussion could go as follows.

(1) P: HTB(C) (4) O: CONCEDE(A)
(2) O: CB(B) (5) O: RETRACT (B)
(3) P: HTB(A) (6) O: CONCEDE(C)

In the above discussion, C is called the main argument (the argument the discussion
starts with). The discussion above ends with the main argument being conceded by
the opponent, so we say that the proponent wins the discussion.

As an example of a discussion that is lost by the proponent, it can be illustrative
to examine what happens if the proponent claims that B has to be the case.

(1) P: HTB(B) (2) O: CB(A)

After the second move, the discussion is terminated, as the proponent cannot make
any further move, since A does not have any attackers. This brings us to the precise
preconditions of the discussion moves.

HTB(A) Either this is the first move, or the previous move was CB(B), where A
attacks B, and no CONCEDE or RETRACT move is applicable.

CB(A) A is an attacker of the last HTB(B) statement that is not yet conceded,
the directly preceding move was not a CB statement, argument A has not yet
been retracted, and no CONCEDE or RETRACT move is applicable.

CONCEDE(A) There has been an HTB(A) statement in the past, of which every
attacker has been retracted, and CONCEDE(A) has not yet been moved.

RETRACT (A) There has been a CB(A) statement in the past, of which there
exists an attacker that has been conceded, and RETRACT (A) has not yet
been moved.
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Apart from the preconditions mentioned above, all four statements also have the
additional precondition that no HTB-CB repeats have occurred. That is, there
should be no argument for which HTB has been uttered more than once, CB has
been uttered more than once, or both HTB and CB have been uttered. In the first
and second case, the discussion is going around in circles, which the proponent has
to prevent as he has burden of proof. In the third case, the proponent has been
contradicting himself, as his statements are not conflict-free. In each of these three
cases, the discussion comes to an end with no move being applicable anymore. The
above conditions are made formal as follows.
Definition 15. Let AF = (Ar , att) be an argumentation framework. A grounded
discussion is a sequence of discussion moves constructed by applying the following
principles.
BASIS (HTB) If A ∈ Ar then [HTB(A)] is a grounded discussion.

STEP (HTB) If [M1, . . . , Mn] (n ≥ 1) is a grounded discussion without HTB-
CB repeats,19 and no CONCEDE or RETRACT move is applicable,20 and
Mn = CB(A) and B is an attacker of A then [M1, . . . , Mn, HTB(B)] is also a
grounded discussion.

STEP (CB) If [M1, . . . , Mn] (n ≥ 1) is a grounded discussion without HTB-CB
repeats, and no CONCEDE or RETRACT move is applicable, and Mn is not
a CB move, and there is a move Mi = HTB(A) (i ∈ {1 . . . n}) such that the
discussion does not contain CONCEDE(A), and for each move Mj = HTB(A′)
(j > i) the discussion contains a move CONCEDE(A′), and B is an attacker
of A such that the discussion does not contain a move RETRACT (B), then
[M1, . . . , Mn, CB(B)] is a grounded discussion.

STEP (CONCEDE) If [M1, . . . , Mn] (n ≥ 1) is a grounded discussion without
HTB-CB repeats, and CONCEDE(B) is applicable then
[M1, . . . , Mn, CONCEDE(B)] is a grounded discussion.

STEP (RETRACT) If [M1, . . . , Mn] (n ≥ 1) is a grounded discussion without
HTB-CB repeats, and RETRACT (B) is applicable then
[M1, . . . , Mn, RETRACT (B)] is a grounded discussion.

19We say that there is a HTB-CB repeat iff ∃i, j ∈ {1 . . . n}∃A ∈ Ar : (Mi = HTB(A) ∨ Mi =
CB(A)) ∧ (Mj = HTB(A) ∨ Mj = CB(A)) ∧ i 6= j.

20A move CONCEDE(B) is applicable iff the discussion contains a move HTB(A) and for ev-
ery attacker A of B the discussion contains a move RETRACT(B), and the discussion does not
already contain a move CONCEDE(B). A move RETRACT(B) is applicable iff the discussion
contains a move CB(B) and there is an attacker A of B such that the discussion contains a move
CONCEDE(A), and the discussion does not already contain a move RETRACT(B).
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It can be observed that the preconditions of the moves are such that a proponent
move (HTB) can never be applicable at the same moment as an opponent move
(CB, CONCEDE or RETRACT ). That is, proponent and opponent essentially
take turns in which each proponent turn consists of a single HTB statement, and
every opponent turn consists of a sequence of CONCEDE , RETRACT and CB
moves.

Definition 16. A grounded discussion [M1, . . . , Mn] is called terminated iff there
exists no move Mn+1 such that [M1, . . . , Mn, Mn+1] is a grounded discussion. A
terminated grounded discussion (with A being the main argument) is won by the
proponent iff the discussion contains CONCEDE(A), otherwise it is won by the
opponent.

To illustrate why the discussion has to be terminated after the occurrence of an
HTB-CB repeat, consider the following discussion in the argumentation framework
of Figure 1.

(1) P: HTB(G) (3) P: HTB(G)
(2) O: CB(H)

At the third move, an HTB-CB repeat occurs and the discussion is terminated (op-
ponent wins). Hence, termination after an HTB-CB repeat is necessary to prevent
the discussion from going on perpetually.

Theorem 5. Every discussion will terminate after a finite number of steps.

From the fact that a discussion terminates after an HTB-CB repeat, the following
result follows.

Lemma 1. No discussion can contain a CONCEDE and RETRACT move for the
same argument.

The soundness and completeness of the game described above is stated in the
following theorem.

Theorem 6 (Caminada [2015a]). Let (Ar , att) be an argumentation framework and
let A ∈ Ar .

1. If there exists a grounded discussion for A that is won by player P, then A is
labelled in by the grounded labelling.

2. If A is labelled in by the grounded labelling, then player P has a winning
strategy for A in the grounded discussion game.
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The correctness of Theorem 6 can be seen as follows. As for point 1, it can be
observed that what the discussion game actually does is to construct a strongly ad-
missible labelling of which the in-labelled arguments coincide with the CONCEDE
moves, and the out-labelled arguments coincide with the RETRACT moves. In
fact, it can be proved by induction that at each state of the discussion, the labelling
where each CONCEDE move is labelled in and each retract move is labelled out
is strongly admissible [Caminada, 2015b]. The fact that the discussion is won by
player P implies that the main argument (A) has been conceded. So at the end of
the discussion, we have a strongly admissible labelling where argument A is labelled
in. Hence, by Theorem 2, A is labelled in by the grounded labelling.

As for point 2, it should be mentioned that a strongly admissible labelling (for
instance the grounded labelling) with its associated min-max numbering can serve
as a roadmap for winning the discussion. The proponent will be able to win if,
whenever he has to do an HTB move, he prefers to use an in argument with the
lowest min-max number that attacks the directly preceding CB move. We refer to
this as a lowest number strategy.21

It turns out that when applying such a strategy, the game stays within the
boundaries of the strongly admissible labelling (that is, within its in and out la-
belled part). As long as each HTB move of the proponent is related to an in-labelled
argument, it follows that all the attackers are labelled out (Definition 8, first bullet)
so each CB move the opponent utters in response will be related to an out-labelled
argument. This out-labelled argument will then have at least one in-labelled at-
tacker (Definition 8, second bullet) as a candidate for the proponent’s subsequent
HTB move.

The next thing to be observed is that when the proponent applies a lowest
number strategy, the game will not terminate due to any HTB-CB repeats. This is
due to the facts that (1) after a move HTB(A) is played (for some argument A) all
subsequent CB and HTB moves will be related to arguments with lower min-max
numbers than A until a move CONCEDE(A) is played, and (2) after a move CB(A)
is played (for some argument A), all subsequent HTB and CB moves will be related
to arguments with lower min-max numbers than A, until a move RETRACT (A) is
played. We refer to [Caminada, 2015b] for details.

21We write “a lowest number strategy” instead of “the lowest number strategy” as a lowest
number strategy might not be unique due to different lowest numbered in-labelled arguments being
applicable at a specific point. In that case it is sufficient to pick an arbitrary one.
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7 Tree-Based Discussion Games
The discussion games that were described in the previous sections are not the only
ones that have been stated for preferred, stable, ideal and grounded semantics. In
fact, various alternative dialectical proof procedures can be found in the literature,
many of them are based on the concept of dialectical trees [Dung et al., 2007; Modgil
and Caminada, 2009; Thang et al., 2009]. In the current section, we aim to pro-
vide an impression of these tree-based discussion games, and explain some of their
disadvantages compared to the discussion games described in the previous sections.
Rather than giving an overview of all tree-based discussion games that have been
stated in the literature, we will focus our attention on one of them: the Standard
Grounded Game [Prakken and Sartor, 1997; Caminada, 2004; Modgil and Caminada,
2009].

The Standard Grounded Game (SGG) [Prakken and Sartor, 1997; Caminada,
2004; Modgil and Caminada, 2009] is one of the earliest dialectical proof procedures
for grounded semantics. Each game22 consists of a sequence [A1, . . . , An] (n ≥ 1) of
arguments, moved by the proponent and opponent taking turns, with the proponent
starting. That is, a move Ai (i ∈ {1 . . . n}) is a proponent move iff i is odd, and an
opponent move iff i is even. Each move, except the first one, is an attacker of the
previous move. In order to ensure termination even in the presence of cycles, the
proponent is not allowed to repeat any of his moves. A game is terminated iff no
next move is possible; the player making the last move wins. Formally, the Standard
Grounded Game can be defined as follows.

Definition 17. A discussion in the Standard Grounded Game is a finite sequence
[A1, . . . , An] (n ≥ 1) of arguments (sometimes called moves), of which the odd moves
are called P-moves (Proponent moves) and the even moves are called O-moves (Op-
ponent moves), such that:

1. every O-move is an attacker of the preceding P-move (that is, every Ai where
i is even and 2 ≤ i ≤ n attacks Ai−1)

2. every P-move except the first one is an attacker of the preceding O-move (that
is, every Ai where i is odd and 3 ≤ i ≤ n attacks Ai−1)

3. P-moves are not repeated (that is, for every odd i, j ∈ {1, . . . , n} it holds that
if i 6= j then Ai 6= Aj)

22What we call an SGG game is called a “line of dispute” in [Modgil and Caminada, 2009].
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A discussion is called terminated iff there is no An+1 such that [A1, . . . , An, An+1]
is a discussion. A terminated discussion is said to be won by the player making the
last move.

As an example, in the argumentation framework of Figure 1 [C, B, A] is ter-
minated and won by the proponent (as A has no attackers, the opponent cannot
move anymore) whereas [G, H] is terminated and won by the opponent (as the only
attacker of H is G, which the proponent is not allowed to repeat). It is sometimes
possible for the proponent to win a game even if the main argument is not in the
grounded extension. An example would be [F, B, A]. This illustrates that in order
to show that an argument is in the grounded extension, a single game won by the
proponent is not sufficient. Instead, what is needed is a winning strategy. This is
essentially a tree in which each node is associated with an argument such that (1)
each path from the root to a leaf constitutes a terminated discussion won by the
proponent, (2) the children of each proponent node (a node corresponding with a
proponent move) coincide with all attackers of the associated argument, and (3)
each opponent node (a node corresponding with an opponent move) has precisely
one child, whose argument attacks the argument of the opponent node.

Formally, argument tree is a tree of which each node (n) is labelled with an
argument (Arg(n)). The level of a node is the number of nodes in the path to
the root. This leads to the following formal definition of a winning strategy in the
context of the Standard Grounded Game.

Definition 18. A winning strategy of the Standard Grounded Game for argument
A is an argument tree, where the root is labelled with A, such that

1. for each path from the root (nroot) to a leaf node (nleaf ) it holds that the argu-
ments on this path form a terminated discussion won by P

2. for each node at odd level nP it holds that {Arg(nchild) | nchild is a child of nP }
= {B | B attacks Arg(nP )} and the number of children of nP is equal to the
number of attackers of Arg(nP )

3. each node of even level nO has precisely one child nchild , and Arg(nchild) attacks
Arg(nO)

It has been proved that an argument is in the grounded extension iff the propo-
nent has a winning strategy for it in the SGG [Prakken and Sartor, 1997; Caminada,
2004]. Moreover, it has also been shown that an SGG winning strategy defines a
strongly admissible labelling, when each argument of a proponent node is labelled
in, each argument of an opponent node is labelled out and all remaining arguments
are labelled undec [Caminada, 2014].
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As an example, in the argumentation framework of Figure 1 the winning strategy
for argument E would be the tree consisting of the two branches E − B − A and
E − D − C − B − A, thus proving its membership of the grounded extension by
yielding the strongly admissible labelling ({A, C, E}, {B, D}, {F, G, H}).

As can be observed from this example, a winning strategy of the SGG can contain
some redundancy when it comes to multiple occurrences of the same arguments
in different branches. In the current example, the redundancy is relatively mild
(consisting of just the two arguments A and B) but other cases exist where the
SGG requires a number of moves in the winning strategy that is exponential w.r.t.
the size of the strongly admissible labelling the winning strategy is defining. As an
example, consider the argumentation framework of Figure 5 (top left). The winning
strategy of the SGG is in the same figure (top right). Now consider what would
happen if one would start to extend the argumentation framework by duplicating
the middle part. That is, suppose we have arguments B1, . . . , Bn and C1, . . . , Cn

(with n being an odd number), as well as arguments A and D. Suppose that for
every i ∈ {1, . . . , n−1} Bi+1 attacks Bi, and Ci+1 attacks Ci, and that for each even
i ∈ {2, . . . n− 1} Bi+1 attacks Ci, and Ci+1 attacks Bi, and that B1 and C1 attack
A, and that D attacks Bn and Cn. In that case, the branches in the SGG winning
strategy would split at every O-move. So for n = 3 (as is the case in Figure 5) the
number of branches is four, for n = 5 it is eight, etc. In general, the number of
branches in the SGG winning strategy is 2(n+1)/2, with the number of nodes in the
SGG winning strategy being 1 + 2Σ(n+1)/2

i=1 2i. Hence, the number of steps needed in
a winning strategy of the SGG can be exponential in relation to the size (number of
in and out labelled arguments) of the strongly admissible labelling that the SGG
winning strategy is constructing.23

As for the Grounded Discussion Game (GDG) as described in Section 6, the
situation is different. As was mentioned in Section 6, what the GDG essentially does
is to construct a strongly admissible labelling of which the in labelled arguments
coincide with the CONCEDE moves and the out labelled arguments coincide with
the RETRACT moves. It can be observed that no argument occurs in both a
CONCEDE and RETRACT move (otherwise the argument would also have occurred
in both an HTB and CB move, and the discussion would have terminated before
reaching the CONCEDE and RETRACT moves) and that for each argument there
exists at most one CONCEDE move and at most one RETRACT move. As we
assume the game is won by the proponent, who is playing a lowest number strategy,
there will be no HTB-CB repeats. This implies that for each CONCEDE move,
there exists precisely one HTB move, and for each RETRACT move, there exists

23We thank Mikołaj Podlaszewski for this example.
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(1) P: HTB(A) (5) P: HTB(D) (9) O: RETRACT(C3) (13) P: HTB(C2)
(2) O: CB(B1) (6) O: CONCEDE(D) (10) O: CONCEDE(B2) (14) O: CONCEDE(C2)
(3) P: HTB(B2) (7) O: RETRACT(B3) (11) O: RETRACT(B1) (15) O: RETRACT(C1)
(4) O: CB(B3) (8) O: CB(C3) (12) O: CB(C1) (16) O: CONCEDE(A)

Figure 5: The Standard Grounded Game (SGG) versus the Grounded Discussion
Game (GDG).

precisely one CB move. This means that the total number of moves (in a game
won by the proponent, who is applying a lowest number strategy) is two times the
number of in labelled arguments (which accounts for the HTB and CONCEDE
moves) plus two times the number of out labelled arguments (which accounts for
the CB and RETRACT moves). Hence, the number of moves in the game is linear
in relation to the size (number of in and out labelled arguments) of the strongly
admissible labelling the GDG is constructing.24

Hence, whereas for the Grounded Discussion Game, constructing a strongly ad-
missible labelling (which is needed to show membership of the grounded extension)
requires a linear number of moves, for the Standard Grounded Game this requires
a potentially exponential number of moves. This makes the GDG a better choice
for purposes of human-computer interaction, assuming that the human user’s time
is precious.

It should be mentioned that the possibility of an exponential blowup in the num-
ber of moves is not restricted to the SGG, but is a feature of tree-based discussion
games in general. For instance, the above sketched example also leads to an expo-
nential number of moves in the preferred semantics game of Modgil and Caminada
[2009] and in the ideal semantics game of Dung et al. [2007]. The key feature of
these approaches is that they require a winning strategy to show membership of a
(grounded, preferred or ideal) extension. It is this winning strategy that is respon-
sible for the exponential blowup. In the discussion games described in sections 3,
5 and 6, however, no winning strategy is required, as just a single game won by
the proponent is sufficient to prove membership of a (preferred, stable or grounded)

24See [Caminada, 2015a] for details.
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extension.25

8 Discussion
What the above described discussion games for preferred semantics (Section 3),
stable semantics (Section 5) and grounded semantics (Section 6) have in common
is that (1) a single game won by the proponent is sufficient to prove membership
of a (preferred, stable or grounded) extension, and (2) if an argument is member
of a (preferred, stable or grounded) extension then the proponent has a winning
strategy for it. This is evidenced by theorems 3, 4 and 6. In tree-based discussion
games, like those of Dung et al. [2007], Modgil and Caminada [2009] and Thang et
al. [2009] point (1) is altered such that a single game won by the proponent is not
sufficient to prove membership of an extension; for this a winning strategy is needed.
Having to provide such a winning strategy in a dialectical way can be troublesome
for two reasons. First of all, the tree of the winning strategy would need to be
“linearized” as discussions take place not in branching time but in linear time. But
even if linearization takes place, one still has to deal with the fact that the original
(tree-based) winning strategy could have a size that is exponentially related to the
(strongly) admissible labelling it is based on. The discussion games presented in
sections 3, 5 and 6 have the advantage that they are not tree-based and hence do
not have these problems.

One can ask the question whether it is always possible (for any argumentation
semantics) to define a discussion game that satisfies the points (1) and (2) mentioned
above. For instance, the procedure sketched in Section 4 (ideal semantics) does not
satisfy point (1). This is because in the second phase of the discussion, when trying
to find an admissible set that attacks the admissible set obtained in the first phase
of the discussion, not finding such a set could be due to the proponent making the
“wrong” choices during the second phase, rather than due to the actual absence of
such a set. It would be a challenge to change the discussion procedure for ideal
semantics such that both points (1) and (2) are satisfied. An even greater challenge
would be to formulate discussion games (still satisfying points (1) and (2)) for semi-
stable, stage or even CF2 semantics.

As the tree-based discussion games of Dung et al. [2007], Modgil and Caminada
[2009] and Thang et al. [2009] violate point (1) but satisfies point (2), one can ask
the question of whether there also exists a discussion game that satisfies point (1)

25It can be proved that the preferred discussion game (Section 3) is linear in the number of moves
required. See [Caminada et al., 2014a] for details. Using similar techniques one can also prove that
the stable discussion game (Section 5) requires only a linear number of moves.
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but violates point (2). The answer is affirmative, as is evidenced by the work of
Caminada and Podlaszewski [2012]. Here, the ability to win the discussion game
might depend on cooperation of the opponent. So even though an argument being
in the grounded extension implies the existence of a discussion for it that is won by
the proponent, it does not imply that the proponent also has a winning strategy.26

For the purpose of human-computer interaction, this property is undesirable, as the
computer should be able to win the discussion (for an argument that is actually
in the grounded extension) regardless of how the human user choses to utter the
possible counterarguments.

The discussion games presented in the current paper have been stated in the
context of abstract argumentation theory. This raises the question of whether these
discussion games are also suitable in the context of instantiated argumentation, like
aspic+ [Modgil and Prakken, 2014] aba [Toni, 2014] or logic-based argumentation
[Gorogiannis and Hunter, 2011] Technically, this should not be a problem, as each of
these formalisms provides an instantiation of Dung’s abstract argumentation theory.
That is, each of these formalisms specifies what arguments can be constructed and
how these attack each other, starting from a particular knowledge base. Although
applying the discussion games in the context of instantiated argumentation is techni-
cally straightforward, there is a catch. The question is whether the notion of attack
of the instantiated argumentation formalism is defined in such a way that it allows
for moves that can be considered as intuitive during the course of the discussion. For
instance, in aspic+ it can be the case that a discussion partner utters an argument
with conclusion c, which cannot be replied to with an argument for conclusion ¬c
(even though such an argument is well-formed and perhaps even justified) because
the definition of attack is such that it does not attack the argument with conclusion
c. This is like having your discussion partner uttering an argument for a claim (c)
which you know is not the case, but you’re not allowed to reply with an argument
that directly rebuts this claim. We refer to the work of Caminada et al. [2014b] for
details.

As mentioned in the introduction, one of the possible applications of the discus-
sion games is for the purpose of human-computer interaction. The context here is
that of a shared knowledge base27 (say, of medical research and clinical evidence) that
allows for the construction of arguments (say, regarding to how to treat a particular

26We refer to [Caminada, 2015a] for a specific example.
27A particularly interesting situation is where such a shared knowledge base is absent, that

is, where proponent and opponent each have their own private knowledge base and associated
argumentation framework. In that case, both proponent and opponent learn new information from
each other during the course of the discussion. This puts additional constraints on the discussion
protocol. We refer to [Caminada and Sakama, 2015] for details.
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patient). As the knowledge base can be complex and huge, it is not always directly
obvious what the justified arguments are. Although a software implementation of
(instantiated) argumentation theory can help to provide an answer, the correctness
of this answer might need to be explained to a human user. Our hypothesis is that
human-computer discussion can contribute to acceptance of argument-based entail-
ment. In order to test this hypothesis, one would need to perform experiments in
which the user’s confidence in the argument-based entailment is tested, before and
after performing the discussion game. Experiments like these is what we would like
to perform in the near future.
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Abstract

Argumentation schemes can be described as abstract structures representing
the most generic types of argument, constituting the building blocks of the ones
used in everyday reasoning. This paper investigates the structure, classification,
and uses of such schemes. Three goals are pursued: 1) to describe the schemes,
showing how they evolved and how they have been classified in the traditional
and the modern theories; 2) to propose a method for classifying them based on
ancient and modern developments; and 3) to outline and show how schemes can
be used to describe and analyze or produce real arguments. To this purpose, we
will build on the traditional distinctions for building a dichotomic classification
of schemes, and we will advance a modular approach to argument analysis,
in which different argumentation schemes are combined together in order to
represent each step of reasoning on which a complex argument relies. Finally,
we will show how schemes are applied to formal systems, focusing on their
applications to Artificial Intelligence, AI & Law, argument mining, and formal
ontologies.
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1 Introduction

The purpose of this paper is threefold: 1) to describe the schemes, showing how
they evolved and how they have been classified in the traditional and the modern
theories; 2) to propose a method for classifying them based on ancient and modern
developments; and 3) to outline and show how schemes are interrelated and can
be organized in a modular way to describe natural arguments or produce complex
arguments. Historically, the schemes evolved from the Aristotelian topics, the so-
called places to find arguments. But looking over the descriptions Aristotle presented
of them in the Topics, for the most part they do not appear to very much resemble
the argumentation schemes in the contemporary list of Walton, Reed and Macagno
[Walton et al., 2008]. Of course there are exceptions, such as the topic for argument
from analogy described in Aristotle, which is recognizable as standing for the same
kind of argument as the current scheme for argument from analogy, even though the
detailed description of it is quite different.

Argumentation schemes are instruments for argumentation, involving the activ-
ity of critically evaluating a viewpoint and the reasons given in its support. For this
reason, every scheme has a corresponding set of critical questions, representing its
defeasibility conditions and the possible weak points that the interlocutor can use
to question the argument and evaluate its strength. A critic who has no counter-
arguments ready to hand can search through the list of critical questions matching
the argument he is confronted with in order to look for clues on how the argument
can be attacked that might suggest sources of evidence that could be used to build
up a whole line of argumentation that furnishes a way of refuting the argument.

The fundamental challenge that a theory of argumentation schemes needs to
face is the problem of finding a useful and sound classification system. The schemes
need to be usable, easily identifiable, and at the same time they need to allow
the user to detect the most specific pattern of argument that can fit the text or
that can be employed for producing an argument suitable to the circumstances
and the purpose. In any classification system, entities can be classified in many
different ways, depending on the purpose of the classification. The purpose of the
classification system will determine the criteria for classification that are adopted in
that system. For example, a much more detailed classification of animals may be
useful in biology than the kind of classification that might be useful for law, or for
classifying animals as they are spoken and written about in everyday conversational
English. We need to begin by specifying the purpose of the classification, so that
some guidance can be given on how to identify the criteria used in the classification
system. From this perspective it is useful to examine how the study of argumentation
schemes evolved.
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2 Introducing argumentation schemes
Argumentation schemes represent forms of argument that are widely used in every-
day conversational argumentation, and in other contexts such as legal and scientific
argumentation. But for the most part these arguments are not adequately modeled
by deductive forms of reasoning of the kind familiar in classical logic or as statistical
inferences based on the standard Bayesian account of probability. They represent
the premise-conclusion structure of an argument, and they are defeasible. Their de-
feasibility conditions are shown as a set of critical questions, dialectical instruments
to help begin the procedure of testing the strength and acceptability of an argument
by weighing the pro and con arguments.

2.1 Nature of the schemes
Argumentation schemes are stereotypical patterns of inference, combining semantic-
ontological relations with types of reasoning and logical axioms and representing
the abstract structure of the most common types of natural arguments [Macagno
and Walton, 2015]. The argumentation schemes provided in [Walton et al., 2008]
describe the patterns of the most typical arguments, without drawing distinctions
between material relations (namely relations between concepts expressed by the war-
rant of an argument), types of reasoning (such as induction, deduction, abduction),
and logical rules of inference characterizing the various types of reasoning (such as
modus ponens, modus tollens, etc.). For this reason, argumentation schemes fall into
distinct patterns of reasoning such as abductive, analogical, or inductive ones, and
ones from classification or cause to effect.

In order to design a system for classifying the schemes, it is useful to understand
their limits, and investigate how the dimensions of an argument (material relation
and logical form) are merged. For example, consider argument from cause to effect
[Walton et al., 2008, p.328]:

Major premise Generally, if A occurs, then B will (might) occur.
Minor premise In this case, A occurs (might occur).
Conclusion Therefore, in this case B will (might) occur).

Table 1: Argument from cause to effect

This argumentation scheme is based on a defeasible modus ponens scheme [Ver-
heij, 2003a] which is combined with a semantic causal relation between two events.
The material (semantic) relation is merged with the logical one. However, this com-
bination represents only one of the possible types of inferences that can be drawn
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from the same semantic-ontological connection. The actual relationship between the
material and the logical relation is much more complex. For example, consider the
classic Aristotelian causal link between “having fever” and “breathing fast,” and see
how this cause-effect relation can be used to draw a conclusion based on different
logical rules [Macagno and Walton, 2015; Macagno, 2015])

1. He had fever. (Fever causes breathing fast). Therefore, he (must have)
breathed fast.

2. He did not breathe fast. (Fever causes breathing fast). Therefore, he had no
fever.

3. He is breathing fast. (Fever causes breathing fast). Therefore, he might have
fever.

4. He has no fever. (Fever causes breathing fast). Therefore, he may be not
breathing fast.

5. You may have fever. When I had fever, I was breathing fast, and you are
breathing fast.

Cases (1) and (2) proceed logically from defeasible deductive axioms, i.e. the
defeasible modus ponens (in 1), and the defeasible modus tollens (in 2). Cases 3 and
4 proceed from abductive reasoning. In (3) the conclusion is drawn by affirming the
consequent, while in (4) the denial of the antecedent can be rephrased by contrapo-
sition as “not breathing fast is caused by having no fever,” leading to a conclusion
drawn abductively [Walton et al., 2008, pp.169–173]. In (5) the conclusion is based
on an inductive generalization from one single case.

Schemes represent only the prototypical matching between semantic relations
and logical rules (types of reasoning and axioms). This matching is, however, only
the most common one. The material and the logical relations can combine in several
different ways. Hence this distinction needs to be taken into account order to classify
the schemes.

2.2 Why schemes are important
Critics often ask how these schemes can be justified, given that they resisted analysis
as deductive or inductive forms of argument of the kind recognized as valid in the
dominant 20th-century logic tradition [Walton and Sartor, 2013].

Schemes are becoming extremely important for practical reasons. First, argu-
mentation schemes are instruments for analyzing and recognizing natural arguments
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occurring in ordinary and specialized discourse. For example, arguments from polit-
ical discourse have been analyzed using the schemes, and the argumentative profiles
of the candidates have been brought to light considering their preferences of the
types of arguments used [Hansen & Walton, 2013]. Thousands of real examples of
these forms of argument have been analyzed in the argumentation literature, such as
the considerable literature on fallacies, with the aid of tools like argument mapping
[Reed et al., 2007; Rowe et al., 2006]. On this basis, the structure, use, and im-
portance of schemes for argumentation studies have been justified inductively. This
method consists in the following steps:

1. The structure of a scheme is outlined considering the literature on the topic.

2. A significant mass of examples of arguments is analyzed using the scheme,
adapting and modifying the scheme so that it can best describe the specific
natural arguments.

3. It is shown that the form of argument represented by the scheme under analysis
is significantly important for the study of argumentation as it occurs in natural
language discourse (and other specialized contexts such as legal discourse).

4. Empirical justification is given that this form of argument needs to be recog-
nized as a basic scheme for argumentation.

Second, schemes are instruments that can be used for the purpose of teaching critical
thinking. Informal logic is a field is known for having grown from its origins in
textbooks that departed from formal logic and instead proceeded on the basis of
analyzing numerous examples of arguments from ordinary discourse, such as those
taken from magazines and newspapers. There is an abundance of such textbooks full
of examples of everyday arguments related to topics such as the informal fallacy of
appeal to authority, false cause, and so forth. During its growth stage and subsequent
theoretical flowering, the field followed this trend by stressing the importance of
analyzing real arguments “on the hoof”. For example, the handbook Informal Logic
[Walton, 1989] was based on hundred 150 key examples, many of them illustrating
forms of argument now identified with argumentation schemes, including personal
attack, uses and abuses of expert opinion, arguments from analogy, arguments from
correlation to cause, and so forth. These textbooks and continued academic writings
on informal logic contained a very large number of such examples, often analyzed
in minute detail. Argumentation schemes, such as argument from expert opinion,
are tested against the real examples, to discuss the respects in which the abstract
scheme fits or does not fit the vagaries of the real-life example. This body of data
confirms that certain types of arguments, mainly the ones subsequently identified
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as argumentation schemes, are not only extremely common, but are also highly
influential in daily practices of argumentation.

Third, schemes can be used in education both for teaching students how to ar-
gue and for learning through argumentation [Erduran and Jimenez-Aleixandre, 2007;
Erduran and Jiménez Aleixandre, 2012; Rapanta and Walton, 2016]. The interest
in argumentation and the patterns for representing natural arguments is growing
[Rapanta et al., 2013]. The argumentation schemes illustrated in [Walton, 1995;
Walton et al., 2008] have been applied to science education in order to represent
students’ arguments and improve the quality thereof [Rapanta and Macagno, 2016],
retrieve the implicit premises, and assess and rebut their reasoning in a systematic
fashion [Macagno and Konstantinidou, 2013], or to assess the quality of argumen-
tation [Duschl et al., 1999; Ozdem et al., 2013]. However, a crucial problem arising
out of the use of schemes in education is their differentiation [Kim et al., 2010;
Nussbaum and Edwards, 2011]. Students often fail to understand the differences
between various types of arguments, and the recent developments in education tend
to conflate the schemes instead of providing criteria for classifying or distinguishing
between them.

Fourth, schemes have now been recognized as important for argument mining,
and it has also been recognized that there are too many schemes for handy use
[Mochales Palau and Moens, 2009; Mochales Palau and Moens, 2011]. Configuring
the relationships between clusters of them, and the internal structure of each cluster,
would help in the research efforts to apply the schemes as working tools to a broader
range of problems as the field of computational linguistics has moved forward.

From a theoretical point of view, schemes fit into current formal argumentation
models such as ASPIC+ [Prakken et al., 2015], DefLog [Verheij, 2003a] and the
Carneades Argumentation System [Walton and Gordon, 2012]. Among the basic
schemes presented in the list of 60+ schemes in chapter 9 of [Walton et al., 2008]
are argument from expert opinion, argument from sign, argument from example,
argument from commitment, argument from position to know, argument from lack of
knowledge, practical reasoning (argument from goal to action), argument from cause
to effect, the sunk costs argument, argument from analogy, ad hominem argument,
and the slippery slope argument. These schemes are at this point well enough
recognized in the argumentation literature that no detailed account of them needs
to be given in this paper, except for the ones that we will focus on to illustrate
general characteristics of schemes discussed in detail in the paper.

Moreover, Walton and Sartor [Walton and Sartor, 2013] have shown that the
basic defeasible schemes can be justified by the teleological argument. According
to this reasoning, the use of a specific scheme is warranted by the fact that it can
serve an agent’s goals better than using nothing, and better than other alternative
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schemata the agent has at its disposal. This kind of justification of basic schemes
is essentially a practical one saying that these schemes, even at their current state
of development, are proving to be useful in such areas as artificial intelligence and
multiagent computing. Defeasible schemes allow agents to arrive at a presumptive
conclusion on how to proceed in a situation where continuing to collect evidence
may cause delay, taking time and costing money.

This form of justification of schemes applies both to goals of epistemic cognition
(getting to the truth of a matter) and goals of practical cognition (making the best
choice in given circumstances). The importance of the schemes has also been ac-
knowledged in the history of dialectics. The forms of argument, their critical and
defeasible dimension, and their structure was long ago acknowledged in the earlier
concerns of the Sophists, who pointed out forms of argument useful for persuasion
and deliberation [Schiappa, 1999; Tindale, 2010]. In the Topics [Aristotle, 1991b]
and in the Rhetoric [Aristotle, 1991a], Aristotle set out a list of topics that, pro-
viding the abstract and general hypothetical premises of dialectical syllogisms, can
be considered to be the predecessors of the argument patterns developed in modern
times [Macagno et al., 2014; Rubinelli, 2009; Macagno et al., 2014].

The tradition of the topics was continued through the Middle Ages, with var-
ious theories aimed at providing a classification and an analysis of the nature of
the schemes [Bird, 1962; Gabbay and Woods, 2008; Green-Pedersen, 1984; Green-
Pedersen, 1987; Stump, 1982; Stump, 1989]. Study of the kinds of schemes that are
the focus of this paper was eclipsed during the Enlightenment, as the dominant view
became firmly entrenched that the only forms of reasoning that can be identified
with rational thinking are those of deductive logic, and inductive reasoning of the
kind used in games of chance. But the study of these schemes made a comeback
in the 20th century at the beginning of, and after the rise of argumentation stud-
ies as a respectable discipline, once the basic schemes were identified by Hastings
[1963], Perelman and Olbrechts-Tyteca [1969], Kienpointner [1992], Walton [1995],
Grennan [1997], and Walton, Reed and Macagno [2008]. From that point onwards,
the study of schemes has been recognized as important for building computational
models of argumentation, and especially for applying these models to argumentation
in natural language discourse.

2.3 Classification of the schemes: how to proceed

In this paper, it is shown how the complex project of classifying schemes needs
to proceed by matching a top-down approach with a bottom-up approach, and in
particular that this bottom-up approach needs to begin by studying relationships
between clusters of nested schemes. From a top-down approach, dichotomic criteria
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of classification need to be found, allowing the user to decide the scheme needed,
both by direct identification and by exclusion. For this purpose, an overview of the
existing classification systems developed in the tradition and in the recent theories
can provide useful criteria. From a bottom-up approach, relationships within groups
of schemes need to be studied, and then how one group fits with another can be
studied. Walton [2012] took a bottom-up approach that began with some examples
at the ground level of cases where two schemes seem to apply to the same real
example of an argument found in a text, leading to a difficulty of determining which
scheme fits the argument. Working from there, we identify clusters of schemes that
fit together, and then at the next step, we examine how these clusters can be fitted
together. Once clusters of schemes are fitted together into larger groups, we can
gradually learn how they fit into an overarching system.

3 The topics in the dialectical and rhetorical tradition
Argumentation schemes describe patterns from which specific arguments can be
drawn. In this sense, they can be seen as the modern development of the traditional
concept of topos, the conditional expressing a generic principle from which some of
the specific premises warranting the conclusion in an argument can be drawn. The
purpose of this section is to show how the ancient account of topoi and loci can be
considered as the ground and the predecessor of the modern theory of schemes.

3.1 Aristotle
The idea of providing general principles of inference from which various arguments
can be drawn was the ground of Aristotle’s Topics and Rhetoric. The Aristotelian
topoi can be conceived as principles [De Pater, 1965, pp.150–159] having often the
form of “P, then Q”. The various semantic (material) relations between P and Q, or
the “nature of the things which the terms of the argument represent or stand for”
[Green-Pedersen, 1987, p.413], constitute the differences between the various topoi.
For example, P and Q can be related by a relation of genus-species, definiens-
definiendum, contraries, similarity, etc. The function of the topoi in the mechanism
of argument production can be explained as follows [Slomkowski, 1997, p.45]:

The enthymemes seem to be instances of topoi; or, expressed differently, en-
thymemes are arguments which are warranted by the principle expressed in the
topos. Thus hypothetical syllogism would fall under a topos insofar as it falls
under its major premiss in which the essence of the hypothetical syllogism is
expressed.
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Topoi can be considered as the external general rules of reasoning of an enthymeme,
or the genera of the major premises of dialectical and rhetorical syllogisms. Topoi
can work as rules, namely as the principle of inference guaranteeing the passage from
an enthymematic premise to the conclusion. For example, we consider the following
enthymeme [Slomkowski, 1997, p.51]: âĂć

âĂć Doing greater injustice is a greater evil.

âĂć From “what is more A is more B”, you may infer: “A is B”.

âĂć Doing injustice is an evil.

The topos can be also used as a general principle from which it is possible to draw
the specific premises of a hypothetical syllogism [Bird, 1960; Bird, 1962; Macagno et
al., 2014]. For example, the same argument mentioned above can be completed by
adding the major premise that is an instantiation (an axiom-instance) of the topos
from the more [Slomkowski, 1997, p.53] (Table 2):

General principle If being more A is more B, then A is B.
Specific instantiation of
the topos as a premise

If doing greater injustice (A) is a greater evil
(B), then doing injustice (A) is an evil (B).

Minor premise Doing greater injustice (A) is a greater
evil (B).

Conclusion Doing injustice (A) is an evil (B)

Table 2: Topoi as general principles of inference

The aforementioned mechanism of specification (or instantiation) of the topoi brings
to light a fundamental distinction that Aristotle draws between generic topoi and the
idia (the specific topics) [Rubinelli, 2009, pp.59–70]. While generic topoi are abstract
and commonly shared conditionals under which specific premises can be found, the
specific topoi represent premises warranting the conclusion ([De Pater, 1965, p.134];
[Stump, 1989, p.29]) that are accepted within specific disciplines, such as ethics,
law, or medicine. For example, consider the following specific topic [Lawson, 1885,
p.262]:

Where a person does an act, he is presumed in so doing to have intended that
the natural and legal consequences of his act shall result.

In specific domains of knowledge, specific topoi can be listed as instruments of in-
vention, premises that can be used to construct arguments in support of typical
conclusions.
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Generic topics can be considered as abstractions from the specific ones, or
more correctly, an abstraction from a large number of specific topics. They pro-
vide classes of both necessary and defeasible inferences [Bird, 1960; Bird, 1962;
Christensen, 1988; Drehe, 2011; Stump, 2004]. In the first class fall some maxims
setting out definitional properties of meta-semantic concepts, i.e. concepts represent-
ing semantic relations between concepts, such as definition, genus, and property. For
example the locus from definition, which establishes the convertibility between def-
inition and definiendum, represents also the essential logical characteristic that a
predicate needs to have in order be considered as a “discourse signifying what a
thing is.” Other loci, such as the ones based on analogy or the more and the less,
are only defeasible, as they represent only commonly accepted relationships. In the
Topics [Aristotle, 1991b], Aristotle focuses most of his analysis on the topics govern-
ing the meta-semantic relations between concepts, i.e. genus, property, definition,
and accident. The Aristotelian account was developed in the Latin and medieval
dialectical tradition, which developed classifications of the topics (called loci) based
on the type of material relation they represent.

3.2 Cicero

Cicero [Cicero, 2003] reduced the Aristotelian list of topoi to 20 loci or maxims,
grouping them in generic categories (differences) and dividing them in two broad
classes, the intrinsic and the extrinsic topics [Stump, 1989]. While the first ones
proceed directly from the subject matter at issue (for instance, its semantic prop-
erties), the external topics (the Aristotelian arguments from authority) support the
conclusion through contextual elements (for instance, the source of the speech act
expressing the claim) (Cicero, Topica, 8, 3–4). In between there are the topics that
concern the relationship between a predicate and the other predicates of a linguistic
system (for instance, its relations with its contraries or alternatives). We represent
the topics of Cicero in Table 3 below.

Cicero pointed out some loci that, on his view, are principally used by dialec-
ticians. Such topics, named loci from antecedents, consequents, and incompatibles
(no. 8, 9, and 10 in Table 1), represent patterns of reasoning based only on the
meaning of the connector of the hypothetical premise (if...then). For instance, if
such a premise holds, and the antecedent is affirmed, the consequent follows nec-
essarily (topic from antecedents) (Cicero, Topica, 53, 1–25). These loci seem to
be aimed at establishing commitments based on previous commitments. In other
words, instead of increasing the acceptability of a viewpoint based on the accept-
ability of the content of the premises on which it is grounded, such topics lead the
interlocutor to the acceptance of a conclusion because of his previous acceptance of
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Table 3: Cicero - Classification of generic topics

other propositions [Green-Pedersen, 1984, p.256].

Cicero connected the theory of topics to the division of discourse according to
the Hermagoras stasis, the issue of the discussion, formulating the proposition to be
proved or disputed [Kennedy, 1963, p.303]. He provided a classification of the topics
according to their function for addressing a specific type of issue, namely conjecture,
definition, and qualification (Cicero, Topica, 87) (Table 4).

Conjecture Definition Qualification

Cause, effect,
circumstances

Definition, description, notation,
division, partition, consequent,
antecedent, inconsistencies,
cause and effect, adiuncta.

Comparison

Table 4: Cicero - Division of topics by issue

Cicero’s classification of topics became the ground for Boethius’ works, which
are the basis of the medieval dialectical tradition ([Stump, 1982]; [Stump, 1989];
[Stump, 2004]).
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3.3 Boethius
Boethius commented on and organized Cicero’s loci in his In Ciceronis Topica and
De Topicis Differentiis, distinguishing between necessary and plausible connections
and between dialectical and rhetorical loci. The treatise on De Topicis Differen-
tiis includes loci that in Cicero and previously in Aristotle were distinguished as
dialectical and rhetorical topics.

Boethius underscored how while dialectical loci stem from the rules of predic-
tion and the logic-semantic properties of the predicates, rhetorical topoi represent
the possible connections between things having different qualities (De Topicis Dif-
ferentiis,1215C).1 Some dialectical topics, such as topics from definition or genus
and species, are necessary [Macagno and Walton, 2014, Ch.3], while others (for in-
stance, from adiuncta) represent only frequent connections. This relation between
probable and necessary consequence was studied in the Middle Ages. Garlandus
Compotista classified topics according to their logical (demonstrative) role. Topics
from whole (which includes definition and genus), along with part and equal became
the foundations of categorical syllogism [Stump, 1982, p.277].

In Boethius the Aristotelian topoi are interpreted as maximae propositiones
falling under differentiae, genera of these maxims. Maximae propositiones are gen-
eral principles, also called axioms. They are general (indefinite in respect to par-
ticulars) and generic propositions that several arguments can instantiate, and they
have warranting the conclusion in an argument as a primary role. The relationship
between the terms of the premises and the conclusion, namely the respect under
which they are regarded, is called differentia, representing the criterion of appropri-
ateness or the genus of maxims. The maxim is found from the genus of the maximae
propositiones and the relationship between the terms of the first premise [Stump,
1989, p.6]. The structure of a topic are illustrated in Table 5.

First term: Every virtue is advantageous.
Middle term: Justice is a virtue.
Second term: Therefore justice is advantageous.
Maxim: What belongs to the genus, belongs to the species.
Differentia: From the whole, i.e. the genus

Table 5: Argument and maxim in Boethius

1Rhetorical loci are similar in form to the dialectical ones, but they proceed from frequent
connections between things, from stereotypes and not from semantic properties of concepts (for
instance, usually people addicted to alcohol are dissolute, this person is alcoholic, therefore he is
dissolute. See Boethius De Topicis Differentiis1215b).
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Topoi are divided into three main categories: intrinsic, extrinsic and intermedi-
ate. While the first two categories are similar to Cicero’s organization, the third is
based on different principles. Loci medii represent semantic connections of gram-
matical relations, such as from words stemming from the same root, or semantic
relations of division underlying the definition of the word (Table 6).

Intrinsic Loci

Extrinsic Loci

From substance From things accompanying the substance

· From the definition

· From the description 

· From the explanation of the 

name

· From estimation about 

a thing

· From similar

· From what is more

· From things that are 

less

· From proportion

Intermediate Loci

· From inflections 

· From coordinates 

· From division 

· From the whole 

(genus)

· From the integral 

whole

· From a part (species)

· From the parts of an 

integral whole

· From efficient cause

· From the matter

· From the end

· From the form

· From the generation 

(effects)

· From the corruption

· From uses

· From associated 

accidents

· From contraries 

· From opposites with 

reference to privation 

and possession 

· From relative opposites

· From opposites with 

reference to affirmation 

and negation 

· From transumption 

Table 6: Boethius - Division of the dialectical loci

Boethius distinguishes the dialectical loci from the rhetorical ones. Rhetorical
topics are drawn from not from the concepts (representing the abstract relations
between concepts), but from the things and how things usually are. For example,
while the dialectical topic from genus proceeds from the definition of a concept (if
a person is drunk, he is also intoxicated), the rhetorical one concerns how a more
generic concept is usually related to a more specific one (usually if someone is not
dissipated, he does not get drunk). Boethius takes from Cicero the rhetorical topics,
not dealing with the abstract principles of inference concerning concepts, but with
the circumstances concerning the specific cases2. For instance, reasoning from place,

2They are different from the preceding topics, because the preceding topics either contained
deeds or adhered to deeds in such a way that they could not be separated, as place, time, and
the rest, which do not desert the action performed. But those things that are associated with the
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name, time depends on the fact, stem from the factors of the event and not from
the logic-semantic relations between concepts. The rhetorical topics are organized
into the four classes pointed out by Cicero (De Topicis Differentiis,1212A-1214A)
(Table 7).

Intrinsic Loci

Comparing 

circumstances

Person Action

· Luck (Exiled)

· Feelings (Lover)

· Disposition (Wise)

· Purpose

· Deeds

· Words

· Gist of the deed

(Murder of a relative)

· Before the deed (He

stole a sword)

· While the deed occurs

(He struck violently)

· After the deed (He hid

him in a secret place)

· Species

· Genus

· Contrary

· Result

· Greater

· Lesser

· Equal

Extrinsic Loci

· By what name to call what has been done

· Who are the doers of the deed

· Who approve of its having been thought up

· What is the law, custom, agreement, judgment, opinion, and theory

for the thing.

· Whether the thing is contrary to custom

· Whether men generally agree to these things.

· When: Time (night)

and opportunity

(people were sleeping)

· Where: Place

(bedroom)

· How: Method

(secretly)

· With the aid: Means

(with many men)

· Name (Verres)

· Natura (Barbar)

· Mode of life

(Friend of nobles)

· Fortune (Rich)

· Studies (Architect)

Table 7: Boethius - Division of the rhetorical loci

3.4 Abaelardus
During the Middle Ages, the focal point of the study of argument was the connec-
tion between dialectics and demonstration. Beginning with the XI century, Garlan-
dus Compotista analysed the categorical syllogisms as proceeding from topics from
whole, part, and equal. On the other hand, he conceived all the topics under the log-
ical forms of topics from antecedent and consequent, whose differentiae (the genera
of maximae propositiones) are the syllogistic rules [Stump, 1982, p.277]. In the XII

action do not adhere to the action itself but are accidents of the circumstances, and they provide
an argument only when they enter into comparison. The arguments, however, are taken not from
contrariety but from a contrary, and not from similarity but from a similar, so that the argument
seems to be taken not from a relationship [such as contrariety] but from things associated with the
action [such as contraries]. Those things are associated with the action which are related to the
very action at issue (De Topicis Differentiis,1214B 6-1214C 19).
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century, Abelard in his Dialectica examined the structure of dialectical consequence
in its components for the first time [Kienpointner, 1987, p.283]).

Abelard described topics as imperfect inferences, different from valid categorical
syllogisms. In this work, the maxima propositio, expressing a principle of inference,
is related to the function of invention. The maxima is the general principle that is
useful for finding the propositions accepted by everybody or the by the wise (the
endoxa) relative to the subject dealt with in the argument. From this perspective,
the structure of an argument is similar to a syllogism. The main difference lies in
the nature of the assumptions, the propositions connecting the general principles to
the subject of the reasoning. While dialectical inferences depend on the content of
the propositions (or, rather, on the terms and their connections), syllogisms depend
only on the form. The difference between form and content can be explained with
the following cases. A syllogism such as:

Every man is an animal
But every animal is animate
Therefore, every man is animate

depends on a rule of inference, that is [Abaelardus, 1970, p.262]:

posito antecedenti ponitur consequens (if the antecedent is affirmed, the conse-
quent is affirmed as well))

The connection between the terms of the inference depends only on their position
in the propositions. On the other hand, dialectical inferences cannot be resolved
only by considering the positions of the terms. These inferences are imperfect, since
assumptions are needed for the conclusion to follow from the premises. For instance,
the consequence

If he is a man, he is an animate being

is necessarily valid since it is known that “animate being” is the genus of man and
“whatever is predicated of the species is predicated of the genus as well.” The
inference depends on the local connection between the terms, on the habitudo. The
habitudo is the topical relation, the semantic-ontological respect under which the
terms are connected to each other in a (dialectical) syllogism ([Green-Pedersen, 1984,
p.185]; [Green-Pedersen, 1987, p.415]), and on which the strength of the inference
depends [Abaelardus, 1970, pp.254-257]. The mechanism of an argument scheme
can be shown by the ancient model of Abelard [Abaelardus, 1970, p.315], in which
the assumptions were connected to the axioms, to the maxims the locus proceeded
from [Stump, 1989, p.36] (Table 8).
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Consequence If Socrates is a man, he is an animate being. 

Maxim What the species is said of, the genus is said of as well. 

Assumption But "man," which is the species of"animate being" is said of 
Socrates; also therefore "animate being," which is clearly its genus. 

Assumption 1 "Man" is a species of"animate being." 

Syllogism 1 • What the species is said of, the genus is said of as well. 

• Man is species of"animate being" . 

• Therefore, if man is said of anything, "animate being" is said of it 
as well. 

Syllogism 2 • If "man" is said of anything, "animate being" is said of it as well. 

• Socrates is a man . 

• Therefore Socrates is an animate being . 

Table 8: Rules of inference and the material structure of arguments in Abelard

In the example above, the passage from the predicate “to be a man” attributed
to the subject to the different predicate “to be an animate being” is grounded on
a relation of semantic inclusion between these two predicates, i.e. a genus-species
relation [Bird, 1962]. This relationship guarantees the inference based on a rule
(the maxim) that expresses a necessary consequence of the concept of genus itself.
The genus expresses the generic fundamental features of a concept, answering to
the question “what is it?” and is attributed to all the concepts different in kind
(Aristotle, Topics 102a 31-32). For this reason, it is predicated of what the species
is predicated of.

After Abelard, in the 12th century, the notion of form of inference was developed
into a reduction of all topical inferences to syllogisms. Later on, in the 13th century
analytical consequences were analysed as following from topics “dici de omni” and
“dici de nullo” (Every A is B, Every B is C, therefore every A is C ). Demonstration
is for this reason based on a topical relation (from the whole)[Green-Pedersen, 1984,
p.256].

4 Modern Theories of Schemes

In the modern and contemporary theories on argumentation (or argument) schemes,
several types of classification have been advanced [Walton et al., 2008]. In this
section, the most relevant theories on schemes and the classification thereof will be
summarized.
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4.1 Perelman and the New Rhetoric
Perelman and Olbrechts-Tyteca divided their system of topoi into two broad cate-
gories, defined based on the two purposes that they considered to be the basic ones,
finding associations and dissociations between concepts [Perelman and Olbrechts-
Tyteca, 1969, p.190]. According to the New Rhetoric, arguments from association
are divided in three main classes: Quasi-logical Arguments, Relations Establishing
the Structure of Reality, and Arguments based on the Structure of Reality, while
dissociation constitutes a distinct class. This classification can be represented in
Table 9.

Table 9: Classification of the arguments in the New Rhetoric

This classification is based several criteria, namely on the conceptual/ontological
structure (association-dissociation; the reference to the structure of reality), the log-
ical structure (quasi-logical vs. non-logical arguments), and the type of relations
between concepts (sequential vs. coexistence). However, the interrelation between
all these criteria is not specified, and there is not a unique rationale linking all such
different arguments.
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4.2 Toulmin

A different approach is provided by Toulmin, Rieke and Janik (1984), in which
they classified arguments based on the basic functions of the warrants on which
the arguments are grounded. Nine general classes of arguments were distinguished,
subdivided into subclasses [Toulmin et al., 1984], shown in Figure 1.

Figure 1: Classification of the arguments in Toulmin

Also in this case, different criteria are used in the classification. Some schemes
represent types of reasoning (such as generalization, sign, or analogy); others are
characterized by logical rules of inference (dilemma, opposites); others refer to the
content of the argument (authority, classification, cause, degree). The relationship
between the various criteria is not given.

4.3 Kienpointner

Kienpointner in Alltagslogik provides a complex and fine-grained classification, based
on four criteria: 1) the type of inference; 2) the epistemic nature of the premises;
3) the dialectical function of the conclusion; and 4) the pragmatic function of the
conclusion. On his view, every scheme 1) can proceed from different logical rules;
2) must be real (namely based upon the truth or likeliness of the premises), or
fictive (grounded upon the mere possibility) (epistemic nature of the premises); 3)
it must be pro or contra a certain thesis (dialectical function); and 4) it must have
either a descriptive or a normative conclusion (pragmatic function) [Kienpointner,
1992, p.241]. In this sense, all the schemes can have descriptive or normative, pro
or contra, real or fictive variants. The classification provided in Alltagslogik groups
21 schemes in three abstract classes characterized by the typology of the inferential
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rule: argument schemes using a rule; argument schemes establishing a rule by means
of induction; argument schemes both using and establishing a rule (Figure 2).

Figure 2: Classification of the arguments in Kienpointner

The first class, as shown in Figure 2, is subdivided in its turn in four content-
based categories: classification, comparison, opposition, and causal schemes [Kien-
pointner, 1992, p.246]. Based on the aforementioned criteria, all the argument
schemes may in turn have descriptive or normative variants, different logical forms
(Modus Ponens, Modus Tollens, Disjunctive Syllogism, etc.), different dialectical
purposes (establishing or countering a viewpoint), and different word-world relation
(fictive – real).

This system of classification is aimed at distinguishing first the type of reasoning
(induction, deduction), and then differentiating between the various material rela-
tions. The possible limitation of this system is that while the material relation of
many deductive schemes is specified and distinguished, the content dimension of the
inductive schemes is not pointed out.

4.4 Pragma-Dialectics
The pragma-dialectical system of classification of schemes consists of three basic
schemes [Van Eemeren and Grootendorst, 1992]: 1) symptomatic argumentation; 2)
argumentation based on similarities; and 3) the instrumental argumentation. The
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first scheme represents type of argumentation in which the speaker tries to convince
his interlocutor “by pointing out that something is symptomatic of something else.”
In this type of pattern, what is stated in the argument premise is a sign or symptom
of what is stated in the conclusion. The second scheme is grounded on a relation
of analogy between what is stated in the argument premise and what is stated in
the conclusion. In the third type of scheme the argument and the conclusion are
linked by a very broad relation of causality. Other arguments are classified under
these categories [Van Eemeren and Grootendorst, 1992]. For instance, arguments
based on inherent qualities or a characteristic part of an entity or from authority are
regarded as belonging to the symptomatic argumentation; arguments pointing out
the consequences of an action or based on the means-end relationship are considered
as subclasses of causal arguments [Garssen, 2001].

This system of classification is grounded on a twofold criterion. While causal
argumentation is characterized by a material relation, analogical argumentation rep-
resents a type of reasoning independent from the specific content of the premises and
conclusion. Symptomatic argumentation is a combination of these two criteria, as a
sign or a symptom presupposes an abductive pattern and a material causal relation.

4.5 Grennan
In Grennan’s [Grennan, 1997, pp.163-165] typology, the structurally valid inductive3

inference patterns are classified according to 9 warrant types, derived from Ehninger
and Brockreide’s typology [Brockriede and Ehninger, 1963]. The warrant types
include possible reasons for inferring conclusions from premises, all belonging to
the “logical mode” (and not to other types of motivations, such as emotions). The
argument patterns can be summarized as follows:

1. Cause to Effect: The phenomenon mentioned in P produces the one in C.

2. Effect to Cause: The phenomenon mentioned in P is best explained by C.

3. Sign: The phenomenon mentioned in P is symptomatic (naturally or conventionally)
of one reported in C.

4. Sample to Population: What is true of sample of X is also true of other Xs.

5. Parallel Case: What is true of the referent of P is also true of other Xs.

6. Analogy: B1 is to B2 in C as A1 is to A2 in P.

7. Population to Sample: What is true of Known Xs is also true of this X.

3Inferences, in an informal logic perspective, are considered inductive, since argumentation
does not deal with deductive validity. The criterion for discriminating between acceptable and
unacceptable patterns is provided by a logical intuition.
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8. Authority: S (the assertor of C ) is a reliable source.

9. Ends-Means: The action mentioned in C generally achieves the end mentioned in
P.

The patterns mentioned above are individuated on the basis of the warrant type.
Together with this criterion of argument classification, Grennan presents a typology
of claims. Each argument can be analysed relative to the type of warrant and to
the kind of conclusion to be supported. The types of claim identified by Grennan
[Grennan, 1997, p.162] can be represented in Table 10.

Type of Claim Example

1. Obligation Claims: 

X must do A. 
“Sam must apologize.”

2. Supererogatory Actuative Claims: 
X ought to do A (they express a judgment that is in 

the interests of someone other than X for X to do A) 

“I ought to help the needy in this area.”

3. Prudential Actuative Claims: 

X ought to do A. 
“Canadians ought to avoid heart diseases.”

4. Evaluative Claims, of which there are three 

kinds: grading, rating, and comparison. 

“This is a good cantaloupe.”  “Steffi Graf is the 

best female tennis player at this time.” “Gretzky 

is a better hockey player than Howe was.”

5. Physical-World Claims, which include both 

physical brute facts and institutional facts. 

“The sun is setting.” 

“The Dodgers beat the Giants three to two in 

eleven innings.” 

6. Mental-World Claims, which ascribe mental 

phenomena. 
“He is upset.”

7. Constitutive-Rule Claims, which are based on 

definitions and other necessary truths and 

falsehoods. 

“In this election, majority should be defined as a 

majority of members present and voting.” 

“Solid iron does not float in water.”

8. Regulative-Rule Claims, which express 

obligations and prohibitions.
“Driving on the right is obligatory.”

Table 10: Grennan: Classification of schemes

The types of warrant and the types of claim are the two criteria underlying Gren-
nan’s typology of argument patterns, each characterized by a premise, a warrant,
and a conclusion. In the diagram below are represented the valid and useful patterns
of arguments for obligation claims resulting from this classification [Grennan, 1997,
p.162] (Figure 3).
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Argument for 
obligation claims

Argument with 
obligation premises

Obligation claims with 
other kinds of premises

Sample-to-
population 

version

Population
-to-group 
version

Effect-to-
cause 

version

Evaluative-
premise 
version

Physical 
world premise 

version

Mental world 
premise 
version

Regulative 
rule premise 

version

Cause-to-effect 
version

Institutional claim 
version

Brute fact version

Cause-to-effect 
version

Figure 3: Classification of the arguments for obligation claims in Grennan

Grennan’s typology develops the distinction between the warrant type and the
kind of conclusion. The typology is extremely deep as regards the relation between
speech acts and argument, but is limited to 8 warrant types.

4.6 Katzav and Reed
Rooted in the schemes presented by Walton [Walton, 1995], the classification system
of Katzav and Reed [Katzav and Reed, 2004b] aims to classify an argument by
virtue of the “relation of conveyance” that the complex proposition constituting the
argument represents. These relations of conveyance describe how it is that one fact
necessitates another, such as in the following example [Katzav and Reed, 2004a,
p.2]:

Consider, by way of illustration, a case in which the causal relation is oper-
ative: in the circumstances, the fact that the US military attacked Iraq caused
the fall of Saddam′s regime. Thus, in the circumstances, and via or in virtue of
the obtaining of a causal relation, the fact that the US military attacked Iraq
necessitated, or made it liable that, Saddam′s regime fell.

Using the causal relation and the above statements about Saddam′s regime,
we can construct the following simple argument:

(1) Saddam′s regime fell, because the US military attacked Iraq and if the
US military were to attack Iraq, Saddam′s regime would fall.

In (1), the fact that the US military attacked Iraq is represented as con-
veying, via the causal relation, the fact that Saddam′s regime fell. That the
relation of conveyance represented is the causal relation is implicit in the sub-
junctive conditional “if the US military were to attack Iraq, Saddam′s regime
would fall.”
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In [Katzav and Reed, 2004b] the nature of such relations of conveyance is unpacked
and connected to the concepts of warrant and scheme and to the work of Kien-
pointner [Kienpointner, 1992] and Walton [Walton, 1995]in particular. In [Katzav
and Reed, 2004a], they sketch a high-level classification of relations of conveyance.
At the topmost level, they distinguish between “internal” and “external” relations,
whereby the former depend solely upon intrinsic features (and therefore encompass
definitional, cladistic, mereological and normative relations, amongst others), whilst
external relations depend upon extrinsic features (thereby covering such as spa-
tiotemporal and casual relations, amongst others). Beneath this, the classification
is further broken down into groups of schemes: those of specification, constitution,
analyticity and identity under intrinsic relations and causal and non-causal under
extrinsic (due largely to the fact that so many schemes rely upon causal relations).
The full top-level classification tree (which identifies the main branches but does not
give an exhaustive specification) is given in the scheme below:

Internal relation of conveyance
Relation of specification

• Relation of species to genus
• Relation of species to genus
• Relation of genus to species
• Determinable-determinate
• Etc.

Relation of constitution

• Abstract fact constitution
• Constitution of normative facts
• Constitution of positive normative facts
• Constitution of negative normative facts
• Constitution of non-normative abstract facts
• Constitution of necessary conditions
• Constitution of causal law
• Constitution of singular causal conditionals
• Constitution of constitution facts
• Constitution of Possibility
• Constitution of Impossibility
• Etc.

Concrete fact constitution
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• Species/kind instance constitution
• Property instance constitution
• Property constitution by properties
• Property constitution by particulars
• Etc.
• Constitution of singular causal facts
• Relation of a part to a whole
• Relation of whole to one of its parts
• Etc.

Relation of analyticity

• Relation of sameness of meaning
• Relation of stipulative definition
• Relation of implication

Relation of identity

• Relation of qualitative identity
• Relation of numerical identity
• Etc.

External relation of conveyance
Non-causal dependence

• Non-causal law
• Conservation
• Conserved quantity
• Conserved quality
• Etc.
• Symmetry
• Spatial symmetry
• Etc.
• Nomological incompatibility
• Thing location incompatibility
• Thing type incompatibility
• Etc.
• Topological structure conveyance

Causal dependence
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• Efficient cause conveyance
• Causal law
• Singular cause to effect
• Singular effect to cause
• Common cause
• Final cause conveyance

Though the mapping from individual relations of conveyance in this classification to
the argumentation schemes in [Walton, 1995] and particularly [Walton et al., 2008]is
not a trivial 1-to-1 correspondence, those schemes have been slotted in successfully
in later work with a computational focus such as [Bex and Reed, 2011].

4.7 Lumer and Dove
The last system of classification that we consider was provided by Lumer and Dove
(Lumer & Dove, 2011), using three general classes, each including subclasses:

1. Deductive argument schemes

• Elementary deductive argument schemes;
• Analytical arguments:
• Definitoric arguments
• Subsuming legal arguments:

2. Probabilistic argument schemes

• Pure probabilistic argument schemes (statistics, signs);
• Impure probabilistic argument schemes (best explanation);

3. Practical argument schemes

• Pure practical argument for pure evaluations;
• Impure practical argument schemes (for justification of actions; justification of instru-

ments);
• Arguments for evaluations based on adequacy conditions;
• Arguments for welfare-ethical value judgements;
• Practical arguments for theoretical theses.

This system consists of a mix of two distinct criteria, logical and pragmatic. While
the first two classes are characterized by the type of reasoning, the last one is a
type of argument with a specific pragmatic purpose, recommending a course of
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action. Moreover, the subclasses are defined based on both logic-based and content-
based criteria, where together with distinctions based on the logical form (analytic
schemes; probabilistic schemes) there are subclasses based on the nature of the
premises (definitoric; subsuming).

All these types of classification show how a sole criterion is not sufficient for
providing a clear and comprehensive classification of schemes. In order to under-
stand what criteria can be used and in what abstract categories can be considered
as the most basic ones, it is necessary to analyze the structure of the schemes. Once
the common components of these heterogeneous combinations of premises and con-
clusions are brought to light, it is possible to find criteria for organizing them for
specific purposes.

5 Using the schemes: A classification system

Argumentation schemes can be conceived as the prototypical combination of seman-
tic (or topical) relations with logical rules of inference [Macagno and Walton, 2015;
Macagno et al., 2016; Walton and Macagno, 2015]. A classification based on the
semantic link can provide an instrument for bringing to light the material relation
between premises and conclusion, but the same semantic relation can be combined
with types and rules of reasoning, and lead to various types of conclusion. For in-
stance, causal relations are the ground of the argument from cause to effect, but
also of arguments from sign and practical reasoning. Argumentation schemes merge
the most common combinations between types of reasoning and material relations.
For this reason, we need first to distinguish between these two levels, distinguishing
between the various types of reasoning in Table 11.

Table 11: Types of argument and types of reasoning
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A multi-logical perspective needs to be taken into account as a classification
criterion, in which the logical form can be described using distinct types of reasoning,
which in turn can include various logical rules of inference (MP, MT). However,
in the Latin and Medieval tradition, the formal rules of inference are treated as
maxims and not as distinct levels of abstraction. For this reason, the two levels of
the general, semantic topics and of the logical rules are not distinguished, and the
possible interconnections between them are not taken into account. The modern
theories of argumentation schemes propose classifications essentially mirroring the
ancient approach. The logical rules are treated at the same level as the semantic-
ontological topics, and not as distinct levels of abstraction. A possible solution is
to acknowledge the discrepancy between logical form and semantic content as a
divergence in kind, and try to show how these two levels can be interconnected.

A possible overarching principle can be found in the pragmatic function of the
schemes, namely what they have been intended for. Argumentation schemes can
be thought of as instruments for reconstructing and building arguments (intended
as discourse moves), i.e. analytical or invention tools. For this reason, in order
to provide a classificatory system to retrieve and detect the needed scheme it can
be useful to start from the intended purpose of an argumentation scheme. From
an analytical point of view, the analysis of an argument in a discourse, a text,
or dialogue presupposes a previous understanding of the communicative goal (and,
therefore, the “pragmatic” meaning) of the argument and the components thereof.
For example, an argument can be aimed at classifying a state of affairs, supporting
the existence of a state of affairs, or influencing a decision-making process.

This teleological classification needs to be combined with a practical one. The
generic purposes of a move need to be achieved by means of an inferential passage.
In this sense, the classificatory system needs to account for the possible (argumenta-
tive) means to achieve the pragmatic purpose of an argument. Not all the semantic
relations underlying the schemes can support all the possible conclusions or purposes
of an argument. Definitional schemes are aimed at supporting the classification of
a state of affairs; they cannot lead to the prediction or retrodiction of an event.
Similarly, a pattern of reasoning based on the evaluation of the consequences of an
action or an event can be used to establish the desirability of a course of action
brining it about. However, it cannot be reasonably used to establish the truth or
falsity (or acceptability) of a proposition. For this reason, the analysis of the prag-
matic meaning (i.e. the purpose) of an argument provides a criterion for restricting
the paradigm of the possible means to achieve it. The crucial problem is to find
categories of argument purposes that can establish criteria for distinguishing among
classes of semantic relations, which in turn can be specified further according to the
means to achieve such goals.
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The first distinction to be made is based on the nature of the subject matter,
which can be 1) a course of action or 2) a state of affairs. In the first case, the goal
is to support the desirability or non-desirability of an action; in the second case,
the schemes are aimed at providing grounds for the acceptability of a judgment on
a state of affairs. The ancient dialectical accounts (Cicero, Topica; Boethius, De
Topicis Differentiis) distinguished between two types of argumentative “means” to
support a conclusion, namely the “internal” and the “external” arguments. The first
ones are based on the characteristics of the subject matter (such as arguments from
definition or cause). The latter derive their force from the source of the statement,
namely from the authority of who advances the judgment or the proposal (arguments
from authority). This first distinction can be represented as shown in Figure 4.

Figure 4: Purposes of an argument

The acceptability of a conclusion can be supported externally in two ways. If
the argument is aimed at establishing the desirability of a course of action, the
authority can correspond to the role of the source (“You should do it because he
told you that!”). Otherwise, the popular practice can be a reason for pursuing a
course of action (“We should buy a bigger car. Everyone drives big cars here!”).
External arguments can be represented in Figure 5.

Figure 5: External arguments
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When external arguments are used to support also a judgment on a state of
affairs, the relevant quality of the source is not the speaker’s authority (connected
with the consequences of not complying with the orders/conforming to common
behavior) but rather with the source’s superior knowledge. The quality of the source
can be also used negatively to show that a source is not reliable (it is not a good
source), and that consequently the conclusion itself should be considered as doubtful
(ad hominem arguments).

Internal arguments can be divided into the two categories of arguments aimed
at assessing the desirability of a course of action, and the ones supporting the ac-
ceptability of a judgment. Courses of action can be classified as desirable or not
depending on the quality of their consequences (the course of action is a condition
of a resulting positive or negative state of affairs) or their function in bringing about
a desired goal (an action is productive of a pursued state of affairs) (Figure 6).

Figure 6: Internal practical arguments

The arguments used to provide grounds for a judgment on a state of affairs can
be divided according to the nature of the predicate that is to be attributed. The
most basic differentiation can be traced between the predicates that attribute the
existence of a state of affairs (the occurrence of an event or the existence of an
entity in the present, the past, or the future), and the ones representing factual or
evaluative properties.

The arguments supporting a prediction or a retrodiction are aimed at establishing
whether or not an event has occurred or will occur, or whether an entity was or will be
present (existent). The arguments proceeding from casual relations (in particular
from material and efficient causes) bear out this type of conclusion. The other
type of predicates can be divided in two categories: factual judgments and value
judgments. The first type of predicates can be attributed by means of reasoning
from classification, grounded on descriptive (definitional) features and supporting
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the attribution of a categorization to an entity or an event (Bob is a man; Tom
is a cat). Value judgments are classifications that are not based on definitions of
categorical concepts (to be a cat) but rather on values, or rather hierarchies of values.
Such judgments proceed from criteria (or more specifically, criteria of importance to
the audience to whom the argument is presented) for classifying what is commonly
considered to be “good” or “bad.” Also the reasoning underlying the attribution of
evaluative predicates, such as “to be a criminal,” can be considered as belonging to
this group of arguments. These latter patterns are grounded on signs of an internal
disposition of character, which in its turn is evaluated. The distinctions discussed
above are summarized in Figure 7 below.

Figure 7: Establishing the acceptability of a judgment (SoA)

This system of classification of argumentation schemes is based on the interaction
between two criteria, the (pragmatic) purpose of an argument and the means to
achieve it. This tree model can be used both for analytical and production purposes.
In the first case, the speaker’s intention is reconstructed by examining the generic
purpose of his move, and then the possible choices that he made to support it, based
on the linguistic elements of the text. Depending on the desired level of preciseness,
the analysis can be narrowed down until detecting the specific scheme, namely the
precise combination of the semantic principle and the logical rule supporting the
conclusion. In this fashion, the analyst can decide where to stop his reconstruction.
This analytical model can be of help also for educational purposes, as it can be
adapted to various teaching needs and levels. For production purposes, the nature
of the viewpoint to be supported can be analyzed using the most generic criteria
set out above (What is under discussion, a decision or a fact? The occurrence of an
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event or its classification? The naming of a state of affairs or its qualification?). Such
questions closely resemble the ones that were at the basis of the rhetorical theory
of stasis, namely the issues that can be discussed [Heath, 1994]. These distinctions
are then combined with the specific alternative strategies to support the defended
viewpoint.

The aforementioned system of classification can also account for the interrelation
between the semantic relation and the different types of reasoning, namely logical
forms. For example, the desirability of a course of action can be assessed internally
by taking into consideration the means to achieve a goal. This pattern of reasoning
can be stronger or weaker depending on whether there is only one or several alter-
natives. The paradigm of the possible means will determine whether the reasoning
is abductive or deductive, resulting in a more or less defeasible conclusion. The
same principle applies to the other semantic relations, such as the ones proceeding
from cause or classification, which can be shaped logically according to inductive,
analogical, deductive, or abductive types of reasoning.

6 A bottom-up approach to classification: Clusters of
decision-making schemes

Argumentation schemes are characterized by both “family” resemblances and ac-
tual interconnections [Walton and Macagno, 2015]. Practical reasoning, value-based
reasoning, value-based practical reasoning, argument from positive consequences,
argument from negative consequences, and the slippery slope argument are related
by the same similar structure based on value judgments and practical outcome.
Such schemes are often also interconnected when we analyze the structure of actual
arguments. However, in order to understand and choose between similar and inter-
related schemes, it is necessary to examine their relations and their differences. The
simplest and most intuitive version of the scheme for practical reasoning (Table 13)
uses the first-person pronoun “I” to represents a rational agent, an entity that has
goals, some knowledge of its circumstances, and the capability of taking action to
change those circumstances. It also has sensors to perceive its circumstances, and to
perceive at least some of the consequences of its actions when it acts to change its
circumstances. Such a rational agent also therefore has the capability for feedback.
When it perceives changes in its circumstances due to its own actions, it can modify
its actions or goals accordingly, depending on whether the consequences of its ac-
tions are deemed to contribute to its goals or not. This simplest form of practical
reasoning [Walton et al., 2008, p.95] can be described as a fast and frugal heuristic
for jumping to a quick conclusion that may later need to be retracted in the light of
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further considerations (Table 12).

Major Premise: I have a goal G.

Minor Premise: Carrying out this action A is a means
to realize G.

Conclusion: Therefore, I ought (practically speaking)
to carry out this action A.

Table 12: Argument from Practical reasoning

The defeasible nature of this simple form of practical reasoning is brought out by
the observation that it typically provides a starting point for action that needs to
be challenged by the asking of critical questions as the agent moves ahead. Below
is the standard set of critical questions matching this scheme.

CQ1 What other goals do I have that should be considered that might conflict with
G?

CQ2 What alternative actions to my bringing about A that would also bring about
G should be considered?

CQ3 Among bringing about A and these alternative actions, which is arguably the
most efficient?

CQ4 What grounds are there for arguing that it is practically possible for me to
bring about A?

CQ5 What consequences of my bringing about A should also be taken into account?

The last critical question, CQ5, often called the side effects question, concerns as-
sessment of the potential negative consequences of carrying out the action described
in the conclusion of the scheme. If negative consequences of this course of action are
identified, that is a reason for withdrawing the conclusion and considering an alter-
native course of action that might avoid the negative consequences. Use of the term
“negative” implies that values are involved, and that a rational agent is assumed to
have values as well as goals that it bases its practical reasoning on.

A complication is that there is another closely related argumentation scheme
associated with this critical question, Argument from negative consequences. This
scheme, widely recognized in the literature, cites known or estimated consequences
of a proposed course of action as presenting a reason, or set of reasons, against taking
the course of action initially indicated by the practical reasoning scheme. Argument
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from negative consequences also has a positive form. According to the scheme for
argument from positive consequences, known or estimated consequences that have
a positive value for the agent are cited as a reason, or set of reasons, supporting
the carrying out of the action initially considered. Below the versions of the two
basic argumentation schemes for arguments from consequences are formulated as
they were in [Walton et al., 2008, p.101]. The first one is called argument from
positive consequences (Table 13).

Premise: If A is brought about, good
consequences will plausibly occur.

Conclusion: Therefore A should be brought
about.

Table 13: Argument from positive consequences

Premise: If A is brought about, bad
consequences will plausibly occur.

Conclusion: Therefore A should not be brought
about.

Table 14: Argument from negative consequences

The second one is called argument from negative consequences (Table 14).
In both instances, an implicit premise could be made explicit in the scheme stat-

ing that if good (bad) consequences will plausibly occur, A should (not) be brought
about. As with the basic form of practical reasoning, arguments from positive or
negative consequences are defeasible. The premise offers a reason to accept a pro-
posal for action tentatively, subject to exceptions as new circumstances come to be
known by the agent. In these formulations, the expression “good consequences”
refers to consequences taken by the agent to have positive value, and the expression
“bad consequences” refers to actions taken to have negative value. These observa-
tions bring us to another pair of schemes closely related to the ones for argument
from positive consequences and argument from negative consequences.

The relationship between a state of affairs, its classification according to a value,
and the commitment to an action is represented in terms of value. Values (differently
from [Atkinson et al., 2005];[Bench-Capon, 2003]) are regarded as grounds for a type
of reasoning independent from and related to (or rather, presupposed by) practical
reasoning. This reasoning guarantees the so-called “practical classification” [West-
berg, 2002, p.163] of a state of affairs and the commitment thereto. The scheme for
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argument from positive value is formulated in Table 15 as in [Walton et al., 2008,
p.321]:

Premise 1: Value V is positive as judged by agent A.

Premise 2: If V is positive, it is a reason for A
to commit to goal G.

Conclusion: V is a reason for A to commit
to goal G.

Table 15: Argument from positive value

The corresponding scheme representing argument for argument from negative
value is formulated in Table 16.

Premise 1: Value V is negative as judged by agent A.

Premise 2: If V is negative, it is a reason for
retracting commitment to goal G.

Conclusion: V is a reason for retracting
commitment to goal G.

Table 16: Argument from negative value

Argument from positive consequences typically supports an argument taking
the form of basic practical reasoning by giving justification for going ahead with
the contemplated action. Argument from negative consequences presents a reason
against taking the action being considered by citing consequences of it that would
contravene the values of the agent.

Another more complex argumentation scheme has also been recognized in the
literature [Bench-Capon, 2003] that combines all the schemes mentioned above.
This scheme describes a form of argument called goal-based practical reasoning that
combines basic practical reasoning with value-based reasoning. The version of this
scheme (Table 17) is from [Walton et al., 2008, p.324].

The scheme for value-based practical reasoning can also be formulated in a more
explicit way that brings out an important aspect of practical reasoning, namely
the circumstances of the case that can be observed by the agent and used by as a
basis for reaching a decision on what to do. According to the version of the scheme
formulated in [Atkinson et al., 2005], any action the agent takes can be seen as a
transition from the current set of circumstances to a new set of circumstances, as
the agent moves forward to attempt to realize its goal.

2526



Argumentation Schemes

Premise 1: I have a goal G.
Premise 2: G is supported by my set of values, V.

Premise 3: Bringing about A is necessary (or sufficient)
for me to bring about G.

Conclusion: Therefore, I should (practically ought to)
bring about A.

Table 17: Argument from goal-based practical reasoning

The last decision-making argument is the slippery slope argument, sometimes
also called the wedge argument. Different varieties of slippery slope argument have
been recognized, such as the causal slippery slope argument, the precedent slip-
pery slope argument, the linguistic slippery slope argument, which depends on the
vagueness of terms or concepts, and a more complex (all-in) form of slippery slope
argument that combines the simpler variants. A good place to start is a simple
version of the slippery slope type of argument formulated as the basic scheme in
[Walton et al., 2008, p.340] (Table 18).

First Step
Premise:

A0 is up for consideration as a proposal that seems
initially like something that should be brought about.

Recursive
Premise:

Bringing up A0 would plausibly lead (in the given
circumstances) to A1, which would in turn plausibly
lead to A2, and so forth, through the sequence A2, . . . An.

Bad Outcome
Premise: An is a horrible (disastrous, bad) outcome.

Conclusion: A0 should not be brought about.

Table 18: Argument from goal-based practical reasoning

According to [Walton et al., 2008, p.340], the following three critical questions
match this basic scheme.

CQ1 What intervening propositions in the sequence linking up A0 with n are actu-
ally given?

CQ2 What other steps are required to fill in the sequence of events, to make it
plausible?

CQ3 What are the weakest links in the sequence, where specific critical questions
should be asked on whether one event will really lead to another?
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So here we have a cluster of schemes all closely related to each other. The argument
from negative consequences is one of the critical questions matching the basic scheme,
but the scheme for argument from negative consequences is itself based on the closely
related scheme for argument from negative values.

Clarifying the relationships among this cluster of schemes enables us to draw an
important distinction widely discussed in the philosophical literature on practical
reasoning between two distinct types of practical reasoning: instrumental practical
reasoning and value-based practical reasoning. When it comes to classifying the
arguments within this cluster of schemes, it would seem reasonable to venture as
a hypothesis that the basic scheme for practical reasoning is the simplest form of
it, while the scheme for value-based practical reasoning is a more complex variant
of the scheme. It combines the basic scheme with the schemes for argument from
values. On this approach to drawing distinctions within the cluster, arguments from
positive consequences can be taken as species of arguments from positive value,
and arguments from negative consequences can be taken as species of arguments
from negative value. Practical experience in using assistants to use argumentation
schemes to identify types of arguments in natural language text suggests that the
assistants sometimes find it difficult to classify a particular argument identified in a
text as fitting one or more of these schemes. It can be helpful for this purpose is to
give the assistants identification conditions that attempt to formulate key essential
requirements of the type of argument represented by a particular scheme.

The following is a set of three identification conditions for the type of argument
matching the scheme for instrumental practical reasoning: (1) An agent (or group
of agents in the case of multiagent reasoning) is attempting to arrive at a reasoned
decision on what course of action to take in a given set of circumstances requiring
some action, (2) the circumstances provide evidence on which to build pro and
con arguments, arguments for and against the course of action being considered,
(3) the agent is basing its decision on its goals, as well as its perception of the
circumstances of the case, (4) arguments need to be weighed against each other as
stronger or weaker reasons for taking this action or not, and (5) the agent purports
to be using this evaluation of the stronger or weaker reasons as its basis for taking
the action or not. Here the four conditions describe an agent deciding whether to
take a particular course of action or not. But it needs to be recognized that in some
situations there may be several alternative courses of action to be considered, and
the agent is trying to decide which of them would be the best course of action, based
on the reasons provided by its goals and the circumstances of the case.

The identification conditions for the value-based species of practical reasoning
are the same as the five identification conditions for instrumental practical reason-
ing, except that another condition needs to be added: (6) the agent is justifying its

2528



Argumentation Schemes

decision based on its values, as well as on its goals and its perception of the circum-
stances of the case. The aforementioned cluster of arguments is characterized by
several types of relations, which can be of help in distinguishing them and detecting
their possible nets. For example, argument from negative consequences is one of
the questions matching the scheme for argument from practical reasoning. So this
relationship could be described by saying that argument from negative consequences
is a counterargument, a rebuttal or undercutter that can defeat an argument from
practical reasoning in a given case, provided that the negative consequences can be
specified, and provided that it can be shown that these consequences are indeed
negative.

Already from these remarks one relationship emerges. Argument from negative
consequences is based on argument from values, and is a species of argument from
values. Another relationship already shown above, is that value-based practical
reasoning is a more complex form of argument than instrumental practical reasoning.
Value-based practical reasoning is a species of instrumental practical reasoning with
argument from values added on to it.

Another relationship that emerges is that the slippery slope type of argument
is clearly a subtype and special instance of argument from negative consequences.
It is less evident that the slippery slope argument is also a species of value-based
practical reasoning. However, it can be seen that it is. In the case of the slippery
slope argument, the agent doing the decision-making must be assumed to have some
goals and values in mind that the other party, the agent attacking its argument,
can appeal to when mounting a slippery slope argument. Let’s call the two parties
the agent and critic. The slippery slope type of argument is inherently negative.
The critic is using the argument to warn the agent that if he takes a first step, or
continues a series of steps that he has already started, these steps will lead to a
loss of control that cannot be anticipated in advance so that the sequence of actions
will ultimately result in a catastrophic outcome. The critic has to assume that the
agent has some values that both of them share, so that they can both agree that the
outcome warned of by the critic is catastrophic, that is highly negative and worth
avoiding. The critic has to assume that the agent has some goals and is acting in a
rational manner so that it is trying to either achieve or at least be consistent with
these goals as it carries out an action supposedly designed to fulfill them. Otherwise
the critic’s argument is not going to have much force and will be unlikely to deter
the agent from moving ahead.

What especially distinguishes the slippery slope as a distinctive type of argument
are three premises, the recursive premise, the grey zone premise and the loss of
control premise. Given these observations, we can see how the value-based practical
reasoning argument is embedded into the basic slippery slope argument and is a part
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of it. As shown in Figure 8, the basic slippery slope type of argument, represented by
the scheme formulated above, is at the center of a cluster of other related schemes.

Figure 8: Cluster of Schemes

The basic slippery slope argument is derived from value-based practical rea-
soning as its core argument structure, where value-based practical reasoning is a
combination of instrumental practical reasoning and argument from values. So here
it is shown how these schemes are structured together into a cluster. It is also
shown that the basic slippery slope argument is a species of argument from negative
consequences, as scheme that is in turn built partly from the scheme for argument
from values. So these five schemes form a cluster. But the basic slippery slope argu-
ment also has several subtypes, including the precedent slippery slope argument, the
causal slippery slope argument, and the variety of slippery slope argument deriving
from vagueness of a verbal criterion. According to the analysis of the slippery slope
argument given in [Walton, 1992] these four species of the slippery slope argument
are subtypes of a more general form of argument called the all-in slippery slope
argument.

Here we put forward the hypothesis that there is a basic, minimal type of slip-
pery slope argument from which these other more specialized variants are derived.
To indicate the existence of such connections in Figure 8, we have inserted the name
of the scheme for the precedent slippery slope argument underneath the schemes
for argument from precedent and the basic slippery slope argument. This classifica-
tion indicates another aspect of the cluster of schemes surrounding the category of
slippery slope arguments.
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7 Using argumentation schemes: Nets of Argumenta-
tion Schemes

Argumentation schemes are imperfect bridges between the logical (or quasi-logical)
level and the conceptual one [Macagno and Walton, 2015; Macagno, 2015]. From
a conceptual (material) point of view, schemes usually represent an inferential step
from a specific type of premise to a specific type of conclusion. However, there is
a crucial gap between the complexity of natural argumentation, characterized by
several conceptual passages leading to a conclusion, and the schemes. In order to
reason from consequences, we need to classify a state of affairs, evaluate it positively
or negatively, and then suggest a suitable course of action, which can lead to further
reasoning steps, for example from commitment. A single argumentation scheme
cannot capture the complexity of such real argumentation. For this reason, we need
to conceive the relationship between arguments and schemes in a modular way, in
terms of nets of schemes.

A real argument can be described through interconnected and interdependent
argumentation schemes, each of them bringing to light a single argumentative step
that can be explicit, presupposed, or simply implied. In order to explain the idea of
nets of schemes, we consider the following example taken from the debates during
the conflict between Russia and Ukraine in 2014. In this case, the British Foreign
secretary William Hague commented on Russia’s intervention in Crimea and Ukraine
as follows4:

Example 7.1 (The Hague Speech). Be in no doubt, there will be consequences. The
world cannot say it is OK to violate the sovereignty of other nations. This clearly
is a violation of the sovereignty independence and territorial integrity of Ukraine. If
Russia continues on this course we have to be clear this is not an acceptable way to
conduct international relations.

This example is apparently an easy case of argument from consequences, in which
Russia’s continuation of its military operations is depicted by the British Foreign
Secretary as leading to undesirable consequences. However, this reasoning involves
also a classification of Russia’s behavior as a“violation of the sovereignty indepen-
dence and territorial integrity of Ukraine,” and a qualification of this behavior as
unacceptable by the UK and the “world.” By pointing out the shared values to
which the world countries are committed (the sovereignty of other nations cannot
be violated), the speaker makes explicit the commitment against Russia’s behav-

4Ukraine crisis: William Hague warns Russia of economic fallout. The Guardian, 3 March 2014.
Retrieved from: https://is.gd/Kw8Vax. (Accessed on 15 May 2017)
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ior, which is represented by the vague notion of “consequences.” We represent this
structure in Figure 9.

Be in no doubt, there 
will be consequences. 

Russia violated the 
sovereignty of Ukraine. 

Argument from 
Commitment 

This clearly is a violation of the 
sovereignty independence and 
territorial integrity of Ukraine.

Argument from 
Verbal Classification 

If Russia continues on this 
course we have to be clear this is 

not an acceptable way to 
conduct international relations.

The world cannot say it is 
OK to violate the 

sovereignty of other nations. 

Russia intervened 
militarily in Crimea 

and annexed it. 

A hostile military intervention 
in another country is a 

violation of its sovereignty.

Consequences against Russia 
brought about by the UK and the 
world are undesirable for Russia.

Undesirable consequences 
should be avoided.

Russia should not continue 
on this course.

Argument from 
Consequences

Figure 9: Net of arguments in the Hague Example

In Figure 9 the dotted boxes represent the tacit premises and the tacit ultimate
conclusion, which are taken for granted by the speaker but are needed for recon-
structing his reasoning. The classification, the reasoning from commitment, and the
argument from consequences are deeply interconnected. The alleged world’s com-
mitment to consequences against Russia depends on the classification of the state
of affairs [Macagno and Walton, 2014; Walton and Macagno, 2009], which fits into
the value of “protecting nations’ sovereignty.” This commitment leads to an implicit
threat, namely a consequence that is presupposed to be negatively evaluated by
Russia.

This analysis can be applied to the structure of a slippery slope argument, such
as the one advanced by the Russian defense analysts in reply to the help provided
by the United States to Ukraine (which includes weapons and hardware)5:

Example 7.2 (The Global Escalation). U.S. provision of military aid to Ukraine
would be seen by Moscow as a declaration of war and spark a global escalation of
Ukraine’s separatist conflict, Russian defense analysts said.

This argument stems from a classification (US provision of military help is a
declaration of war), and leads to a chain of negative consequences (global escalation)

5Russia Would See U.S. Moves to Arm Ukraine as Declaration of War. The Moscow Times, 9
February 2015. Retrieved from: https://is.gd/hxO6MW (Accessed on 15 May 2017)

2532



Argumentation Schemes

that ultimately are going to affect the Western countries. Also in this case, the
central argument (the slippery slope) is associated with other arguments (argument
from classification and from values), resulting in the net shown in the graph in Figure
10.

Moscow will react and there will 
be a global escalation 

of Ukraine's separatist conflict

Slippery Slope

U.S. provision of military aid 
to Ukraine would be seen 

by Moscow as a declaration of war.

Argument from 
Verbal Classification 

A declaration of war is 
unacceptable by Russia.

Russia is going not to accept 
a tacit declaration of war.

The U.S. intend to 
provide military aid.

Russia is going to consider 
U.S. military aid as a 
declaration of war.

An escalation will 
affect also the U.S. and 
the Western countries.

Military actions affecting 
other countries are 

dangerous. 

The escalation is dangerous 
(Values) and should be 

avoided (Slippery slope).

Argument from Values

Argument from Values

Figure 10: Net of arguments in the global escalation example

In this case, the classification justifies the slippery slope, whose force partially
depends on the fact that the escalation is claimed to be global, affecting also other
countries. The evaluation of this consequence therefore combines with the chain of
events claimed by the analysts, and leads to the practical conclusion of avoiding the
provision of military aid.

A special feature of this example is its compressed style of presentation. Slippery
slope is a complex form of argument built around a connected sequence of actions and
consequences starting from an initial action or policy and then proceeding through
a sequence to an eventual outcome. However in many examples, the intervening
sequence is left implicit, concealing a chain of intervening propositions that have to
be filled in as implicit assumptions of the argument. These implicit assumptions
are needed to make it fit the scheme for the slippery slope type of argument. The
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example really is a slippery slope argument, but in order to prove that it is, sev-
eral implicit premises or conclusions have to be filled in that are essential. These
intervening links are basically filled in by common knowledge concerning the normal
way we expect military inventions to take place and to have consequences. By using
an argument map that reveals the network of argumentation into which the given
slippery slope argument fits, the puzzle of unraveling the network of argumentation
using a cluster can be solved in any given case of argument interpretation.

On the perspective presented in this section, we notice that argumentation
schemes appear in nets instead of in clear and independent occurrences. A scheme
can capture only one passage of reasoning, while the nets can map a more complex
argumentative strategy, involving distinct and interdependent steps.

8 Using Argumentation Schemes in AI and law

In the sections above we have shown how argumentation schemes have been devel-
oped theoretically, providing a system of classification and representation thereof.
One of the most important areas of application of the schemes is computing, and
in particular artificial intelligence. In this section, we will show very briefly how
argumentation schemes have been used in AI and AI and Law, and in particular the
principles guiding the formalization thereof. It is far from a complete survey, but
merely attempts to show how schemes are currently being applied and modeled. It
also tries to convey very briefly how schemes have evolved as they have been used
for different purposes in different AI systems and areas. The discussion includes
the problem of how to model critical questions matching each scheme, and how
schemes are being used in AI and Law in argument mining, case-based reasoning
and statutory interpretation.

The paper that introduced argumentation schemes to the AI and law commu-
nity was [Verheij, 2003b]. This paper proposed the use of argumentation schemes,
as a main tool for analysis in AI and law, stating [Verheij, 2003b, p.168] that the
argumentation scheme is “a concept borrowed from the field of argumentation the-
ory.” Verheij investigated how argumentation schemes could be formalized for use
in computational settings. He proposed [Verheij, 2003b, p.176] that any argumen-
tation scheme can be expressed in the following format: Premise 1, Premise 2,. . . ,
Premise n, therefore Conclusion. Verheij visually represented the graph structure
of an argumentation scheme by building an argument mapping software tool called
ArguMed.

A formal analysis of argumentation schemes of Reed and Walton [Reed and
Walton, 2005] defined a set of attributes, T, associated with propositions by a typing
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relation that associates every proposition to a set of attributes called a type. On this
analysis a scheme is comprised of a set of tuples <SName, SConclusion, SPremises>
where SName is some arbitrary token [Reed and Walton, 2005, p.179]. The gist of
the analysis is that a particular scheme is given a unique name which is associated
with a conclusion type and a set of premise types. An instantiation of a scheme of
a type represented by a unique name must have a conclusion of the right type, and
each premise must also be of the right type.

Prakken [Prakken, 2005, p.34] remarked that schemes act very much like the rules
used in rule-based computer systems. The problem was that AI systems, as well as
argument mapping tools of the kind used in argumentation theory, including the
software systems developed in AI to assist with the building of argument diagrams,
use a model of argument where the premises and conclusions are propositions. Along
these lines, the structure is basically a graph with arcs joining the various points
representing the propositions that can be identified as premises or conclusions. So
far then it seemed that schemes were amenable to being fitted into AI systems
without undue difficulty, but the central problem posed at that point was how to
model the distinctive set of critical questions matching each scheme. One proposal,
commented on below, is to model the critical questions as additional premises of an
argument fitting a scheme.

But there was a big problem with this way of proceeding because different critical
questions act in different ways in this regard. Sometimes merely asking a critical
question is enough to defeat the target argument, whereas in other instances the
asking of the question does not defeat the target argument unless some evidence is
offered. The issue turned out to be one of burden of proof [Gordon et al., 2007].
In some instances, merely asking a critical question is enough to shift the burden
of proof onto the proponent who put forward the argument. In other instances,
the burden of proof does not shift unless the questioner can provide some backup
evidence to support the question.

Verheij [Verheij, 2003b] noted that there were variations on how the critical ques-
tions work in this regard. He noted that critical questions that point to exceptions
to a general rule only undercut an argument while others could be seen refuting the
argument in one of two different ways. One way is to deny an implicit assumption
on which the argument depends. Another is to point to counter-arguments that can
be used to attack the given argument. Verheij [Verheij, 2003b, p.180] showed that
critical questions can perform four distinctively different kinds of roles:

1. They can be used to question whether a premise of a scheme holds.

2. They can point to exceptional situations in which a scheme defaults.

2535



Macagno, Walton and Reed

3. They can frame conditions for the proper use of a scheme.

4. They can indicate other arguments that might be used to attack the scheme.

It is currently widely assumed in AI that there are three ways you can attack an
argument. You can attack one or more of the premises (premise attack), you can
attack the conclusion (conclusion attack), or you can attack the inferential link
joining the premises to the conclusion (for example by arguing that an exception
applies). The last mode of attack is called undercutting [Pollock, 1995]. The first role
would be that of a premise attack. The second and third roles would be undercutting
attacks. The fourth role might refer to an undercutter but could also perhaps be
taken to refer to a conclusion attack. So here the problem is posed of how to model
critical questions given that critical questions can perform more than one function.

ASPIC+ [Prakken, 2010] is a formal argumentation system that consists of a
logical language L with a binary contrariness relation that operates like negation
along with two kinds of inference rules, strict and defeasible, defined over L. ASPIC+
is based on the abstract argumentation framework (Dung, 1995) which can be defined
as a pair (Args, R), where Args is a set of arguments and a binary relation R on
Args is called the attack relation. The underlying idea of the formalism is that
each argument in a sequence of argumentation forming a directed graph structure
can be defeated by other arguments so that a2 defeats a1, a3 defeats a2, . . . , and
defeats an−1. Arguments in the graph can be labeled as “in” or “out”. An argument
is rejected (out) if it is attacked by any other argument that is in. An argument
is accepted if it is not attacked by any other argument that is “in”. Note that
the notions of argument and argument attack are taken as primitive in an abstract
argumentation system, so that such a system by itself provides no way of modeling
the premises and the conclusion.

In the system developed in [Prakken et al., 2015] for case-based reasoning, pref-
erences among factors are established in the present case, and then these preferences
can be applied to the current case. One of the argumentation schemes (CS1) of can
be used to briefly explain how such schemes are meant to be used in legal arguments
from precedent. In all these schemes, for purposes of presentation, it is assumed
that the arguer is putting forward the current argument (curr) to support the side
of the plaintiff.

commonPfactors(curr; prec) = p,
commonDfactors(curr; prec) = d,
preferred(p; d)
———————————
outcome(curr) = Plaintiff
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According to this scheme, the current argument should be decided for the plaintiff
because the common p factors were preferred to the common d factors in the prece-
dent argument. [Prakken et al., 2015] uses a running example to illustrate how an
argument fitting a scheme can be attacked by other arguments in the formal system
representing the argumentation in a legal case.

Argument schemes are being used in AI and Law for argument mining. Moens,
Mochales Palau, Boiy and Reed devised techniques for automatically classifying
arguments in legal texts by using indicators of rhetorical structure expressed by
conjunctions and adverbial groupings [Moens et al., 2007, p.226]. They identify
words, pairs of successive words, sequences of three successive words, adverbs, verbs
and modal auxiliary verbs. This work has been applied to legal argumentative texts
[Mochales Palau and Moens, 2009; Mochales Palau and Moens, 2011]. By classifying
types of arguments using argumentation schemes they built a system for searching
for arguments in legal cases [Mochales Palau and Moens, 2008]. The project used
human annotators supervised by legally trained personnel to identify arguments in
texts of the European Court of Human Rights [Mochales Palau and Ieven, 2009].
Their results suggested that it would help to have additional criteria that can be
applied to judge whether a given argument fits a particular scheme.

Rahwan et al. [Rahwan et al., 2011] carried forward research on the automated
identification of particular schemes by developing an OWL-based ontology of argu-
mentation schemes in description logic that showed how description logic inference
techniques can be used to reason about automatic argument classification. Their
method of identifying schemes has been implemented in a web-based system called
Avicenna [Rahwan et al., 2011, pp. 11–13]. A user can search arguments by using
schemes along with other tools.

Gordon and Walton [Gordon and Walton, 2006] proposed a solution to the prob-
lem of how to model critical questions by using three kinds of premises (ordinary
premises, assumptions and exceptions) in the Carneades Argumentation System
(CAS). This solution used information about the dialectical status of statements
(undisputed, at issue, accepted or rejected) to model critical questions in such a way
as to allow the burden of proof to be allocated to the proponent of the argument or
the critical questioner as appropriate for the case in point. On this way of proceed-
ing, ordinary premises need to be supported by further arguments even if they have
not been questioned. In the case of exceptions, however, the critical questioner is the
one who has to offer evidential support to make his criticism defeat the argument.

Version 4 is the current implemented formal and computational system of CAS,
based on the formal model of argument [Gordon and Walton, 2016] called CAS2.
CAS2 provides support for cumulative arguments, cyclic argument graphs, practical
reasoning, and multi-criteria decision analysis. The source code of all four versions
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can be accessed on the Internet6. Carneades 4 is now online 7. CAS2, as implemented
in version 4 of Carneades, provides a formal model that uses argumentation schemes.

In the CAS2 model [Gordon and Walton, 2016] an argumentation scheme is
defined as a tuple (e, v, g), where e is a function for weighing arguments which
instantiate a scheme, v is a function for validating arguments, to test whether they
properly instantiate an argumentation scheme, and g is a function for generating
arguments by instantiating the scheme. The validation function tells us whether
the argument instantiates a particular scheme, but then, once a set of schemes has
been specified, the system can apply their validation functions to given argument to
whether that scheme is instantiated, or not, by the given argument.

An argument is defined as a tuple (S, P, C, U), where S is the scheme instantiated
by the argument; P , a finite subset of L, is the set of premises of the argument; c,
a member of L, is the conclusion of the argument. U is an undercutter of the
argument [Pollock, 1995]. In version 4 of CAS an issue is defined as a tuple (O, F ),
where O represents the options (called the alternative positions) of the issue, and F
is the proof standard of the issue. Argument graphs in CAS version 4 are tripartite,
rather than bipartite, as in the previous versions, with separate nodes for statements,
arguments and issues. Argument diagrams in version 4 are extended with a new node
type, diamonds, for representing issues. There can be any number of issues you like
in a single diagram. Argument evaluation is carried out by labeling statements
in, out or undecided. A statement is in if and only if it has been assumed to be
acceptable to a rational audience, or has been derived from such assumptions via
the application of the arguments, argument weighing functions and proof standards
used in CAS. A statement is out if and only if it is neither assumed nor supported
by arguments and would therefore be rejected by a rational audience. A statement
is undecided if it is neither in nor out.

Carneades 3 uses backwards-chaining, in a goal-directed way, whereas Carneades
4 uses forwards-reasoning to derive arguments from argumentation schemes and
assumptions. Both strategies, forwards and backwards reasoning, have their ad-
vantages. Forwards reasoning allows CAS to invent arguments using argumentation
schemes, such as the scheme for argument from expert opinion, where the conclusion
is a second-order variable ranging over propositions. Only Carneades 4 can construct
arguments using formalizations of all of the twenty or so schemes currently built into
the system.

Case-based reasoning (CBR) is vitally important for AI and Law and for un-
derstanding legal reasoning generally. CBR evaluates an argument in a given case

6Retrieved from: https://github.com/carneades
7Retrieved from: http://carneades.fokus.fraunhofer.de/carneades
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by comparing and contrasting its features to those of prior cases that have already
been evaluated [Aleven, 1997]. These prior cases are stored in a knowledge base
which supplies similar precedent cases that can be pro or con the evaluation being
considered in the given case. In some systems widely known in AI and law [Ashley,
1990], judgments of similarity between a pair of cases are decided by the factors that
they share. Special argumentation schemes have been built to model arguments
from precedent using factors in case-based reasoning [Gordon and Walton, 2009;
Wyner and Bench-Capon, 2007; Wyner et al., 2011]. Prakken et al. [Prakken et al.,
2015] offered a formal version of these legal case-based argumentation schemes using
ASPIC+.

Walton, Sartor and Macagno [Walton et al., 2016] showed how canons of inter-
pretation can be translated into argumentation schemes. This project was carried
out by by analyzing the most common types of statutory arguments found in legal
examples and certain key forms of interpretive legal argumentation found in the work
of Tarello [Tarello, 1980] and McCormick and Summers [MacCormick and Summers,
1991]. Steps were carries out to show how these legally recognizable forms of argu-
ment can be formulated as argumentation schemes. Among the schemes modeled
are argument from ordinary meaning, argument from technical meaning, argument
from precedent, argument from purpose, a contrario argument, historical argument
and the non-redundancy argument. It was shown using classical examples of statu-
tory interpretation in law how these schemes (and others) can be incorporated into
computational argumentation systems such as CAS and APSIC+ and applied to
displaying the pro-contra structure argumentation in legal cases using argument
mapping tools.

In the following sections we will illustrate shortly two other computational appli-
cations of argumentation schemes, namely their role in argument mining and formal
ontologies.

9 Using Schemes for Argument Mining

Argumentation schemes also have an important role to play in a major new area of
computational research into argumentation: argument mining. Argument mining
focuses on the development of algorithms and techniques for the automatic extrac-
tion of argument structure from natural language text. Though it has connections
to areas such as sentiment analysis and opinion mining, it represents a substan-
tially more demanding task. There are two features that make argument mining
so difficult. The first concerns the availability of data and the second, the limits of
statistical approaches to language understanding.
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Many approaches to mining syntactic and semantic structure from unrestricted
natural language have, since the late 1990s, been based heavily in statistical analysis:
essentially, modelling the regularities in language by examining and comparing many,
many different examples. The most robust syntactic parsers, for example, are based
not on theoretical linguistic analysis — which proved on the whole to be too limited
and too brittle — but on statistical models based on corpora typically comprising
millions of examples [Koehn et al., 2003]. Though the machine learning mechanisms
upon which such techniques depend vary, one feature that they share is the need
for such large datasets from which to draw regularities. If, therefore, argument
mining is to be able to deploy the same techniques, it requires large datasets, and
datasets not just of argumentation per se, by argumentation that has been analysed
for its structure. As anyone involved in the teaching of critical thinking skills will
attest, such analysis of argument structure is both demanding and extremely time
consuming. Until very recently there were few datasets, and those that did exist
were available in idiosyncratic representation languages, with little re-use between
research teams and projects — so what effort was invested in data collection and
analysis was regularly lost. Two approaches have started to change this.

First, there have been attempts to collect datasets specifically for community
use. The first example is the Internet Argument Corpus, IAC [Walker et al., 2012],
which collects 390,000 examples. The problem facing the IAC is that it is designed
primarily from a text-processing viewpoint, with little argumentation theory sit-
ting behind it. As a result, the conception of argument that it embodies is very
thin and more or less unrecognisable to researchers from argumentation theory and
computational models of argument, viz., quote-response pairs with associated po-
larity (additional features including sarcasm and nastiness are marked for subsets).
A second example is more directly rooted in informed models of argumentation.
The Potsdam Microtext Corpus [Peldszus and Stede, 2016] provides artificially con-
strained — but completely human-generated, natural language — arguments that
are structured according to the work of Freeman [Freeman, 1991] with explicit dis-
tinction between, for example, linked and convergent arguments, undercutting and
rebutting attacks and so on. Another unique advantage of the Microtext Corpus is
that it has been professionally translated so that both English and German versions
exist: to our knowledge this is the first parallel corpus of argumentation. On the
other hand, the fact that every argument is required to contain a total of five compo-
nents (premises and conclusions), whilst providing a vitally useful “laboratory” for
testing techniques, risks placing a severe limitation on the subsequent generalizabil-
ity of those techniques to unrestricted arguments in the wild. The limited size of the
corpus — just 130 examples — also places limitations on what can be accomplished
using traditional statistical machine learning techniques.
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The second approach has been to provide infrastructure specifically for collecting,
publishing, sharing and re-using corpora. Whilst there are now several platforms
for online analysis of argument (argunet8, debategraph9, AGORA-net10, Rationale-
Online11, etc.) none provide open access to the data in machine processable ways,
except, as far as we are aware, for the infrastructure offered by the Argument Web
[Rahwan et al., 2011; Bex et al., 2013]. The Argument Web is a vision for an inter-
connected web of arguments and debates, regardless of the software used to create
them, analyse them or extract them, and regardless, too, of the uses — academic,
social or commercial — to which they might be put. The vision supports, for ex-
ample, the academic analysis of an argument presented in a political broadcast; the
automated analysis of responses to it on social media; the deployment of automated
dialogue games for online users to interact with both original and responses; the
automated summary of the status of the debate to a government policy department;
and the delivery of a corpus comprising the debate to researchers in argument min-
ing. Argumentation schemes in the style of [Walton et al., 2008] form a cornerstone
of the Argument Web, as a way of providing a rich ontology of reasoning forms.
Further details of this ontology occur in the next section; here we focus on the tools
and the ways in which they can be used to develop corpora.

Though the first publicly available corpus of argumentation was developed using
Araucaria (viz. AraucariaDB, see [Reed and Walton, 2005]), the software itself is
now very old and virtually obsolete. Though it remains the only software to handle
large analyses, such as the ones developed by Wigmore for mapping cases, and the
only to interchange between Wigmore, Toulmin and Freeman styles of analysis, it
has been superseded in its core functionality by the Online Visualisation of Argu-
ment tool, OVA [Janier et al., 2014]. OVA provides a simple-to-use interface for
analysing existing argumentation in both monologue and, in the extended OVA+,
also dialogue. It supports enthymeme reconstruction; argumentation scheme analy-
sis; critical question processing; serial, linked, convergent and divergent structures;
undercutting, rebutting and undermining attacks; and in OVA+, locution analy-
sis; dialogue game rule analysis; illocutionary force identification; the role of ethos
[Duthie et al., 2016] and personal attacks; and ultimately, full Inference Anchoring
Theory analysis [Budzysnka and Reed, 2011]. Analyses from OVA can be stored
in AIFdb, a database infrastructure fabric for storing and accessing argument data
[Lawrence et al., 2012].

8Retrieved from: http://www.argunet.org/ (Accessed on 10 May 2016)
9Retrieved from: http://debategraph.org/Stream.aspx?nid=61932&vt=ngraph& dc=focus (Ac-

cessed on 10 May 2016)
10http://agora.gatech.edu/ (Accessed on 10 May 2016)
11https://www.rationaleonline.com/ (Accessed on 10 May 2016)
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One side effect of using AIFdb is that the data is easily transportable to other
forms, both representational (in being able to convert to formats required for
Carneades [Walton and Gordon, 2012] and Rationale [van Gelder, 2007], for exam-
ple), and processable — in being able to convert via ASPIC+ [Modgil and Prakken,
2013] to abstract frameworks [Dung, 1995] via formal equivalences established in
[Bex et al., 2013]. More importantly for our current purposes, sets of analyses in
AIFdb can be configured to constitute a corpus using the AIFdb corpus management
tools [Lawrence and Reed, 2015] available online at corpora.aifdb.org, and AIFdb
current constitutes the largest publicly available dataset of analysed argumenta-
tion. These tools enable research teams to define corpora comprising both analysed
argumentation and raw text; both argumentative and non-argumentative source ma-
terial; both raw data and metadata. Corpora themselves are aggregable providing
flexible structuring options to manage dependencies between teams, projects, and
objectives. The original AraucariaDB corpus is available on this infrastructure, but
so too are smaller datasets focusing specifically on argumentation schemes, such as
the Argument Schemes in the Moral Maze, comprising excerpts from the BBC Moral
Maze radio programme that involve 35 instances of argumentation schemes and the
ExpertOpinion-PositiveConsequences corpus comprising 71 examples of just these
two schemes.

With the availability of appropriate datasets becoming less of an impediment,
various approaches to automatically recognising argument structure have been de-
veloped. The majority have been focused specifically on statistical models, which
brings us to the second major challenge facing argument mining: the limits of such
models. Whilst it is certainly the case that statistical approaches are starting to de-
liver results for argument mining, and will undoubtedly continue to do so, it is also
the case that the more sophisticated conceptions of argument developed in argumen-
tation theory remain extraordinarily demanding. The reason for this lies precisely in
their sophistication. With so many patterns of argumentation, so many structures,
so many ways in which components can be left implicit, so many types of reasoning,
the amount of data required to train statistical models becomes not just unwieldy
but unreasonable and, quite probably, unattainable.

Consider a comparison with syntactic analysis, where statistical models have
been so successful. The number of rules governing how different parts of speech can
be legally combined run in theoretical linguistics to tens of examples. In statistical
models, it is hundreds (which is why they are so successful). The number of rules
governing how argument components can be assembled (and left implicit) runs, by
combination across argumentation schemes, to thousands or more. So whilst we
might expect statistically oriented techniques to deliver us good results on simple
and strongly generalizable aspects of argument recognition, for the type of analysis
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that is typically taught to students of critical thinking classes, more is required. It is
looking increasingly likely that having strong, well defined conceptions of argument,
dialogue and argument schemes provide exactly the sort of additional information
required to guide machine learning processes by acting, in essence, as priors to that
process: defining expectations about what is likely to be seen. This combination
of statistical and structural approaches is looking very promising. In particular, we
provide examples here that tap in specifically to structure provided by argument
schemes.

Feng and Hirst [Wei Feng and Hirst, 2011] aimed to classify arguments into the
type of scheme employed. Like some of the earliest work in argument mining, such
as [Moens and Mochales Palau, 2007], they also used the AraucariaDB corpus as a
starting point, because it was the only dataset at that time with annotated examples
of argumentation schemes. They used the 65 argumentation schemes from [Walton
et al., 2008], but emphasized the importance of the five schemes they found to be
the most commonly used ones in their corpus: argument from example, argument
from cause to effect, practical reasoning, argument from consequences and argument
from verbal classification [Wei Feng and Hirst, 2011]. The number of occurrences
of these most common five schemes constituted 61% of the kinds of arguments
identified in their database [Wei Feng and Hirst, 2011, p.998]. They used a variety
of features with which to train the machine learning classifiers including key words
and phrases as textual indicators of argumentation schemes. They identified, for
example, twenty-eight keywords and phrases associated with the scheme for practical
reasoning, including “want”, “aim”, “objective”, and modal verbs like “should”,
“must” and “need” [Wei Feng and Hirst, 2011, p.991]. Their results were extremely
promising, providing classification accuracies ranging from 0.64 to 0.98.

Building on this approach, Lawrence and Reed ([Lawrence and Reed, 2015] ex-
tended the model to use argumentation schemes not just as a target for machine
learning but to aid the very process of identifying argumentative structure (rather
than presupposing it as input, as in Feng and Hirst). The intuition is that argu-
mentation schemes do not connect propositions that are all alike, but rather are
associated with particular types of propositions. In this way, arguments from pos-
itive consequence will typically conclude with a normative statement in the sub-
junctive mood; arguments from expert opinion will typically have a premise which
reports, either directly or indirectly, the speech of another; arguments from analogy
will include a premise which attributes some property to some individual; and so
on. If it is possible to identify instances of some of these types, it will constrain
the potential argument structures that can be reassembled. If, for example, an au-
tomatic algorithm can spot the lexeme said, there is a reasonable chance that we
have reported speech, which in turn increases the chance that it is part of an expert
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opinion argument. If we can find the lexeme expert in a sentence close by, we can
be even more sure we have argument from expert opinion and can start looking
nearby for a conclusion — and that conclusion is likely to be a sentence which has
strong semantic similarity with the clause that follows “said”. In this way, knowing
a priori about argumentation scheme structure helps to constrain the problem of
automatically recognising the argument structure. It turns out that this hypothesis
is borne out by results.

Lawrence and Reed report (ibid.) results ranging from an F1 performance of
0.59 to 0.91 for detecting scheme components and of 0.62 to 0.88 for identifying
scheme instances. Operationalising argumentation scheme structure in this way de-
pends, however, upon “knowledge engineering”, or, more specifically, “ontology en-
gineering” — the construction of explicit computational models that capture scheme
structure and the commonalities, similarities and classificatory relationships between
schemes. It is to this question that we turn next.

10 Schemes in Formal Ontologies
The Argument Interchange Format, AIF, is not just a representation language for
argument structure; it also has a formal definition rooted in description logic; that
is to say, it provides a core ontology for describing argument (though that core is
rather compact, it admits of extension using “adjunct ontologies” that extend it to
handle features such as dialogical interaction, user- and social-oriented features, and
so on). The AIF was laid out initially in [Chesñevar et al., 2006] and extended in its
description logic specification in [Rahwan et al., 2007]. Given this basis, it is then
rather straightforward to extend it to further specify not just that two propositions
might be linked by an application of a rule of inference (or “RA”), but to also specify
the different types of such rules of inference, that is to define an ontology of argu-
mentation schemes. This ontology not only describes the structure of argumentation
schemes in machine-processable form, but also defines relationships between schemes
(such as generalisation-specification relationships) and relationships between scheme
components (such as that knowledge assertions occur as premises in several differ-
ent schemes). By way of example, snippets of the ontology concerned with the
argumentation scheme from expert opinion are shown in Figure 11 below.
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Figure 11: Snippet of Argumentation Scheme Ontology

In the first stanza, the conclusion and premises concerning the knowledge asser-
tion (that the expert said something) and the field expertise (that the speaker is
indeed an expert) are set up. In the second stanza, the remaining premises (those
captured as presumptions and exceptions) are added in, covering credibility, backup
evidence, consistency between experts and expert reliability. The third stanza shows
how one of these, consistency between experts, can be used to drive a stereotypi-
cal way of attacking this inference — i.e. the posing of a critical question (see
[Reed and Walton, 2005] for the mechanics of operationalizing critical questions in
this way). The aim here is just to give a flavour of how all the important com-
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ponents of argumentation schemes — structure, description and critical questions
— can be captured in a formal ontology. The full ontology is available online at
http://arg.tech/aif.owl, and is used by many of the Argument Web online services.

Two benefits of this approach are demonstrated in [Rahwan et al., 2011]. The
first is an economy in specification, that allows more specific schemes to be defined
in terms of minor additions to more general ones. The second, much more im-
portantly, is that these structures support automated reasoning, in three distinct
ways. First, it becomes possible to reason across argument structures, identifying,
for example, transitivity of inferences, so that if X is used to infer Y , and Y to
infer Z, the dependence of X on Z can be inferred automatically. Of course such
reasoning is not at all unique to ontologically based systems, but is a convenient
side benefit. An ontologically more interesting way of performing automated rea-
soning is to perform automatic classification. This is where formal ontologies, and
the reasoning systems constructed on top of them, excel. Rahwan et al., exemplify
this technique by showing how fear appeal arguments are naturally classifiable as a
subset of negative consequence arguments. The third and final way of performing
automated reasoning is also of use in designing and implementing dialogue systems.
By virtue of hierarchical relationships between schemes that are represented in, or
inferable from, the ontology, it also becomes possible to infer appropriate critical
questions that might be asked of a given argument. Thus, for example, all of the
critical questions of a superclass can be asked of an instance of a sub-class of argu-
mentation schemes. In these ways, formal representation of argumentation schemes
in an explicit ontology can contribute to the computational techniques for analysing,
processing and interacting with arguments.

11 Conclusions

Argumentation schemes represent the abstract structures of the most common and
stereotypical arguments used in everyday conversation and specific fields, such as
law, science and politics. They appear as a set of premises having an abstract form
with variables and constants, leading to an abstract conclusion. They are abstract
in the sense that they provide a form for structuring inferential relation between
the premises and the conclusion. Some schemes are based on the most abstract
relations (classification, cause, authority), while others specify the most abstract
premises including some further detail (negative consequences; expert opinion ad
populum argument) [Walton et al., 2008].

The abstract nature of the schemes allows the analyst to detect the structure
of natural arguments, and recognize patterns occurring in everyday reasoning. This
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paper has shown how they can be applied to real arguments in natural language
discourse, and in technical discourse as well, for that matter. In this paper, it has
been shown how these schemes, at their current state of development can be used
as tools to identify kinds of arguments in a text, and beyond that how they can
be an important part of argument evaluation. Throughout the history of logic and
rhetoric there has always been some uncertainty about the role of the topics [Bird,
1962]. Some have seen them as forms of logical inference that can be used to show
that arguments are valid, where the term “valid” is used in a wider sense that can
include not only deductively valid arguments but also defeasible arguments that
have an identifiable structure as fitting a particular topic. Others have seen the
topics of as having a search function that can be used to find arguments to prove
a designated conclusion. The search function is supposed to help an arguer select
arguments that have premises accepted by the audience to whom the argument is
directed [Kienpointner and Kindt, 1997].

Schemes can also be used for argument construction. As we saw in this paper,
an argumentation scheme is taken to have a warranting function that enables an
inference to be drawn from a set of premises to a conclusion. This practical way of
justifying schemes indicates their usefulness not only for argument evaluation, but
also for argument construction, also called argument invention in the long history of
the subject tracing back to the Sophists and Aristotle. An argument invention device
would enable an arguer to search for an argument that could be used to support a
claim s/he wants to prove [Kienpointner, 1987]. When viewed in this way, topics
can be seen to have a use as components of an argument construction function, for
use in a system for finding arguments. The schemes can be used as instruments for
producing arguments, allowing the user to decide the type of argument he considers
the most applicable to his purpose, and then develop a specific line of reasoning
from the premises or evidential facts he has to the conclusion he needs to prove. In
this guise, the schemes are dialectical instruments for use in the task of argument
construction.

The advent of IBM’s new Watson Debater tool [Aharoni et al., 2014] is a leap
forward for argument invention because it enables a user to quickly search through
a database such as Wikpedia and find useful pro and con arguments supporting or
attacking a designated claim. Once this tool comes onto the market, it will greatly
stimulate research on argument invention in argumentation studies. The Debater
tool does not (so far) use argumentation schemes, but there is a formal and com-
putational argumentation system, the Carneades Argumentation System (CAS)12.
By inputting information into the CAS find arguments assistant, a user who has a

12https://carneades.github.io/ (Accessed on 10 May 2016)
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database containing propositions recording the commitments of the audience, the
automated assistant constructs a chain of argumentation where the conclusion of the
chain is the proposition is the goal proposition that the speaker wants to persuade
the audience to accept, called the arguer’s ultimate claim, or ultimate probandum,
the proposition to be proved, in the language of the ancient stasis theory [Walton
and Gordon, 2012]. The argument assistant searches through the commitments of
the audience and uses a repository of argumentation schemes in its knowledge base
to collect a set of arguments moving from these premises to the ultimate claim. If
there are such arguments available the assistant gives that information, but may
suggest a partial way forward.

Argumentation schemes are instruments that can be used in different ways to
many disciplines addressing the analysis of discourse in general, and reasoned dis-
course in particular. The current research on schemes can improve noticeably the
field of application and make this tool crucial for a deeper analysis of argumenta-
tive exchanges. To this purpose, argumentation schemes need first to be integrated
within a theory of discourse interpretation. Schemes can be powerful instruments
for representing arguments and relations between sentences. However, at present
they presuppose an interpretation of discourse. This line of research could show
how schemes can represent interpretation, and how they can be used to assess what
interpretation is the best one [Macagno, 2012]. A second challenge in this area is to
link the theory of dialogue types and discourse moves (utterances) to argumentation
schemes [Macagno and Bigi, 2017]. By showing how certain schemes are the most
adequate to pursue specific dialogical ends, it is possible to map not only a set of
useful tools for argument production, but also a set of presumptions for interpreting
and classifying arguments based on the type of dialogue.
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Abstract
In this paper we give an overview of the core computational problems aris-

ing in formal argumentation together with a complexity analysis highlighting
different sources of computational complexity. To this end we consider three
prominent argumentation formalisms from the literature, that are Dung’s ab-
stract argumentation frameworks, assumption-based argumentation, and ab-
stract dialectical frameworks, each of which allows to highlight different sources
of computational complexity in formal argumentation. As most of these prob-
lems turn out to be of high complexity we also consider properties of instances,
like being in a specific graph class, that reduce the complexity and thus allow
for more efficient algorithms. Finally, we also show how to apply techniques
from parametrized complexity that allow for a more fine-grained complexity
classification.

1 Introduction
In the literature several models for formal argumentation were introduced and dis-
cussed. They propose different ways to construct arguments, draw conclusions and
each of these models comes with several proposals for semantics as to how coherent
sets of arguments or statements should be selected. In this paper we address the
computational issues appearing in argumentation formalisms and that have to be
tackled when implementing argumentation systems. That is, we will identify core
problems of abstract argumentation and present basic procedures to solve them to-
gether with hardness results, based on computational complexity theory, that show
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some problems to have inherent complexity that cannot be circumvented by any
algorithm.

The computational problems of formal argumentation occur at several places
in the argumentation process. (A1) First, when instantiating argumentation frame-
works from knowledge bases one has to deal with the task of constructing arguments
and identifying conflicts (or even more complex) relations between arguments. (A2)
Second, given the arguments and conflicts between them one has to find coherent
sets of arguments that can be simultaneously accepted (w.r.t. a selected semantics).
(A3) Finally, given the coherent sets of arguments one has to draw conclusions based
on this selection. The computations in the first and third item often correspond to
problems that are purely located in the underlying logic, e.g., to evaluating an in-
ference operator. The second item is at the core of formal argumentation. That
is, we are given arguments and relations (e.g. attacks) between them, and have to
evaluate them w.r.t. to an argumentation semantics. This may require computing
all extensions of a given semantics, the acceptance status of some argument w.r.t.
some semantics, or finding some witness or counter example for a claim.

In this work we consider computational problems in three argumentation
formalisms, i.e. Dung’s abstract argument frameworks [Dung, 1995; Baroni et al.,
2011a], assumption-based argumentation [Toni, 2014] and abstract dialectical frame-
works [Brewka et al., 2013]. Dung’s abstract argument frameworks are a model for
(A2) which only consists of abstract entities called arguments and a binary attack
relation between them. There is no instantiation process or computation of conclu-
sions. Thus, it is perfectly suited for studying the computational issues involved in
(A2). Assumption-based argumentation models the whole process (A1), (A2) and
(A3), starting from a knowledge base, constructing arguments and conflicts, and
finally returning conclusions. By comparing assumption-based argumentation with
the results for Dung’s abstract argumentation we are able to highlight the computa-
tional costs for (A1) and (A3). Finally, we consider abstract dialectical frameworks
(ADFs) which are a richer model for (A2). As for Dung’s abstract argument frame-
works, here only abstract entities are considered but instead of just a binary attack
relation ADFs allow for more complex relations between these entities. On the basis
of ADFs we will highlight the impact of the allowed relations between arguments on
the computational complexity of the reasoning tasks.

Notice by the term “computational problem” we mean the task of when presented
with a description of some input, e.g., the vertices and edges in a graph, a collection
of numeric values, producing an output related in a specified way to this input.
For example: reporting the set of vertices forming the end-points of at least two
edges, returning the collection of numerical values sorted in increasing order. One
special type of computational problem is of particular interest: the class of so-called

2558



Computational Problems in Formal Argumentation . . .

decision problems. These concern determining whether the given input structure
has a particular property of interest, e.g. given a graph as before does it contain a
cycle?, given a list of numbers, does the largest exceed 100?

The formal study of computational problems has two principal foci:

A. The construction of (“efficient”) algorithms to solve the problem. That is
methods which when presented with an input instance always report the correct
output.

B. To categorise collections of computational problems that are “similar” in terms
of their “best” algorithms, and thence provide a formal proof that every algo-
rithmic approach must take some number of steps.

Thus (A) is concerned with positive constructive demonstration of an upper
bound on a problem’s computational complexity while (B) is a (more negative) state-
ment prescribing lower bounds on computational complexity.

Why are these focal points of importance? To gain some insight to this consider
the well-known computational problem of sorting: given a collection of N numbers< a1, a2, . . . , an > return this collection in increasing order of its members. Here are
three informally presented “sorting algorithms”:

S1 Generate each possible ordering, π, of < a1, a2, . . . , aN > in turn: return the
first ordering found that is correct.

S2 Form a new ordering by comparing for each i > 1 the (current) ai−1 and ai: if
ai > ai−1 exchange the pair. Repeat with the new ordering produced until the
collection is sorted.

S3 If N = 1 the list is already sorted. Otherwise (recursively) sort the two list< a1, . . . , aN/2 > and < aN/2+1, . . . , aN > and “merge” the two sorted lists to
give the final output.

On the surface, in the sense that all three methods are correct there appears to
be little to choose between these three methods. If, however, we examine their
performance a very different picture emerges.

Method (S1) in the worst case (no matter how the successive ordering are pro-
duced) requires N ! steps: if N = 100 this is roughly 10200

Method (S2) in the worst case needs N2 steps: for N = 100 this is 104.
Method (S3) takes of the order of N log2N steps: with N = 100 this is about

102.5.
Now (S1) is unusable as a realistic algorithm: even with a high-performance

computer implementation capable of executing 1012 operations per second, in the
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worst case (S1) will require 10150 years. On a much slower machine (say 100 opera-
tions per second) even a “naive” implementation of (S2) will have finished in about
2 minutes and (S3) in just over 1 second.

Although a quite extreme case is being considered, this overview of one partic-
ular range of algorithmic methods for a computational problem does highlight two
significant issues:

H1. The efficiency of an algorithm is a crucial factor in determining its practical
usability: if (S1) were the only known sorting method, tasks such as organising
records in a database would not be possible.

H2. Developments in technology – the platforms on which algorithms are realised
– have minimal impact: a reasonable algorithm (S2 or S3) even running on
an antiquated very slow machine (100 ops/sec) will easily outperform a very
inefficient approach (such as S1) even if this is run on a machine with significant
computational power (1012 ops/sec)

The study of algorithms for computational problems in argumentation has made no-
table advances over the last twenty years. There is, however, a significant issue that
besets many of its computational concerns: that within the technical classifications
of problem difficulty presented in the field of computational complexity theory there
is powerful evidence that the prospects for identifying efficient solution methods are
extremely limited: that is to say, in terms of the sorting method example given, the
status of best known worst-case methods for important computational problems in
argumentation is more likely to be characterised by (S1) than (S2) or (S3).

Our intention in this work is to present a survey of computational complexity
results that have been obtained within formal argumentation.

Prior to embarking on this overview, in order to provide some necessarily tech-
nical background, we give an very informal basic introduction to the ideas and
techniques used in this study.

From a practical point, complexity classification is in particular crucial when
one considers implementing argumentation reasoning tasks by a reduction approach.
That is, instead of designing and implementing complex algorithms and systems
from scratch, one might reduce the new reasoning tasks to related formalisms where
sophisticated solvers already exist. For instance, for a broad range of argumenta-
tion semantics one can reduce the task of computing a set of coherent arguments
of an argumentation framework to computing a model of a propositional formula
that can be efficiently constructed from the argumentation framework [Besnard and
Doutre, 2004]. Now one can exploit the sophisticated systems to deal with proposi-
tional formulae to get an efficient system for the encoded argumentation semantics
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with relatively small effort. In the reduction approach the complexity of the actual
problem and the corresponding problem in the target formalism are crucial for the
following reasons: given that an actual problem has higher complexity than the des-
ignated target problem we know that there is no efficient encoding of our problem
and we might consider a different target formalism. On the other hand if the target
problem is of higher complexity we may end up with unnecessarily high computa-
tional costs. In such a case it might be a good idea to encode the problem within a
restriction of the target formalism, providing lower complexity.

The remainder of the paper is organised as follows. In Section 2 we give a brief
introduction to computational complexity. That is we introduce the techniques and
complexity classes we will use in the later parts of the paper. In Section 3 we
consider Dung’s abstract argumentation frameworks and the main computational
problems thereof. In Section 4 we consider computational problems in assumption-
based argumentation. In Section 5 we consider computational problems in abstract
dialectical frameworks. Finally, in Section 6 we summarise and discuss the presented
results as well as related results not covered by this paper.

2 A brief Introduction to Computational Complexity
Theory

In very informal terms, computational complexity theory is the field of computer sci-
ence concerned with grouping computational problems (in the sense we introduced
above) into so-called “complexity classes”. Such classes are captured by different
resource requirements, typically measured by quantities such as Time (number of
steps taken by an algorithm) or Space (amount of “memory” needed). Thus a com-
plexity class C is a set of computational problems, and when we say that “problem
P is in the complexity class C” (or P has complexity C) this indicates that there
exists an algorithm that solves P and meets the resource criteria prescribed by C.
For example, as illustrated by the methods discussed in the introduction, the com-
putational problem of “sorting n numbers” is in the (function) complexity class of
problems solvable in time n logn (evidenced by method S3).

Now already this basic description raises many issues, among which we have:

a. How do we avoid proliferating “complexity classes” because of different tech-
nological capabilities, i.e., having to formulate a “complexity theory for Apple
Mac machines”, another for IBM hardware, and yet another for Windows O/S,
etc. etc.?

b. How do we formalise notions of “input size” and relate such to the computa-
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tional complexity of a problem?

c. How do we, in a precise sense, group distinct computational problems into
collections of similar behaviour?

Before developing these questions further, we observe that it is convenient to focus
on decision problems. That is to say, problems that separate input instances into
two disjoint sets:

• Positive instances x of problem P : those on which P reports the answer true
(equivalently, 1 or yes).

• Negative instances x of problem P : those on which P reports the answer
false (equivalently, 0 or no).

In order to abstract away from the trivialities of platform specifics, algorithms
are considered as realised on some standard “model of computation”. While a huge
number of such models have appeared in the technical literature1 those adopted in
computational complexity, ultimately, derive from Turing machine (tm) programs.
The exact specification of these is unimportant for the purposes of this overview.
The interested reader is referred to any standard textbook for further details (e.g.,
[Papadimitriou, 1994; Arora and Barak, 2009]).

By fixing a standard basis for specifying algorithms (that is, tm programs) we
obtain methods for addressing questions (b) and (c). At the most rarefied abstract
level of tm operation, “input size” is simply the total number of characters (symbols)
appearing in the input data. Usually (although not invariably) this will take the
form of a sequence of binary “digits”. The important feature is that the input
sequence uses only characters from a fixed finite set or alphabet no matter whether
these characters are digits, letters, or any other type of characters. 2

While “length of the input string” offers a common basis for comparison, it can
be somewhat cumbersome for practical analysis. Fortunately (and certainly in the
case of abstract argumentation problems which are our principal interest) there is,
usually, some supporting structure to a problem instance which can serve as a size
parameter. For example, returning to the example of “sorting”, instead of consid-
ering the total number of bits to represent instances (which could be n log2 k when

1In one form or another the abstraction “model of computation” can be traced back almost a
hundred years: its first appearance being with respect to capturing the notion of “computational
problems that can be solved”.

2In complexity matters, if such a set contains at least 2 distinct symbols, it makes little difference
whether the alphabet has 2 or 1000 or more symbols. In contrast, however, unary (single symbol)
encodings may lead to notably different algorithmic behaviour.
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non-negative integers of value < 2k are involved), since most sorting methods work at
the level of numeric comparisons (as opposed to individual bit-level manipulation),
the size of an instance can reasonably be viewed as the number of values (N) to
be sorted. In the consideration of decision problems arising in Dung’s formalism a
typical instance will specify an argumentation framework, that is to say a directed
graph, (A,R) and a subset S of arguments: hence the “obvious” input size parameter
is simply “the number of arguments in A”. Notice that, total input size is bounded
polynomially in n, as the size of each part of input, i.e., of A, R and S, is bounded
polynomially in n.

We can now deal with the second part of (b): relating such notions of “size” to
problem complexity, in particular precise interpretations of “problem P has lower
(time) complexity than problem Q”. Notice that such statements combine two sep-
arate claims:

C1. That there exists an algorithm AP solving P that runs in time TP (n) on
instances of size n.

C2. That every algorithm AQ solving Q takes times at least TQ(n) on instances of
size n and TQ(n) is “larger” than TP (n).3

Let us focus now on problems concerning afs in which the dominant input compo-
nent is a directed graph, (A,R). Considering the character of the algorithm, AP ,
associated with this there is an infinite sequence,

{< AP ,RP >(1),< AP ,RP >(2), . . . ,< AP ,RP >(k), . . .}
for which < AP ,RP >k is an af having exactly k arguments. In addition, the number
of steps (run-time) of AP on the instance < AP ,RP >k is not exceeded by any other
instance (A,R) in which A has exactly k arguments. Such an instance, < AP ,RP >k
is called a “worst-case input for AP ”. In this way the run-time function, TP , is just
the

TP (n)=def The number of steps AP takes when given the input < AP ,RP >(n)
Now, unless we are dealing with a highly artificial and contrived problem, P , one will
typically have TP (n + 1) > TP (n).4 This clarifies the precise meaning of (C1), and

3Typically, one is interested in the asymptotic behaviour with growing input size n, i.e., whether
there is an there exists n0 such that TQ(n) >= TP (n) for every n >= n0.

4We are, of course, ignoring minor issues whereby P requires (A,R) to have a particular struc-
ture rendering frameworks with some numbers of arguments unsuitable, e.g., problems in which A
must have an even number of arguments and are ill-defined when the size of A is an odd number.
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by a similar analysis we can associate run-time functions, TQ with every algorithm
solving Q. The statement “P has smaller complexity than Q” is thus a positive
(upper bound) claim about algorithms for problem P and a negative lower bound
claim about all algorithms for Q: as the number of arguments in A increases we will
see a growing disparity between the worst-case time that P requires to deliver an
answer (using AP ) compared to the worst-case time that any algorithm, AQ takes
to deliver its answer.

Much of the focus of computational complexity theory is in grouping problems
into classes where this disparity is at its most extreme: these extremes and the
techniques for placing problems at either end of the spectrum of difficulty are the
subject of the next subsection.

2.1 Basic Complexity Classes

Here we briefly review the complexity classes used in this work and their relations.
As discussed above the high-level idea of complexity theory is to group problems
with similar resource requirements in complexity classes and also put these classes
into an order so that we can distinguish between “easier” and “harder” problems.

2.1.1 Polynomial-Time

By convention, a problem is viewed as having an efficient algorithmic solution if
it can be placed into the class P (polynomial-time) of all problems that have a
polynomial-time algorithm, i.e., an algorithm that for each instance x (of size ∣x∣)
produces its answer after at most ∣x∣k steps, for a fixed constant k. It is noted that
this a rather coarse-grained classification: problems whose fastest algorithm runs in
time n100 are considered to be “efficiently solvable”. This may seem rather arbitrary,
however, there is a very noticeable performance difference between methods whose
run-time is bounded by nk and those that cannot be so bounded.

An important subclass we will consider is L (logarithmic space), which consists of
the problems that can be solved in logarithmic space (not counting input and output)
and polynomial-time. Just as P is seen as the class of computational problems
with efficient “sequential” algorithms, so L is the class having efficient “parallel”
algorithms (see, e.g., [Greenlaw et al., 1995]).

We consider problems in the classes L, P to be computationally tractable, while
we will consider problems in all the other classes to be intractable or computationally
hard.

2564



Computational Problems in Formal Argumentation . . .

2.1.2 The classes NP, coNP and DP

Often a decision question can be solved by finding a witness for the instance satis-
fying the questioned property. For instance if we ask whether an AF has a stable
extension, a way to answer that positively would be to actually compute a stable
extension as witness.

Taking this view, we may associate with any instance x of a decision problem Q,
a set W (x) of potential witnesses that x has the property of interest. For example,
for admissibility semantics if we are interested in whether a specified argument p
is credulously accepted with respect to admissibility the instances have the form((A,R), p) (with p ∈ A) and potential witnesses are all subsets of A∖{p}. A witness
S in this set is valid for the instance if and only if the set S ∪ {p} is admissible.

The class NP. The complexity class NP (non-deterministic polynomial-time) can
be characterised by such witnesses. A decision problem is in the class NP if (i) for
each instance x there is a set W (x) of potential witnesses, which are of polynomial
size in ∣x∣, such that (ii) one can verify that a y ∈W (x) is actually a witness for x in
polynomial time and (iii) x is a “yes” instance if and only if at least one y ∈W (x)
is a witness for x.

In the above example for an AF F the potential witnesses W (F ) would be all
the subsets of arguments. Verifying whether a set is admissible is in polynomial time
and F is a positive instance iff 5 at least one of these sets is a stable extension.

Formally the specification of a decision problem in terms of witness sets can be
seen in the following way. Let x be an instance of a (decision) problem Q we write,
Q(x) = 1 if x is a “yes” instance of Q, and Q(x) = 2 if x is a “no” instance of Q. We
have a binary relation WQ(x, y) for which < x, y >∈WQ iff y is a valid witness that
x is a positive instance of the (decision) problem Q. This yields,

Q(x) = 1 ⇔ ∃ y ∈W (x) ∶ < x, y >∈WQ

Thus the class NP can be interpreted as those decision problems, Q, for which the
membership problem < x, y >∈WQ can be decided in time polynomial in the size of
x. Notice that this constraint immediately forces y (a valid witness) also to have
size polynomial in ∣x∣.
The class coNP. The quantifier in our formalisation of NP is an existential one.
If we modify this to ∀ y ∈W (x) < x, y >∉WQ

5We will frequently use “iff” as short form for “if and only if”.

2565



Dvořák and Dunne

then we obtain the important class coNP capturing instances that do not have the
property of interest. For example if we wish to demonstrate that an argument, x is
inadmissible then it suffices to show “for every subset S of A the set S ∪ {x} either
is not conflict-free or has an undefended argument”.

We, now, briefly summarise some developments of this view of “decision problems
as witness testing”.

The first of these is the concept of “oracles”: in an oracle computation we are
provided with a “black-box” for witness testing which given a problem instance x
provides the answer for “Q(x) = 1?” in a single computational step. Now such
oracle machines may be considered with respect to arbitrary complexity classes, so
PA describes the class of “decision problems that have a polynomial-time algorithm
that makes use of an oracle for a decision problem in the complexity class A”.

For example, for an NP oracle we might use “existence of a stable extension”. In
exploiting such an oracle to solve another decision problem B “in polynomial-time”
we might use an algorithm which, given an instances p of B, constructs one or more
(but at most polynomial in ∣p∣) frameworks F p1 , F

p
2 , etc., using the answer to “does

F pk have a stable extension?” to determine if p should be accepted as an instance of
B.

The class DP. A number of important classes have been found to occur in com-
plexity analysis of argumentation via such oracles. Among them we have DP, the
so-called “difference class” of decision problems whose members are captured by the
intersection of instances x accepted by a problem L1 (with L1 ∈ NP) and x accepted
by a problem L2 (with L2 ∈ coNP). For example the set of pairs of propositional for-
mulae < ϕ1, ϕ2 > in which ϕ1 is satisfiable and ϕ2 is not so (the sat-unsat problem)
is in DP since its positive instances are the intersection of

L1 = { < ϕ,ψ > ∶ ϕ is satisfiable }
L2 = { < ϕ,ψ > ∶ ψ is unsatisfiable }

2.1.3 The Polynomial-time Hierarchy

The notion of “oracle” can also be used in defining the important “Polynomial-time
Hierarchy” (PH). Consider the quantifier formulation of NP and coNP

∃ y < x, y >∈WQ∀ y < x, y >∉WQ
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NP = ΣP
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coNP = ΠP
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. . .
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Figure 1: Levels of the polynomial-hierarchy. An edge denotes that all problems in
the class on the left side are also contained in the class on the right side. Notice
that only classes relevant for this paper are shown.

This uses a (polynomial) time decidable binary relation and a single quantifier. We
could, however, extend this further, e.g.

∃ y1 ∀ y2 W
2
Q(x, y1, y2)∀ y1 ∃ y2 ¬W 2
Q(x, y1, y2)

or even ∃ y1 ∀ y2 ∃ y3 W
3
Q(x, y1, y2, y3)∀ y1 ∃ y2 ∀ y3 ¬W 3
Q(x, y1, y2, y3)

and, generally
Q1 y1 Q2 y2 . . . Qk yk W

k
Q(x, y1, y2, . . . , yk)

In the last case we have k alternating quantifiers (that is ∃ is followed by ∀ and
vice-versa) and the predicate W k

Q(x, y1, y2, . . . , yk) is decidable in time polynomial
in ∣x∣. When the opening (Q1) quantifier is ∃ this defines the class of languages ΣP

k ;
when this quantifier is ∀ we have ΠP

k . The polynomial-hierarchy (PH) is

PH = ∞⋃
k=0

ΣP
k = ∞⋃

k=0
ΠP
k

We sometimes refer to levels of the polynomial-hierarchy, where the k-th level is
formed by the classes ΣP

k and ΠP
k . For instance on the first level there are the classes

NP and coNP while on the second level there are the classes ΣP
2 and ΠP

2 . Moreover,
we will later introduce a further family of complexity classes ΘP

k , and will consider
the class ΘP

k to be in the k-th level of the polynomial hierarchy (cf. Figure 1).
How does this relate to the concept of “oracle machines”? The answer to this

is given by examining the quantifier structure in more depth. We have required
the inner most (k+1)-ary predicate W k

Q to be (deterministic) polynomial-time com-
putable. If we have an oracle for the decision problem implied by removing the first
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quantifier then this class of languages (when Q1 = ∃) is formed by languages which
belong to NP given access to a ΣP

k−1 oracle, conventionally denoted NPΣP
k−1 , while

ΠP
k (first quantifier is ∀) are those problems computable in coNP with a ΣP

k−1 oracle.
For example, consider the “quantified sat problem” one version of which involves

two disjoint sets of propositional variables, X and Y , and asks of a given formula
ϕ(X,Y ) whether ∃ αX∀ βY ϕ(αX , βY ), that is, “can we find an assignment of values
to the X variables (αX) which renders the formula ϕ(αX , Y ) a tautology?”. Given
an oracle for satisfiability we can test ϕ(αX , Y ) ≡ ⊺ to be a “single step”, by testing
the negated formula for satisfiability. The implied NP question (“can we find ...”) is
handled by a “polynomial” algorithm with access to this oracle so that ΣP

2 = NPNP.
Notice that, in our example we can also directly use an oracle for the coNP problem
of tautology which gives us NPNP = NPcoNP. That is, for an oracle machine it does
not matter whether it has access to a NP or coNP oracle (or more generally to a
ΣP
k−1 or ΠP

k−1 oracle) as it can easily switch “yes” and “no” answers after an oracle
call.

In total we can treat PH as groups of problems described via alternation of a fixed
number (k) of quantifiers or in terms of polynomial-time oracle machines exploiting
oracles to the immediately lower level, i.e. both ΣP

k and ΠP
k use access to a ΣP

k−1
oracle.

Moreover, we consider related oracle complexity classes that have only restricted
access to their oracle. Concretely, the class ΘP

k = PΣP
k−1[log(∣x∣)] contains problems

decidable by a deterministic polynomial-time algorithm that is allowed to make a
logarithmic number (w.r.t. input size) of ΣP

k−1-oracle calls. An alternative charac-
terisation for ΘP

k is that the deterministic algorithm is allowed to make linearly (in
the input size) so called non-adaptive calls to the ΣP

k−1-oracle, that is all oracle calls
are evaluated in parallel. When using this alternative characterisation the class ΘP

k

is sometimes also denoted as PΣP
k−1∥ .

Notice that all complexity classes we consider can be solved by in worst-case
exponential time algorithms that only require polynomial space. However, problems
on different levels of the polynomial hierarchy behave quite differently, and methods
that work reasonable for problems at the NP, coNP level might not work as well for
ΣP

2 or ΠP
2 -hard problems.6

6In the context of formal argumentation such a behaviour can be observed at the results of the
First International Competition on Computational Models of Argumentation [Thimm and Villata,
2015; Thimm et al., 2016].
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2.2 Reductions, Hardness and Completeness
At the conclusion of the preceding sub-section we referred to particular problems as
“among the hardest ΠP

2 problems”. This (at the time of writing) does not mean we
can formally demonstrate that every problem that can be classified as belonging to
ΠP

2 may be solved by a (deterministic) algorithm whose run-time is no worse than
that of the best algorithm for, e.g., semi-stable skeptical reasoning. It does, however,
mean the following: if we can find an NP (or even P) algorithm for skeptical semi-
stable reasoning then we can construct NP (resp. P) algorithms for every problem
in the class ΠP

2 , i.e. it would follow that the classes ΠP
2 and NP (resp. P) contained

exactly the same decision problems. Despite this, throughout this work we will
follow the standard assumptions in computational complexity theory and consider
problems in higher levels of the polynomial hierarchy to be harder than problems in
the lower levels of the polynomial-hierarchy.7

2.2.1 Polynomial Reducibility

The key idea used to support this claim is that of polynomial reducibility. Suppose
we have two decision problems – F and G say. These have sets of instances IF and
and IG. Now, while we may not be able to formally prove that either problem is
intractable we can argue, using the following approach, that if G is decidable in
polynomial time then F is also.

Build an efficient procedure, τ , transforming any instance of F into an instance
of G, i.e., τ ∶ IF → IG and with the property that x ∈ IF is a positive instance of F
iff τ(x) ∈ IG is a positive instance G.

With such a transformation procedure any algorithm for G can be used as a sub-
routine to give an algorithm for F . So were it the case that G ∈ P, as τ is efficient,
it follows that F ∈ P also. By contraposition, it can be shown that if F ∉ P it must
be the case that G ∉ P. When such a transformation can be found between decision
problems F and G as above, we say that “F is polynomially-reducible to G” using
the notation F ≤p G to describe this relationship.

Notice that the form of instances for F and G do not have to be identical: G
could, for example, be a decision problem concerning propositional formulae and F
one whose instances are afs: a transformation between the two would define how a
formula is constructed from a given af.

7This relates to two famous open problems in complexity theory, namely to show that P /= NP
and to show that the polynomial hierarchy is an infinite hierarchy and does not collapse at a certain
level, i.e, ΣP

k /= ΣP
k+1 for all k > 0. Both statement are widely believed but (at the time of writing)

there are no formal proofs.
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2.2.2 Hardness and Completeness

The concept of reducibility offers a means to argue that the class NP differs from
the class P and formalise the notion of “hardest” problem of a complexity class.
Intuitively we consider a problem to be among the “hardest” problems of a com-
plexity class if an efficient method for the problem would yield efficient methods for
all problems in the class. That is, an efficient method for just one of the “hardest”
problems would yield efficient methods for all problems in the class. Formally, for
any complexity class, C, a decision problem G is said to be C-hard if

∀ F ∈ C F ≤p G
If, in addition G ∈ C then G is said to be C-complete.

So the class of NP-complete problems are those problems in NP to which any
other problem in NP can be polynomially reduced. The class of known NP-complete
problems includes many well-studied combinatorial, logic, and graph problems for
which no efficient algorithm has been discovered, in some cases after several centuries
of study. Among these are: deciding if a propositional formula has a model (sat);
deciding if a graph has a path that contains every vertex exactly once (a variant
of the so-called Travelling Salesperson Problem), deciding if a given argument is
acceptable w.r.t. Dung’s stable semantics.

It is considered highly unlikely that every single one of these problems can be
solved efficiently. In order to prove that no NP-complete problem can be solved in
polynomial time it would suffice to show that just one could not be.

Thus, a proof that a problem G is NP-complete is seen as very strong evidence
that F is intractable. Given the transitivity of ≤p all that is required to proof NP-
hardness is a known NP–hard problem (F say) and a transformation, τ , to witness
F ≤p G. In order to obtain NP-completeness one has to additionally give a procedure
that decides G and fits the definition of NP, we sometimes call such a procedure a
NP-algorithm (more generally C-algorithm for complexity class C).

Next let us briefly reconsider our restrictions on reductions. All the complexity
classes C considered in this paper, except L, are closed under polynomial reductions,
that is whenever a problem A can be polynomial-time reduced to a problem B ∈ C
then also A belongs to C. Notice that any problem in the class P and in partic-
ular those in the class L would be complete for P with respect to polynomially-
reducibility. Thus when differentiating between problems in L and P one uses the
concept of logspace-reducibility where the transforming procedure is required to work
in logarithmic space. In particular, P-completeness results are stated w.r.t. logspace-
reducibility.
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2.2.3 Complete Problems for the Polynomial Hierarchy.

To show that a problem A is hard for a specific complexity class C one typically
starts from a problem B that is complete for the class C and provides a reduction
from B to A. In the following we briefly introduce some canonical complete problems
for the complexity classes in the polynomial-hierarchy.

As already mentioned a famous NP-complete problem is deciding if a propo-
sitional formula has a model (sat). On the other side standard coNP-complete
problems are verifying that a propositional formula is a tautology (taut) or that a
propositional formula has no model (unsat). The canonical DP-complete problem
is the earlier mentioned SAT−UNSAT problem.

The complete problems for classes ΣP
k and ΠP

k are given by quantified SAT prob-
lems (cf. Section 2.1.3). That is, one is given a propositional formula ϕ whose
variables are split up in k disjoint sets X1, . . .Xk and the possible assignments for
these sets X1 are quantified with alternating existential and universal quantifiers. A
quantified boolean formula (QBF) is then of the form

Q1X1Q2X2 . . .QkXk ϕ(X1, . . .Xk)
with Qi being alternating ∃,∀ quantifiers (i.e., ∃ is followed by ∀ and vice versa).
Deciding whether a QBF with k quantifiers and Q1 = ∃ is valid is the canonical
ΣP
k -complete problem while deciding whether a QBF with k quantifiers and Q1 = ∀

is valid is the canonical ΠP
k -complete problem.

As the second level of the polynomial-hierarchy is of special interest in the setting
of formal argumentation we next introduce minimal model satisfiability (minsat)
as another problem that is ΣP

2 -complete [Eiter and Gottlob, 1993]. In the minsat
problem one is given a propositional formula ϕ over variables X and a variable x
thereof and has to decide whether the variable is true in some minimal model of ϕ.

2.3 Parametrized Complexity
Classical complexity theory deals with the complexity of problems w.r.t. the size
of the instance. However, often the complexity of a problem does not mainly de-
pend on the size of an instance but on some (structural) properties of the instance.
That is, we can solve huge instances efficiently as long as some property is satis-
fied or the obstacles in the structure are bounded independent of the size. The
field of parametrized complexity theory8 deals with this observation. The idea is to

8We just briefly introduce the concepts relevant for this paper; for comprehensive introductions
to parametrized complexity the reader is referred to [Flum and Grohe, 2006; Niedermeier, 2006;
Cygan et al., 2015].
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consider parametrized problems, i.e., the problem description contains a designated
parameter (typically an integer) which is instantiated by each problem instance. An
example for a parametrized problem is given a graph G and an integer parameter k
deciding whether G has a clique of size k.

Definition 2.1. A parametrized (decision) problem is called fixed-parameter tract
able (or in FPT) if it can be determined in time f(k) ⋅ ∣x∣O(1) for a computable
function f .

Now given that a problem is in FPT and just consider those instances where
the parameter is bounded by some constant then we can decide an instance with a
polynomial-time algorithm. Only the constants in the polynomial-time bound are
affected by the parameter, but not the order of the polynomial.

Beside FPT there is also a weaker form of tractability w.r.t. a parameter allowing
the order of the polynomial to depend on the parameter.

Definition 2.2. A parametrized (decision) problem is slice-wise polynomial (or in
XP) if it can be determined in time f(k) ⋅ ∣x∣g(k) for computable functions f, g.

A problem in XP can be solved in polynomial time if we bound the parameter,
but distinguishing it from FPT the order of the polynomial may highly depend on
the bound of the parameter.

Let us briefly present the relations between the classes FPT, XP and P:

P ⊆ FPT ⊆ XP

When considering unparametrized problems and talking about FPT we have to
mention the used parameter explicitly. Thus we say a problem P is fixed-parameter
tractable w.r.t. the parameter k iff the corresponding parametrized problem (P, k)
is fixed-parameter tractable.

3 Complexity of Dung’s Abstract Argumentation
We start our analysis with Dung’s Abstract Argumentation Frameworks. These
frameworks consist of a set of abstract arguments and a relation representing directed
conflicts or attacks between these arguments. Then rules, so called semantics, are
defined to select coherent sets of arguments that can be accepted simultaneously.
That is, abstract argument frameworks focus on the core issue of argumentation,
i.e., resolving conflicts between arguments.

This part of the paper is organised as follows: In Section 3.1 we recall the basic
definitions of Dung’s Abstract Argumentation Frameworks and the most popular
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semantics for it. That is, beside the semantics introduced by Dung [Dung, 1995],
we consider ideal [Dung et al., 2007], semi-stable [Verheij, 1996; Caminada et al.,
2012], stage [Verheij, 1996] and cf2 [Baroni et al., 2005] semantics. Then in Section
3.2 we discuss the core computational Problems of Abstract Argumentation and
define formal variants that serve as basis for the complexity analysis in Section 3.3.
In Section 3.4 we consider potential computational advantages when the argumen-
tation frameworks fall into some specific graph class. The potential of techniques
from parametrized complexity theory is discussed in Section 3.5. In Section 3.6 we
discuss some computational issues specific to labelling-based argumentation seman-
tics. Finally, in Section 3.7 we summarise and discuss the presented results and give
additional pointers to literature.

3.1 Dung’s Abstract Argumentation Frameworks

In this section we introduce (abstract) argumentation frameworks [Dung, 1995] and
recall the semantics we study (for a comprehensive introduction the reader is referred
to [Baroni et al., 2011a]).

Definition 3.1. An argumentation framework (AF) is a pair F = (A,R) where A is
a (finite) set of arguments and R ⊆ A ×A is the attack relation. The pair (a, b) ∈ R
means that a attacks b. We say that an argument a ∈ A is defended (in F ) by a set
S ⊆ A if, for each b ∈ A such that (b, a) ∈ R, there exists c ∈ S such that (c, b) ∈ R.

Indeed when studying computational complexity we are only interested in AFs
where the set A is finite.

Semantics for argumentation frameworks are defined as functions σ which assign
to each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. We consider for σ the
functions na, gr , st, ad, co, cf2 , id, pr , sst and stg which stand for naive, grounded,
stable, admissible, complete, cf2, ideal, preferred, semi-stable and stage semantics,
respectively. Towards the definition of these semantics we have to introduce a few
more formal concepts.

Definition 3.2. Given an AF F = (A,R), the characteristic function FF ∶ 2A → 2A
of F is defined as FF (S) = {x ∈ A ∣ x is defended by S}.
Definition 3.3. For a set S ⊆ A and an argument a ∈ A, we say S attacks a
(resp. a attacks S) in case there is an argument b ∈ S, such that (b, a) ∈ R (resp.(a, b) ∈ R). Moreover, for a set S ⊆ A, we denote the set of arguments attacked by
(resp. attacking) S as S+R = {x ∣ S attacks x} (resp. S−R = {x ∣ x attacks S}), and
define the range of S as S⊕R = S ∪ S+R.
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We are now prepared to give the formal definitions of the abstract argumentation
semantics we will consider. Notice that we restrict ourselves to extension-based se-
mantics, but some aspects of labelling-based semantics are discussed in Section 3.6).

Definition 3.4. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there
are no a, b ∈ S, such that (a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets
of F . For a conflict-free set S ∈ cf (F ), it holds that

• S ∈ na(F ), if there is no T ∈ cf (F ) with T ⊃ S;
• S ∈ st(F ), if S+R = A ∖ S;
• S ∈ ad(F ), if S ⊆ FF (S);
• S ∈ co(F ), if S = FF (S);
• S ∈ gr(F ), if S ∈ co(F ) and there is no T ∈ co(F ) with T ⊂ S;
• S ∈ pr(F ), if S ∈ ad(F ) and there is no T ∈ ad(F ) with S ⊂ T ;
• S ∈ id(F ) if S is ⊆-maximal among {S′ ∣ S′ ∈ ad(F ) and S′ ⊆ E for each
E ∈ pr(F )}.

• S ∈ sst(F ), if S ∈ ad(F ) and there is no T ∈ ad(F ) with S⊕R ⊂ T⊕R ;
• S ∈ stg(F ), if there is no T ∈ cf (F ), with S⊕R ⊂ T⊕R .
We recall that for each AF F , the grounded semantics yields a unique extension,

the grounded extension, which is the least fixed-point of the characteristic function
FF .

Finally, we give the recursive definition of cf2 semantics (see [Baroni et al., 2005;
Gaggl and Woltran, 2013] for further reference).

Definition 3.5. Given an argumentation framework F = (A,R), then E ∈ cf2 (F ),
if

• E ∈ na(F ) if ∣SCCsF ∣ = 1, and

• ∀S ∈ SCCsF (E ∩ S) ∈ cf2 (F ↓UPF (S,E)) otherwise.

Here SCCsF denotes the set of strongly connected components of F , and for any
E,S ⊆ A, UPF (S,E) = {a ∈ S ∣ ∄b ∈ E ∖ S ∶ (b, a) ∈ R}. Moreover, for S ⊆ A we
use F ↓S to denote the AF (A ∩ S,R ∩ S × S), i.e., the AF that one obtains when
restricting F to the arguments in S.
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We recall some basic properties of these semantics. For each AF F we have the
following subset relations:

st(F ) ⊆ stg(F ) ⊆ na(F ) ⊆ cf (F ),
st(F ) ⊆ sst(F ) ⊆ pr(F ) ⊆ co(F ) ⊆ ad(F ) ⊆ cf (F ),

and st(F ) ⊆ cf2 (F ) ⊆ na(F ). Furthermore, for any of the considered semantics σ
except stable semantics we have that σ(F ) ≠ ∅ holds, i.e., these semantics always
propose at least one extension. Grounded and ideal semantics always yield exactly
one extension, thus we also say that they are unique status semantics, and the
ideal extension is always a complete extension. With slight abuse of notation we
sometimes use gr(F ), resp. id(F ), to refer to the unique grounded, resp. ideal,
extension of F . Moreover, stable, semi-stable, and stage semantics coincide for AFs
with at least one stable extension.

3.2 Computational Problems
In general an argumentation semantics assigns several extensions to a single frame-
work, but at the end of the day we want to make a conclusion about arguments.
There are different ways to aggregate the acceptance status of an argument from
the set of extensions, which mirrors different levels of scepticism. First it is quite
clear that an argument which is in no extension at all should not be accepted, but
in certain situations it might be fine to accept an argument that appears in just
one extension, this is what we will call credulous reasoning. On the other hand in
situations where one has to be cautious one might demand that an argument is in
all extensions, we refer to this as skeptical reasoning.

These reasoning modes give rise to the following computational problems for
argumentation semantics σ.

• Credulous Acceptance Credσ: Given AF F = (A,R) and an argument a ∈ A. Is
a contained in some S ∈ σ(F )?

• Skeptical Acceptance Skeptσ: Given AF F = (A,R) and an argument a ∈ A. Is
a contained in each S ∈ σ(F )?

If an AF has no stable extensions, according to our definition of skeptical acceptance,
all arguments are skeptically accepted. This may be unwanted and hence one might
consider a variation of the skeptical acceptance problem asking whether an argument
is contained in all extensions and there exists at least one extension [Dunne and
Wooldridge, 2009].
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In practice, one often is interested in computing all extensions or a certain num-
ber of extensions. However, complexity theory provides much better tools for de-
cision problems than for function problems and thus one usually sticks to decision
problems when analysing the computational problems, in our case credulous and
skeptical acceptance. Nevertheless, the complexities of credulous and skeptical ac-
ceptance together give a good impression of the complexity to actually compute the
extensions.

Beside these reasoning problems there are also several other computational prob-
lems in the field of abstract argumentation. In this work we consider the most promi-
nent ones of them. First of all one might be interested in verifying given extensions,
which may come from another agent or potentially corrupted file, or simply as part
of a reasoning algorithm.

• Verification of an extension Verσ: Given AF F = (A,R) and a set of arguments
S ⊆ A. Is S ∈ σ(F )?

Another task is deciding whether an AF provides any coherent conclusion. That
can be deciding whether it has at least one extension, in the case of stable seman-
tics, or whether it has an extension different from the empty set, for all the other
semantics under our consideration.

• Existence of an extension Existsσ: Given AF F = (A,R). Is σ(F ) ≠ ∅?
• Existence of a non-empty extension Exists¬∅σ : Given AF F = (A,R). Does

there exist a set S ≠ ∅ such that S ∈ σ(F )?
Finally, we will also consider the problem of deciding whether a semantics yields

a unique extension for a given an AF.

• Uniqueness of the solution Uniqueσ: Given AF F = (A,R). Is there a unique
set S ∈ σ(F ), i.e., is σ(F ) = {S}?

3.3 Computational Complexity
A typical complexity analysis of a problem consists of two parts. First, we have to
give an upper bound for the complexity of the problem. That is, we have to either
give an algorithm showing the problem can be solved within a class C or we reduce
the problem to another problem already shown to be in the class C. Second, we
want to prove lower bounds for the complexity of the problem. That is, we consider
a problem that was shown to be hard for some complexity class C′ and reduce it
to the current problem. That is, we show the problem to be C′-hard. In case that
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σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ Uniqueσ
cf in L trivial in L trivial in L in L
na in L in L in L trivial in L in L
gr P-c P-c P-c trivial in L trivial
st NP-c coNP-c in L NP-c NP-c DP-c
ad NP-c trivial in L trivial NP-c coNP-c
co NP-c P-c in L trivial NP-c coNP-c
cf2 NP-c coNP-c in P trivial in L in P
id ΘP

2 -c ΘP
2 -c ΘP

2 -c trivial ΘP
2 -c trivial

pr NP-c ΠP
2 -c coNP-c trivial NP-c coNP-c

sst ΣP
2 -c ΠP

2 -c coNP-c trivial NP-c in ΘP
2

stg ΣP
2 -c ΠP

2 -c coNP-c trivial in L in ΘP
2

Table 1: Complexity of Dung’s abstract argumentation (C-c denotes completeness
for class C).

the classes C and C′ coincide we obtain that the studied problem is C-complete, and
have an exact classification of the complexity of the problem.

The complexity landscape of abstract argumentation semantics is given in Ta-
ble 1 and discussed below. For Dung’s semantics the “in P” and “trivial“ are imme-
diately by properties of the corresponding semantics [Dung, 1995]; results for naive
semantics are due to Coste-Marquis et al. [2005]; results for stable, admissible and
preferred semantics follow from results on logic programs by Dimopoulos and Torres
[1996], except for the ΠP

2 -completeness of Skeptpr which is due to Dunne [2009]; the
complexity of ideal semantics is due to Dunne [2009]; results for complete semantics
are due to Coste-Marquis et al. [2005]; results for semi-stable and stage semantics
are due to Caminada et al. [2012] and Dvořák and Woltran [2010]; the results for cf2
semantics are due to Gaggl and Woltran [2013] and the analysis of polynomial-time
problems that distinguishes problems that can be solved in L from problems that
are P-complete is due to Dvořák and Woltran [2011] [Dvořák, 2012a].

In accordance with the above we will first consider upper bounds for the intro-
duced reasoning problems and then discuss hardness results for them.
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3.3.1 Upper Bounds for the Computational Complexity

Most of the problems we introduced in the previous section will fall into one of the
complexity classes based on non-deterministic algorithms, e.g. NP and coNP, and
thus most of the upper bound are by guess and check algorithms that first non-
deterministically guess a potential extension and then verify that it is indeed an
extension and satisfies the desired properties.

Standard Reasoning Procedures. The standard algorithm for credulous accep-
tance first non-deterministically guesses a set of arguments, and then verifies that
the set is an extension for the considered semantics and contains the argument under
question. The answer to the credulous acceptance query is yes if at least one of the
possible guesses evaluates to true. Now let V be the complexity for verifying an ex-
tension then the above gives use a NPV algorithm for credulous acceptance. We next
consider skeptical acceptance and show that it has a coNPV algorithm. To show that
a problem falls into a coNPC class one could follow the definition of coNP and give an
algorithm that first guesses a potential witness and then tests whether the potential
witness satisfies certain conditions that can be tested in PV. This conditions have to
be such that an instance is positive iff all possible guesses evaluate to true. However,
often it is more convenient to consider the complementary problem and provide a
NPC algorithm for that problem. That is, instead of skeptical acceptance we consider
the problem of showing that an argument is not skeptically accepted. The standard
algorithm non-deterministically guesses a set of arguments, and then verifies that it
is an extension and does not contain the argument under question. The answer to
the skeptical acceptance query is yes only if each possible guess evaluates to false.
Let V be again the complexity for verifying an extension then the above gives use
a coNPV algorithm for skeptical acceptance. Towards upper bounds for Cred and
Skept we next consider upper bounds for the verification problems.

Verifying Extensions. For conflict-free, naive, stable, admissible and complete
semantics we only have to check whether for the given set certain attacks exist,
respectively do not exist. For instance to verify a stable extension we have to
verify that (a) between arguments in the extension there is no attack and (b) that
all arguments not in the extension are attacked by at least one argument in the
extension. This can clearly be done in polynomial time and as it only needs two
pointers to arguments also in logarithmic space.9 Since polynomial time oracles
do not add any computational power they can be neglected, i.e., NPP = NP and

9For the corresponding result for cf2 semantics see [Nieves et al., 2009; Gaggl and Woltran,
2013].
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coNPP = coNP. This gives NP, resp. coNP, upper bounds for credulous and skeptical
acceptance under these semantics.

Next consider semantics that require maximisation, that are pr , sst, stg (we will
see later that for ideal semantics no maximisation is required). Again the basic
criterion of being admissible or conflict-free can be easily checked in polynomial
time but the maximality criterion adds some complexity. To show that checking
whether a set S is an extension is coNP we again give a non-deterministic algorithm
for the complimentary problem, of falsifying the set S to be an extension. This is
done by first testing whether S is not admissible (for pr , sst) or not conflict-free (for
stg) and then guessing a set T ⊃ S and testing whether it is admissible (for pr , sst)
or not conflict-free (for stg). The algorithm successfully falsifies the set S to be an
extension iff the first test succeeds or the second test succeeds for at least on guess.
In other words, the set S is an extension only if the first and the second tests fails
for all possible guessed sets T . Combined with the NPV, coNPV resp., algorithm
for credulous, skeptical resp., acceptance the above coNP-algorithms for verification
give ΣP

2 , resp. ΠP
2 algorithms, for the credulous, resp. skeptical, acceptance problems.

Improved Procedures. For many semantics the above upper bounds are already
optimal, but there are some cases where we can improve over them.

First, consider conflict-free and naive sets. If an argument is not self-attacking
then it certainly will appear in a conflict-free set and thus also in a naive extension.
Thus credulous acceptance can be decided by just testing whether the argument
under question is self-attacking. Considering skeptical acceptance we have that the
empty set is always conflict-free and admissible. Thus for conflict-free and admissible
semantics we can reply “no” to each skeptical acceptance query without looking at
the actual framework.

For naive sets we know that an argument is in a naive set iff it has no self-attack
and none of its neighbours is in the set. Thus for skeptical acceptance we just have
to test whether the argument is not self-attacking and all of its neighbours are not
credulously accepted, i.e., they are self-attacking.

The grounded semantics can be computed by iterating the characteristic function
until the least fixed-point is reached [Dung, 1995]. The characteristic function can
be computed in polynomial time and, as the least fixed-point is reached after at
most linearly many iterations. That is, the grounded extension can be computed in
polynomial time and the decision problems can then be easily answered. Moreover,
as the grounded extension is the unique minimal complete extension skeptical accep-
tance for complete semantics is exactly the problem of testing whether an argument
is contained in the grounded extension and thus in polynomial time.
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As each admissible set can be extended to a preferred extension and each pre-
ferred extension is admissible we have Credad = Credpr . That is, for credulous accep-
tance under preferred semantics it suffices to consider admissible sets and thus an
NP algorithm suffices.

Finally, for ideal semantics there is an alternative characterisation that allows for
a ΘP

2 algorithm [Dunne, 2009]. That is, the ideal extension is the maximal admissible
set that is not attacked by any other admissible set. The algorithm first computes the
credulously accepted arguments (w.r.t. preferred semantics) via an NP-oracle and
then considers the set of arguments that are credulously accepted but not attacked
by any credulous accepted argument. Within this set one then computes the ideal
extension by a polynomial-time algorithm that iteratively removes arguments which
are not defended.

3.3.2 Hardness results

Given the complexity upper bounds from above we are now going for hardness results
that show that these upper bounds are optimal. We start with what we call the
standard translation from propositional formulae to argumentation frameworks and
then discuss some prototypical hardness results that extend the standard translation.

Standard Translation. On the one hand the standard translation will give us
our first hardness results and on the other hand it is part of almost all reductions in
abstract argumentation. To show hardness one typically starts from the standard
translation and adds modifications to match the actual problem and semantics.

Reduction 3.6. Given a propositional formula ϕ in CNF given by a set of clauses
C over the atoms Y , we define the standard translation from ϕ as Fϕ = (A,R),
where

A ={ϕ} ∪C ∪ Y ∪ Ȳ
R ={(c,ϕ) ∣ c ∈ C}∪{(x, c) ∣ x ∈ c, c ∈ C} ∪ {(x̄, c) ∣ x̄ ∈ c, c ∈ C}∪{(x, x̄), (x̄, x) ∣ x ∈ Y }

The AF Fϕ from Reduction 3.6 is illustrated in Figure 2. The intuition behind
the construction is as follows. Assume we are arguing whether the formula ϕ is true.
For an atom yi we have two arguments, yi claiming the atom is true, ȳi claiming
the atom is false and thus ¬yi is true. As exactly one of yi and ȳi is true they are
mutually attacking. Now consider the argument ϕ, which can be interpreted as ”the
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

Figure 2: Illustration of the standard translation Fϕ, for the propositional formula
ϕ with clauses {{y1, y2, y3},{ȳ2, ȳ3, ȳ4)},{ȳ1, ȳ2, y4}}.
formula ϕ is true“. This argument is attacked by the arguments ci which can be
read as ”clause ci is not satisfied“. Clearly if one clause is false the whole formula is
not satisfied. Finally, if one of the literals in a clause is true the whole clause is true
and thus an argument ci is attacked by all arguments corresponding to literals in ci.

Credulous Acceptance. For the NP-hardness of credulous acceptance consider
the AF Fϕ constructed by the above reduction. It is not to hard to show that
each model IY 10 of ϕ corresponds to a stable extension of Fϕ that consists of the
argument ϕ, the arguments yi for yi ∈ IY , and the arguments ȳi for yi ∈ Y ∖ IY .
Moreover also the converse holds, i.e., each stable extension of Fϕ containing the
argument ϕ corresponds to a model of ϕ. Thus, Fϕ has a stable extension containing
ϕ iff ϕ has a model. The same holds for admissible sets, complete, preferred and
cf2 extensions. Thus Reduction 3.6 is a reduction from SAT to credulous reasoning
under these semantics and as it can be clearly performed in polynomial time we
obtain that credulous reasoning under these semantics is NP-hard.

Skeptical Acceptance. To show coNP-hardness of skeptical acceptance for sta-
ble, preferred and cf2 semantics we extend the standard translation Fϕ by an addi-
tional argument ϕ̄ that is attacked by ϕ. In the resulting AF Gϕ the argument ϕ̄ is
skeptically accepted w.r.t. the mentioned semantics iff ϕ is not credulously accepted
iff ϕ is unsatisfiable [Dimopoulos and Torres, 1996; Gaggl and Woltran, 2013]. Thus
we have a reduction from UNSAT to skeptical acceptance showing coNP-hardness.
Notice that this reduction does not work for admissible and complete semantics as
for both the empty set is an extension neither containing ϕ nor ϕ̄.

10A model IY is a subset of the variables Y such that if we set all variables in IY to true and all
arguments in Y ∖ IY to false the formula ϕ evaluates to true.
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ϕ

c1 c2 c3

ϕ̄

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

Figure 3: Illustration of the reduction Gϕ, for the propositional formula ϕ with
clauses {{y1, y2, y3},{ȳ2, ȳ3, ȳ4)},{ȳ1, ȳ2, y4}}.
Skeptical Acceptance with Preferred Semantics. Skeptical acceptance with
preferred semantics is a prototypical problem for the second level of the polynomial-
hierarchy. The hardness proof is reported in [Dunne and Bench-Capon, 2002] and
we next discuss a slight variation of the reduction presented there. That is, we give
a reduction from the ΠP

2 -complete problem QSAT 2∀ of deciding whether a QBF2∀
formula is valid to skeptical acceptance with preferred semantics. That is, given a
QBF2∀ formula ∀Y ∃Z ϕ(Y,Z) with ϕ being a CNF formula we construct an AF as
follows. We first apply the standard reduction from propositional CNF formulae to
AFs and then add an additional argument ϕ̄ which is attacked by ϕ, attacks itself
and attacks all arguments z, z̄ for z ∈ Z (but not the arguments y, ȳ for y ∈ Y ). The
full reduction is given below and illustrated in Figure 4.

Reduction 3.7. Given a QBF2∀ formula Φ = ∀Y ∃Z ϕ(Y,Z) with ϕ being a CNF
formula given by a set of clauses C over atoms X = Y ∪ Z, we define the following
translation from Φ to HΦ = (A,R), where

A = {ϕ, ϕ̄} ∪C ∪X ∪ X̄
R = {(c,ϕ) ∣ c ∈ C} ∪ {(x, x̄), (x̄, x) ∣ x ∈X}∪{(x, c) ∣ x ∈ c, c ∈ C} ∪ {(x̄, c) ∣ x̄ ∈ c, c ∈ C}∪{(ϕ, ϕ̄), (ϕ̄, ϕ̄)} ∪ {(ϕ̄, z), (ϕ̄, z̄) ∣ z ∈ Z}

In the Reduction 3.7 we have that each interpretation IY ⊆ Y corresponds to
an admissible set {y ∣ y ∈ IY } ∪ {ȳ ∣ y ∈ Y ∖ IY } in HΦ while arguments z and z̄
are attacked by ϕ and thus can only be in an admissible set if also ϕ is in that
set. To make ϕ admissible we have to find IY ⊆ Y and IZ ⊆ Y that together satisfy
ϕ. Moreover, as each c ∈ C is in conflict with ϕ and attacked by either z and z̄
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ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z3 z̄3 z4 z̄4

ϕ̄

Figure 4: Illustration of the reduction for ΠP
2 -hardness of Skeptpr . The AF HΦ, for

Φ = ∀y1y2∃z3z4 ((y1 ∨ y2 ∨ z3) ∧ (y2 ∨ ¬z3 ∨ ¬z4) ∧ (y2 ∨ z3 ∨ z4)).
for some z ∈ Z none of them can be in an admissible set. We then have that a set{y ∣ y ∈ IY }∪{ȳ ∣ y ∈ Y ∖IY } is a preferred extension, i.e., a subset maximal admissible
set, iff there is no IZ such IY ∪ IZ satisfies ϕ. That is, there is a preferred extension
in HΦ not containing the argument ϕ iff the QBF2∀ formula ∀Y ∃Z ϕ(Y,Z) is false.
Thus, we have a polynomial reduction from the ΠP

2 -complete problem of QSAT 2∀ to
skeptical acceptance with preferred semantics which proves the ΠP

2 -hardness of the
latter.

Acceptance with Grounded Semantics. Here we consider the problem of de-
ciding whether an argument is in the grounded extension and show that it is P-hard.
To this end we first have to introduce the P-complete problem HORNSAT. A def-
inite Horn-clause c is a disjunction over literals from a countable domain U such
that c contains exactly one positive literal. A definite Horn-formula is the con-
junction over definite Horn-clauses. For example consider the definite Horn-formula
ϕ = x∧(¬x∨¬y∨z)∧(¬y∨¬z∨x). A more convincing way to denote definite Horn-
formulae is as set of clauses and moreover denoting clauses as (logically equivalent)
rules. Thus, our example formula ϕ can be denoted as ϕ = {→ x,x∧y → z, y∧z → x}.
It is well-known that a definite Horn-formula has a unique minimal model which
can be computed in polynomial time. Moreover, the problem HORNSAT of de-
ciding whether an atom is in the minimal model of a definite Horn formula is P-
complete [Kasif, 1986].

Next, in order to show P-hardness of Credgr , we give a logspace-reduction from
the P-complete problem HORNSAT, to Credgr (see Figure 5). Starting from a definite
Horn formula one constructs an AF with one argument for each Horn clause; one
argument x̄ for each variable x; and an additional argument z for the variable that
we are asking for being in the minimal model. All the arguments x̄ are self attacking.
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→ x x ∧ y → z y ∧ z → x

x̄ ȳ z̄

z

Figure 5: Illustration of the reduction for P-hardness of Credgr , that is Fϕ,z for
ϕ = {→ x,x ∧ y → z, y ∧ z → x}.
Each argument corresponding to a rule is attacked by all arguments x̄ for which the
variable x is in the body of the rule and the argument attacks the argument h̄ where
h is the head of the rule. Finally, the argument z is only attacked by z̄ but attacks
all x̄ arguments. The reduction is formally stated below.

Reduction 3.8. Let ϕ = {rl ∶ bl,1∧⋯∧ bl,il → hl ∣ 1 ≤ l ≤ n} be a definite Horn theory
over atoms X. We construct the AF Fϕ,z = (A,R) as follows:

A =ϕ ∪ X̄ ∪ {z}
R ={(x̄, x̄), (z, x̄) ∣ x ∈X} ∪ {(z̄, z)} ∪{(rl, hl), (bl,j , rl) ∣ rl ∈ ϕ,1 ≤ j ≤ il)}

The intuition behind the above reduction is that an argument corresponding to
a rule is in the grounded extension only if all atoms in the rule body are in the
minimal model of ϕ and an argument x̄ is attacked by the grounded extension only
if x is in the minimal model. That is, when computing the grounded extension via
iteratively applying the characteristic function we simulate the following algorithm
for deciding whether z is in the minimal model of ϕ. The algorithm starts with the
rules with empty body and adds their rule heads to the minimal model. Then it
iteratively considers all rules with the body already being part of the minimal model
and adds their heads to the minimal model until either z is added or a fixed-point is
reached. Notice that as soon as z is added to the grounded extension all arguments
corresponding to rules are defended and thus also added to the grounded extension.
We then have that z is in the minimal model of the Horn-formula ϕ iff z is in the
grounded extension of Fϕ,z iff {rl ∣ 1 ≤ l ≤ n} ∪ {z} is the grounded extension of
Fϕ,z. This shows the P-hardness of credulous acceptance as well as of verifying the
grounded extension.
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3.3.3 Existence and Uniqueness of Extensions

Next, let us consider the results for the existence of (non-trivial) extensions and the
uniqueness of solutions in Table 1.

Existence problems. First notice that the Existsσ problem is only relevant for
stable semantics as all the other semantics always lead at least one extensions. More-
over, for AFs with at least one argument the problems Existsst and Exists¬∅st coincide.
The standard (non-deterministic) algorithm for Exists¬∅σ first guesses a non-empty
set and then verifies that it is an extension. Now let be V be the complexity for
verifying an extension then the above gives use a NPV algorithm for Exists¬∅σ . How-
ever, the algorithm is only adequate for st, ad, co, and id semantics, for the other
semantics the problem can be solved more efficiently: for cf and na semantics it
suffices to find one argument that is no self-attacking; for gr semantics one tests
whether there is an argument that is not attacked by other arguments; for cf2 and
stg semantics the problem reduces to test whether there is a non-empty conflict-free
set; and finally for pr and sst semantics the problem reduces to check whether there
is a non-empty admissible set.

Uniqueness. When testing for the uniqueness of extensions again stable semantics
has a special behaviour. While for all the other semantics we are guaranteed that
there is at least one extension for stable semantics we have to perform an additional
check that there exists an extension. To check that there are not two (or more)
extensions we use the following NPV procedure that shows that an AF has at least
two extensions. It first non-deterministically guesses two sets and then verifies that
they are different from each other and both are extensions (for the latter the V
oracle is used). That is we have an coNPV for testing that an AF has at most one
extension, which for all semantics, except stable, is equivalent to Uniqueσ.

Let us now briefly discuss the results for the specific semantics listed in Table 1
(cf. [Dvořák, 2017]). First, cf semantics yield a unique extension iff all arguments in
the AF are self-attacking, and naive semantics yield a unique extensions if there is
no conflict between non-self-attacking arguments. Both criteria can be easily tested
in L. Second, gr and id always yield a unique extension and thus an algorithm can
answer “yes” without any computation. For st, ad, and co we can use the coNPV

algorithm. However, for stable we have to use an additional NP-algorithm to test
whether there exists an extension, resulting in a DP algorithm for Uniquest . The
situation of cf2 is different. As shown in [Kröll et al., 2017] one can enumerate cf2
extensions with polynomial delay and thus can also test uniqueness in polynomial
time (by computing the first two cf2 extensions). For pr semantics the coNPV algo-
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rithm can be improved by the observations that an AF has two (or more) preferred
extensions iff it has two admissible sets that are in conflict with each other. Thus
it suffices to guess two sets, and verify that both sets are admissible and there is
a conflict between the two sets. For sst, and stg the exact complexity is still open
but one can also do better than the standard algorithm. That is, the standard al-
gorithm would give a ΠP

2 -algorithm but one can actually decide uniqueness with a
ΘP

2 -algorithm [Dvořák, 2017].

3.4 Computational Advantages of Specific Graph-Classes

As most of the reasoning tasks are hard for most of the semantics, one is interested
in criteria that make concrete instances tractable. Here we consider special graph
classes such that abstract argumentation frameworks within this graph class can be
evaluated efficiently. However, these tractability results often only hold for specific
semantics and not for the others. This section is based on [Dunne, 2007] and follow
up work. In the following we omit semantics where the reasoning tasks are already
in L in the general case.

3.4.1 Acyclic AFs

For acyclic AFs we have that each argument is either contained in the grounded
extension or attacked by an argument in the grounded extension. Thus the grounded
extension is the only stable extension and all the semantics under our consideration
coincide. Thus, for all semantics reasoning reduces to computing the grounded
extension, but which itself remains P-hard even for acyclic bipartite AFs [Dvořák,
2012a]. The results are summarised in Table 2. Notice that Skeptad is trivially false
even in the general case.

σ gr st ad co pr sst stg cf2 id
Credσ P-c P-c P-c P-c P-c P-c P-c P-c P-c
Skeptσ P-c P-c trivial P-c P-c P-c P-c P-c P-c

Table 2: Complexity for acyclic AFs.

For admissibility based semantics there is a conceptual difference how they deal
with even (length) and odd (length) cycles. In an even-cycle there are three admis-
sible sets, the empty set, the set of odd numbered arguments and the set of even
numbered arguments, while for an odd-cycle the only admissible set is the empty
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set. Due to different treatments even and odd-cycles have a quite different impact
on the computational complexity.

Even-cycle free AFs. Let us first consider the impact of even-cycles for admis-
sibility based semantics. By an observation in [Dunne and Bench-Capon, 2001]
each AF with at least two preferred extensions has an even-cycle. This even holds
for complete extensions, i.e., each AF with two complete extensions has an even-
cycle [Dvořák, 2012a]. The number of even-cycles in an AF bounds the number of
complete and thus also preferred extensions. Thus if an AF has no even-cycles the
grounded extension is as well the unique preferred extension and therefore the only
candidate for being a stable extension. Again the reasoning tasks for the admissi-
bility based semantics reduce to computing the grounded extension.

σ gr st ad co pr sst stg cf2 id
Credσ P-c P-c P-c P-c P-c P-c ΣP

2 -c NP-c P-c
Skeptσ P-c P-c trivial P-c P-c P-c ΠP

2 -c coNP-c P-c

Table 3: Complexity results for even-cycle free AFs.

The picture is different for stage and cf2 semantics which are not based on
admissibility and handle odd and even-cycles in a similar way. Both maintain their
full complexity for even-cycle free AFs [Dvořák and Gaggl, 2016]. The results for
even-cycle free AFs are summarised in Table 3.

Odd-cycle free AFs. Odd-cycles are of interest as they distinguish stable from
preferred semantics. By a result from [Dung, 1995] in the absence of odd-cycles
stable and preferred semantics coincide, i.e., the AF is coherent. As this implies that
there is at least one stable extension also semi-stable and stage semantics coincide
with stable and preferred semantics in odd-cycle free AFs. But then the complexity
of preferred, semi-stable and stage drops down to the complexity of stable, which
however stays the same as in the general case. Also admissible, complete and cf2
are not profiting from the absence of odd-cycles, which is proven by the fact that
both the standard translation and the modification for skeptical acceptance do not
make use of odd-cycles [Dimopoulos and Torres, 1996; Gaggl and Woltran, 2013].
An overview is given in Table 4.11

11The result for ideal has not been stated before, but is immediate by a generic result in [Dunne
et al., 2013] stating that Credid belongs to coNPV where V is the complexity of Verpr and the fact
that the reduction for coNP hardness in [Dunne, 2008] constructs an odd-cycle free AF.
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σ gr st ad co pr sst stg cf2 id
Credσ P-c NP-c NP-c NP-c NP-c NP-c NP-c NP-c coNP-c
Skeptσ P-c NP-c trivial coNP-c coNP-c coNP-c coNP-c coNP-c coNP-c

Table 4: Complexity results for odd-cycle free AFs.

3.4.2 Bipartite AFs

Bipartite AFs, AFs where the arguments can be partitioned on two conflict-free
sets, are a special case of odd-cycle free AFs and thus again stable, preferred, semi-
stable, and stage semantics coincide. There is a polynomial time algorithm for
computing the credulously accepted arguments [Dunne, 2007], which is based on
the following observation. Let the arguments be partitioned in two conflict-free
sets A, B. Arguments in A are only attacked by arguments in B and can only be
defended by arguments in A. Now the algorithms starts with the set A and tests
if it is admissible. If yes then all arguments in the set A are credulously accepted,
otherwise all arguments in A which are not defended can not be in any admissible
set, i.e., they are not credulously accepted. In the latter case the algorithm removes
the undefended arguments and tests the new set for being admissible. It proceeds
until it reaches an admissible set (which might be empty). At the end we have that
all arguments which are in the computed admissible set are credulously accepted
and the remaining arguments in A are not. We then apply the same algorithm to
the set B to compute the remaining credulously accepted arguments.

To decide skeptical acceptance we can use that for stable semantics an argument
is skeptically accepted iff none of its attackers is credulously accepted.12 Hence given
that we can compute all credulously accepted arguments in polynomial time we can
also decide skeptical acceptance in P.

In [Dvořák and Gaggl, 2016] it was shown that the above algorithm also works
for cf2 semantics. The result for ideal semantics follows from the result for preferred
semantics and the polynomial-time algorithm in [Dunne et al., 2013] that computes
the ideal extension given the skeptically accepted arguments w.r.t. preferred seman-
tics.

The results are summarised in Table 5. Notice that while in bipartite AFs we
can efficiently compute credulous and skeptical acceptance, in contrast to previous
tractable fragments, we cannot compute all extensions nor have a good handle on
them. This is mirrored by the fact that deciding whether two arguments appear
together in one extension is NP-hard [Dunne, 2007]. One can also imagine to consider

12Each stable extension has to either contain the argument or one of its attackers.
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generalisations of bipartite graphs, so called k-partite graphs, where the arguments
can be divided into k conflict-free sets. However, for k ≥ 3 there are no computational
advances from k-partite graphs [Dunne, 2007].

σ gr st ad co pr sst stg cf2 id
Credσ P-c P-c P-c P-c P-c P-c P-c P-c P-c
Skeptσ P-c P-c trivial P-c P-c P-c P-c P-c P-c

Table 5: Complexity results for bipartite AFs.

3.4.3 Symmetric AFs

Here we consider AFs where each attack is symmetric. As each attacker is im-
mediately defended by the symmetric attack the notion of admissibility reduces to
conflict-freeness. Considering grounded semantics, in each non-trivial connected
component of arguments all arguments are attacked by at least one other argu-
ment and thus none of them can be in the grounded extension. Thus computing
the grounded extension reduces to find all isolated arguments which can be done
in L. Hence all reasoning tasks for grounded, admissible, complete, and preferred
semantics are in L. Moreover, also cf2 coincides with naive semantics [Dvořák and
Gaggl, 2016]. Finally for symmetric AFs the set of skeptically accepted arguments
is always admissible and thus the skeptically accepted arguments coincide with the
ideal extension.

σ gr st ad co pr sst stg cf2 id
Credσ L L/NP-c L L L L/ΣP

2 -c L/ΣP
2 -c L L

Skeptσ L L/coNP-c trivial L L L/ΠP
2 -c L/ΠP

2 -c L L

Table 6: Complexity results for symmetric AFs.

For symmetric AFs one often also requires [Coste-Marquis et al., 2005] that the
AF is irreflexive, i.e., it has no self attacks. In that case each naive extension is
also a stable extension and thus also semi-stable, and stage coincides with naive.
That is, the corresponding reasoning tasks become tractable. However, if we allow
self-attacks in the framework then these three semantics maintain their full com-
plexity [Dvořák, 2012a].
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graph class ad co pr sst st stg cf2 id
acyclic FPT FPT FPT FPT FPT hard hard FPT
noeven XP XP XP XP XP hard hard XP
bipartite hard hard hard hard hard hard hard hard
symmetric hard hard hard hard hard hard hard hard

Table 7: Complexity of acceptance problems, parametrized by the distance from
graph classes that allows for efficient algorithms.

3.5 Fixed-Parameter Tractable Fragments
In the previous section we considered properties of the graph structure that make
argumentation problems tractable. In this section we study parameters that are
quantitative measures for some kind of structure in the graph, with the goal to
find parameters such that the complexity of the problem rather scales with the
parameter than with input size. That is, we are looking for parameters that allow
for fixed-parameter tractable algorithms.

Backdoors for abstract argumentation. One approach to fixed-parameter
tractable algorithms is the so called backdoor approach [Dvořák et al., 2012a].
The idea is to start from a tractable fragment, define some kind of distance to
the tractable fragment, and then use the distance as a parameter for the reason-
ing problem. The hope behind this approach is that the running time will scale
with the distance to the tractable fragment instead of jumping instantly to the full
problem complexity when leaving the fragment. In argumentation one can use the
graph classes discussed above as tractable fragments and as distance one considers
the number of arguments that have to be deleted from an AF to fall into the graph
class.

Definition 3.9. Let G be a graph class and F = (A,R) an AF. We define distG(F )
as the minimal number k such that there exists a set S ⊆ A (the backdoor set) with∣S∣ = k and (A ∖ S,R ∩ ((A ∖ S) × (A ∖ S)) ∈ G. If there is no such set S we define
distG(F ) =∞.

We will see that this parametrization only works for certain fragments and
semantics, while for other fragments and semantics we have the full complexity
even for AFs with constant distance to the fragment. Table 7 summarises the re-
sults for the semantics under our considerations (again we omit semantics already
tractable in the general case). All results are due to [Ordyniak and Szeider, 2011;
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Dvořák et al., 2012a] 13, except the results for cf2 semantics which are due to Dvořák
and Gaggl, 2016]. The entries in Table 7 are to be read as follows. FPT: all reason-
ing tasks are in FPT; XP: all reasoning tasks are in XP; hard: all problems are as
hard as for general graphs even for instances with a fixed distance to the fragment
(and are at least NP/coNP-hard for distance 1).

In the remainder of the section we will first present the algorithm that underlies
the FPT and XP results and then exemplify some hardness results.

FPT backdoor-algorithms. The positive results are all based on the fact that
the number of complete extensions is small and we can compute them efficiently.
As soon as we have the complete extensions all the reasoning tasks for admissibility
based semantics can be answered efficiently. The algorithms for complete semantics
consist of two parts: first one has to compute the backdoor set; second given the
backdoor set one has to compute the complete extensions.

Let us first consider computing a backdoor. The detection of acyc-backdoors
for AFs is equivalent to the so-called directed feedback vertex set problem in graph
theory, which is known to be fixed-parameter tractable [Chen et al., 2008]. For
detecting noeven-backdoors in AFs the following algorithm is known, which only
shows the problem to be in XP. By a result of Robertson et al. [1999] one can test
in polynomial time whether a graph is in noeven or not. Now, to find a backdoor of
size k one can simply iterate over all sets of size k and test whether removing these
arguments break all even-cycles. As there are Θ(nk) many such sets the algorithm
is not fixed-parameter tractable and thus only shows the problem to be in XP.

Now let us assume we already have a backdoor set. We consider labels for
arguments that correspond to their status in the extension. An argument is labelled
in if it is in the extension, out if it is not in the extension but attacked by an
argument in the extension, and undec otherwise. The algorithm tests all possible
assignments of labels to the arguments in the backdoor set (these are 3k many) and
for each of them propagates the labels to the remaining AF (which is acyclic or
noeven) according to the characteristic function. That is, a node gets label out as
soon as one attacker is labelled in, label in if all attackers are labelled out and
label undec if all attackers are labelled and none of the above applies. Finally,
one considers the set of arguments labelled in and keeps the set if it is a complete
extension or withdraws them otherwise. As we do this for each possible labelling of
the backdoor set we finally get the set of all complete extensions, which is of size
at most 3k. As one can propagate the labels in polynomial time the, total running

13Notice, that ideal semantics is not explicitly mentioned in [Dvořák et al., 2012a], but the results
follow immediately from the results presented for preferred semantics.

2591



Dvořák and Dunne

ϕ

c̄x3x2x1

cx̄3x̄2x̄1

Figure 6: Hardness reduction for Credad and backdoors to bipartite graphs, illus-
trated for the propositional formula ϕ, with clauses c = {x1, x2}, and c̄ = {x̄1, x̄2, x̄3}.
time of the algorithm is 3k multiplied by some polynomial and thus in FPT.

Finally combining the results for computing a backdoor set and for evaluating an
AF given a backdoor we have an FPT algorithm for acyclic AFs and an XP algorithm
for noeven AFs. Notice that the XP complexity for noeven AFs comes solely from
the algorithm for computing the backdoor, the evaluation itself is in FPT.

Hardness Results. The hardness proofs work very much like for the general case,
one has to give a reduction from a hard problem but additionally take into account
the graph structure [Dvořák et al., 2012; Dvořák 2012c; Dvořák et al., 2014a; Dvořák
and Gaggl, 2016]. We exemplify such a reduction for credulous reasoning under
admissible, complete, preferred and cf2 semantics and backdoors for bipartite graphs.
To this end consider the standard translation from proposition logic and the NP-hard
problem monotone SAT, of deciding whether a formula in CNF where each clause
either contains solely positive or solely negative literals is satisfiable. As each clause
either contains solely positive literals or solely negative literals the graph constructed
by the standard translation is almost bipartite (cf. Figure 6). That is, there are no
edges between the arguments corresponding to positive literals and negative clauses
and no edges between the arguments corresponding to negative literals and positive
clauses. Thus, when deleting ϕ from the graph the graph becomes bipartite with
two independent sets, one containing the positive literals and the negative clauses,
and one containing the negative literals and the positive clauses. We obtain that
credulous reasoning is NP-hard even for graphs with distance 1 to bipartite graphs.

Further FPT Results. Besides backdoors to tractable fragments several other
approaches for parametrizations can be found in the literature. One approach is
to consider graph parameters that measure structural properties, most prominently
tree-width, a parameter that, roughly speaking, measures how tree-like a graph
is. Results for tree-width (and the related parameter clique-width) can be either
obtained by dynamic programming algorithms that exploit the structural proper-
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ties or by powerful meta-theorems. These meta-theorems basically say that ev-
ery property which can be characterised by a formula from monadic-second or-
der logic (MSO) over a graph structure can be tested in FPT w.r.t. tree-width
and clique-width. Results via the MSO meta-theorems are given in [Dunne, 2007;
Dvořák et al., 2012c] concrete dynamic programming algorithms are given in [Dvořák
et al., 2012b; Charwat, 2012] for tree-width and in [Dvořák et al., 2010] for clique-
width. Moreover, in [Dvořák et al., 2012b] a lot of parameters specific to directed
graphs, e.g. directed tree-width, are shown to be not applicable for FPT algorithms
in abstract argumentation.

Finally for semantics harder than NP one can also think about backdoors to
graph classes that allow to solve problems in NP or coNP [Dvořák et al., 2014a].
While this does not give FPT results it still reduces complexity, with notable effects
on the practical resolvability.

3.6 Computational Problems related to Labelling-Based Semantics
So far our complexity analysis was in terms of extension-based semantics (which is
in accordance with the literature), in this section we discuss some computational
aspects related to labelling-based semantics.

Labelling-based semantics. Beside the so-called extension-based semantics we
have considered so far, there are several approaches defining argumentation seman-
tics via certain kinds of argument labellings. As an example we consider the popular
approach of 3-valued labellings by Caminada and Gabbay [2009] and in particular
their complete labellings. Basically, such a labelling is a three-valued function Lab
that assigns one of the labels in, out and undec to each argument, with the in-
tuition behind these labels being the following. An argument is labelled with: in
if it is accepted, i.e., it is defended by the in labelled arguments; out if there are
strong reasons to reject it, i.e., it is attacked by an accepted argument; undec if the
argument is undecided, i.e., neither accepted nor attacked by accepted arguments.
Complete labellings can be one-to-one mapped to complete extensions by consider-
ing the set of in labelled arguments and vice versa, by labelling all arguments in
the extension with in all arguments attacked by the extension with out and the
remaining arguments with undec [Caminada and Gabbay, 2009]. Notice that this is
not only a property of complete semantics but this one-to-one correspondence holds
for most argumentation semantics.

Computational problems. Given the above correspondence between labellings
and extensions, the tasks of computing all labellings and all extensions are, from
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ϕ

c1 c2

ψ

c3 c4

x1 x̄1 x2 x̄2 x3 x̄3 y1 ȳ1 y2 ȳ2

Figure 7: Reduction for showing the DP-hardness of weak acceptance. AF Fϕ,ψ
for the propositional formulae ϕ, with clauses {x1, x2, x̄3},{x̄1, x̄2, x̄3}, and ψ, with
clauses {y1, ȳ2}, {ȳ1, y2}.
a computational point of view, equivalent and the same holds for credulous and
skeptical reasoning. However, three-valued labellings allow for more fine-grained
acceptance statuses of arguments. Wu and Caminada 2010 introduced the notion
of justification status of an argument w.r.t. a semantics which is given by the set of
labels that are assigned by at least one labelling of the semantics. That is, given
an AF F and a labelling-based semantics σLab the justification status JSσLab(F,a)
of an argument a in F is given by JSσLab(F,a) = {Lab(a) ∣ Lab ∈ σLab(F )}. The
above definition gives rise to eight different justification statuses, most prominently
the set {in} called strong accept, which corresponds to skeptical acceptance, and
the set {in,undec} called weak accept.14 We are now faced with the computational
problem of verifying the justification status of an argument, which was studied in
[Dvořák, 2012b].

Algorithms. Compared with credulous and skeptical acceptance, where we ei-
ther search for an extension containing a specific argument or for an extension not
containing a specific argument, the problem of testing whether an argument has a
specific justification status, e.g., whether it is a weakly accepted, has two sources of
complexity. First, we have to search for labellings that assign the labels appearing in
the justification status, e.g., in and undec for weak acceptance, and second we have
to make sure that no labelling assigns one of the labels not in the in the justification
status, e.g., out for weak acceptance, to a. For complete semantics this means we
have to perform both an NP search for the good labels and a coNP search for the
bad labels, which together gives a DP algorithm.

14Notice that credulous acceptance of argument a corresponds to the query in ∈ JSσ(F,a).
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Hardness. To prove DP-hardness of weak acceptance w.r.t. complete semantics
one starts from an instance (ϕ,ψ) of the DP-complete SAT−UNSAT problem and
constructs the AF Fϕ,ψ (see Figure 7) as follows. First one applies the standard
translation to each of the two formulae and then makes the arguments c correspond-
ing to clauses unacceptable, by adding self-attacks. Finally the arguments ϕ and ψ
are connected by a mutual attack. As in the standard translation we have that ϕ,
respectively ψ, is credulously accepted iff ϕ, respectively ψ, is satisfiable. Moreover,
(a) ϕ is labelled out iff ψ is labelled in by some labelling, i.e., if ψ is credulously
accepted, and (b) the grounded labelling maps all arguments to undec and thus
undec ∈ JSσLab(Fϕ,ψ, ϕ). We then have that the argument ϕ is weakly accepted
iff ϕ is satisfiable and ψ is unsatisfiable, that is iff (ϕ,ψ) is a “yes” instance of
SAT−UNSAT. Thus we have a reduction from SAT−UNSAT to weak acceptance and
can conclude that also the latter is DP-hard.

3.7 Discussion

As illustrated in Table 1 there is a significant difference in the computational com-
plexity between the different semantics. Let us first consider the polynomial-time
computable semantics. Grounded semantics distinguishes itself from the remaining
semantics by the fact that it has a unique extension which can be efficiently computed
in an iterative fashion by applying the characteristic function. For conflict-free and
naive sets the good complexity comes from the fact that we can decide the reasoning
problems without computing the actual conflict-free, respectively naive, sets. How-
ever, there are AFs with exponentially many conflict-free, respectively naive, sets
and there are non-standard problems the are computationally hard, for instance
counting the number of conflict-free, respectively naive, sets [Baroni et al., 2010].

On the NP, coNP layer of the polynomial-hierarchy we have semantics with
potentially exponentially many extensions but where each set itself can be easily
tested to be an extension. That is, the source of the computational hardness is the
fact that one, in the worst case, has to check many sets to find a witness for cred-
ulous acceptance, respectively to find a counter-example for skeptical acceptance.
However, these problems can be efficiently encoded in formalisms where the corre-
sponding problems are NP- and coNP-hard, like propositional logic, and then can
be evaluated with corresponding systems for these formalisms [Besnard and Doutre,
2004].

Finally, we have semantics that require some sort of subset maximisation which
adds an additional source of complexity. Thus, these semantics are harder than
NP and located at the second level of the polynomial-hierarchy. For reduction-based
approaches this implies that one cannot efficiently translate them to a single instance
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of propositional logic but has either to consider richer formalisms like QBFs [Egly
and Woltran, 2006; Arieli and Caminada, 2012] or ASP [Egly et al., 2010] or consider
iterative approaches [Cerutti et al., 2014; Dvořák et al., 2014a] that make several
calls to a SAT-Solver. The different levels of hardness of different semantics are also
mirrored by the results of the First International Competition on Computational
Models of Argumentation [Thimm and Villata, 2015; Thimm et al., 2016], where
the computational tasks for preferred semantics appear significantly harder than
the corresponding tasks for stable or complete semantics.

Notice that there are several established semantics which are beyond the scope
of this work. First there is the scheme of resolution-based semantics [Baroni et
al., 2011c], with resolution-based grounded semantics being the most prominent
instantiation. A comprehensive complexity analysis for resolution-based grounded
semantics can be found in [Baroni et al., 2011c], which is complemented by results
in [Dvořák et al., 2012c; Dvořák et al., 2014b]. Another semantics we neglected is
eager semantics [Caminada, 2007], whose complexity was studied in the generalised
setting of parametrized ideal semantics [Dunne et al., 2013].

4 Complexity of Assumption-based Argumentation
With Dung’s abstract argumentation frameworks we focused on the issue of find-
ing coherent sets of simultaneously acceptable arguments, but neglected the effort
for constructing these frameworks and for drawing conclusions from the accepted
arguments. With Assumption-based Argumentation [Bondarenko et al., 1997] we
now switch to a formalism that covers the whole argumentation process. That is,
arguments and conflicts are constructed from a knowledge base, then acceptable
sets, i.e., extensions, are identified, and finally one draws conclusions from the ex-
tensions. We are in particular interested in how these additional steps affect the
overall computational complexity.

In this section will discuss complexity results for Assumption-based Argumenta-
tion which are due to the work of Dimopoulos et al. [1999; 2000; 2002] and the later
work on ideal semantics [Dunne, 2009].15 We first briefly introduce assumption-
based frameworks and the different semantics thereof and define the core reasoning
problems in assumption-based argumentation. We then discuss procedures to solve
the reasoning problems, which give us upper bounds for the computational complex-
ity. As most of these procedures are of high complexity we also discuss the special
case of flat ABFs which allows for a milder complexity. Finally, we discuss some

15The complexity of Assumption-based Argumentation was also briefly discussed in the earlier
survey on the complexity of argumentation [Dunne and Wooldridge, 2009].
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hardness results showing that the presented procedures are essentially optimal.

4.1 Assumption-based Argumentation
We first briefly recall the definitions of assumption-based argumentation, for a com-
prehensive introduction the reader is referred to [Toni, 2014].

For an assumption-based framework we assume a deductive system (L,R), whereL is a formal language and R a set of inference rules that induces a derivability
relation ⊢. Given a theory T ⊆ L the deductive closure Th(T ) of T is defined as
Th(T ) = {α ∈ L ∣ T ⊢ α}.
Definition 4.1. An abstract assumption-based framework (ABF) is a tuple⟨L,R,A, ⟩ with (L,R) a deductive system, A ⊆ L is a (non-empty finite) set, with
elements referred to as assumptions; and the contrary function , a total mapping
from A into L.

An extension of an ABF is a set of assumptions ∆ ⊆ A meeting some require-
ments.

Definition 4.2. Given an ABF and an assumption set ∆ ⊆ A we say that ∆ attacks
an assumption α ∈ A if ᾱ ∈ Th(∆). Further we say that an assumption set ∆ attacks
an assumption set ∆′ if ∆ attacks at least one α ∈ ∆′

We will further require that assumptions sets are closed, i.e., we can not derive
additional assumptions.

Definition 4.3. We call an assumption set ∆ closed if Th(∆) ∩A = ∆.

It is often the case that the derivability relation is such that all assumption sets
are closed, in that case we call the ABF flat.

We are now prepared to define the standard semantics for ABFs.

Definition 4.4. Given an ABF F and an assumption set ∆ ⊆ A. ∆ is called

• stable extension (∆ ∈ st(F )), if ∆ is closed, ∆ does not attack itself, and ∆
attacks each assumption α ∈ A ∖∆.

• admissible set (∆ ∈ ad(F )), if ∆ is closed, ∆ does not attack itself, and for all
closed assumption sets ∆′ ⊆ A, if ∆′ attacks ∆ then also ∆ attacks ∆′.

• preferred extension (∆ ∈ pr(F )), if ∆ is a subset-maximal admissible assump-
tion set.
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Moreover, for flat frameworks also ideal semantics can be defined [Dung et al.,
2006; 2007]. The unique ideal extensions id(F ) is the maximal admissible set ∆
that is contained in all preferred extensions.16

We have that every stable assumption set is also a preferred assumption set, and
every preferred assumption set is an admissible assumptions set, but not vice versa.
However, each admissible assumption set is a subset of some preferred assumption
set. Moreover, if the ABF is flat the empty assumption set is always admissible.

4.2 Reasoning Problems
As for abstract argumentation we are mainly interested in computing acceptance
statuses of statements instead of extensions. However, the reasoning tasks we con-
sider will give us a good impression of the complexity of computing extensions. That
is, we again consider credulous and skeptical acceptance but now of a sentence ϕ ∈ L
instead of an argument. More concretely we either want to decide whether there is
at least one extension that entails ϕ (credulous reasoning) or whether ϕ is entailed
by each extension. This gives rise to the following computational problems for an
assumption-based argumentation semantics σ.

• Credulous Acceptance Credσ: Given ABF F and a sentence ϕ ∈ L. Is ϕ ∈ Th(∆)
for some assumption set ∆ ∈ σ(F )?

• Skeptical Acceptance Skeptσ: Given ABF F and a sentence ϕ ∈ L. Is ϕ ∈ Th(∆)
for all assumption sets ∆ ∈ σ(F )?

Beside the above reasoning problems we again consider the task of verifying
extensions, i.e., one is given an assumption set and has to verify that it is an extension
of a given semantics σ.

• Verification of an Extension Verσ: Given ABF F = ⟨T,A, ¯ ⟩ and an assump-
tion set ∆ ⊆ A. Is ∆ ∈ σ(F )?

4.3 Procedures to solve ABA Reasoning Problems
In ABA, new computational challenges come up when compared with Dung’s ab-
stract argumentation. While in Dung’s abstract argumentation arguments and at-
tacks are given explicitly, they are only given implicitly in ABFs and depend on the
set of assumptions and the derivability relation ⊢. That is, we get two additional
sources of complexity: (1) the construction of arguments, and (2) the identification

16Notice that uniqueness and other properties of the ideal extension are only guaranteed for flat
ABFs.
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General ABFs Flat ABFs
σ Credσ Skeptσ Verσ Credσ Skeptσ Verσ
st NPC coNPC PC NPC coNPC PC
ad NPNPC coNPNPC coNPC NPC C PC
id – – – PNPC∥ PNPC∥ PNPC∥
pr NPNPC coNPNPNPC NPNPC NPC coNPNPC NPC

Table 8: Complexity upper bounds for different types of ABFs. C denotes the
complexity of deciding the ⊢ relation.

of conflicts between them. Both highly depend on the complexity of deciding the
derivability relation ⊢. Thus, upper bounds for the complexity in assumption-based
argumentation usually assume that the derivability relation ⊢ can be decided in
some complexity class C and the actual complexity results are then given in terms
of some C-oracle complexity classes.

Verifying an Assumption Set. First, we consider the problem of verifying an
assumption set ∆ as an extension and start with stable semantics. We have to check
that (i) ∆ is closed, (ii) ∆ is conflict-free, and (iii) ∆ attacks every assumption
α ∈ A ∖ ∆. Each of these checks can be done in PC as follows: For (i) one has
to check whether ∆ ⊢ α for α ∈ A ∖ ∆ which just requires a linear number of ⊢
computations. For (ii) one has to check whether ∆ /⊢ ᾱ for α ∈ ∆ which again just
requires a linear number of ⊢ computations. Finally, (iii) can also be checked by a
linear number of ⊢ computations and thus a stable set can be verified in PC . For
admissible semantics verification is a bit harder. Here instead of condition (iii) we
have to verify that for all closed assumption sets ∆′ ⊆ A, if ∆′ attacks ∆ then also
∆ attacks ∆′. This can be done with a coNPC-algorithm that guesses a counter-
example ∆′ and then verifies via the C oracle that ∆′ is closed, ∆′ attacks ∆, and
∆′ is not attacked by ∆. In total we have that verifying an admissible extension
is in coNPC . For preferred semantics we additionally have to take into account the
maximality check which leads to a coNPNPC -algorithm.

Reasoning. The complexity upper bounds for skeptical and credulous reasoning
are immediate by the algorithms for verifying extensions. We can decide the accep-
tance of a sentence by first guessing an assumption set, second verifying that the
guessed set is an extension and finally deciding via a C oracle whether the exten-
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sion entails the queried sentence. The corresponding complexity results are given
in the left part of Table 8 (recall that ideal semantics was only introduced for flat
ABFs). As for Dung’s AFs, credulous reasoning with preferred semantics reduces to
credulous reasoning with admissible semantics and thus has a lower complexity than
skeptical reasoning. Moreover, in contrast to Dung’s AFs, we have a complexity gap
between stable and admissible semantics, which is due to the fact that for admissible
extensions for each attacking assumption set we have to test whether it is closed or
not.

Flat ABFs. Flat ABFs as a special class of ABFs that provide milder complexity.
Recall that in flat ABFs each assumption set is already closed and we thus do not
have to check this in the algorithms. Let us now reconsider the problem of verifying
an admissible extension ∆. As ∆ is closed we only have to check whether (i) ∆ is
conflict-free, and (ii) for all assumption sets ∆′ ⊆ A, if ∆′ attacks ∆ then also ∆
attacks ∆′. The latter simplifies to checking whether {α ∈ A ∣ ∆ /⊢ ᾱ} does not attack
∆, which can be decided in PC . Thus, verifying admissible extensions in flat ABFs is
in PC and hence also verifying preferred extensions is in coNPC . This gives improved
complexity bounds for credulous and skeptical acceptance listed in in Table 8 in the
column flat. Finally, notice that in flat ABFs the empty set is always admissible
and thus only the assumptions contained in Th(∅) are skeptically accepted. That
is, skeptical reasoning reduces to testing whether ϕ ∈ Th(∅), which is in C.

The ideal extension can be computed by the same algorithm as for Dung AFs
[Dunne, 2009]. That is, one first determines the credulously accepted assumptions
w.r.t. admissible semantics that are not attacked by other credulously accepted
assumptions. Given those arguments one iteratively removes assumptions that can
not be defended until an admissible set, the ideal extension, is reached. Overall,
this gives an PNPC∥ algorithm for credulous and skeptical reasoning as well as for the
verification problem.

4.4 Complexity lower bounds
While the upper bounds can be given in a generic fashion, which immediately gives
upper bounds/algorithms for each instantiation, hardness results only exist for con-
crete formalisms. However, the complexity results for the concrete instantiations [Di-
mopoulos et al., 2002] show that the generic upper bounds are tight in the sense that
there are formalisms where the lower bounds match the generic upper bounds. In
Table 9 we list the complexity results for Autoepistemic Logic (AEL) [Moore, 1985],
Logic Programming (LP) [Gelfond and Lifschitz, 1988], and Default Logic (DL) [Re-
iter, 1980] all the results are due to Dimopoulos et al. [2002] and Dunne [2009]. For
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Autoepistemic Logic we have that the ABF is not flat and deciding the ⊢ relation is
coNP-complete. Thus the complexity results in Table 9 exactly match the generic
upper bounds for general ABFs. In contrast, Logic Programming and Default Logic
result flat ABFs and for the former the ⊢ relation is in P and for the latter the ⊢
relation is coNP-complete. In both cases the complexity results in Table 9 exactly
match the generic upper bounds for flat ABFs.

type stability Admissibility Preferability Ideal
cred. skept. cred. skept. cred. skept. cred.

AEL general ΣP
2 -c ΠP

2 -c ΣP
3 -c ΠP

3 -c ΣP
3 -c ΠP

4 -c –
LP flat NP-c coNP-c NP-c P-c NP-c ΠP

2 -c ΘP
2 -c

DL flat ΣP
2 -c ΠP

2 -c ΣP
2 -c coNP-c ΣP

2 -c ΠP
3 -c ΘP

3 -c

Table 9: Completeness results for instantiations of ABA.

For a hardness proof in ABA one has to construct a certain knowledge base
in the considered formalism instead of arguments interlinked with conflicts. Thus
hardness proofs in the context of ABA are of a different nature than in Dung’s
abstract argumentation. To exemplify such an hardness proof we next present the
hardness result for credulous admissible reasoning in Default Logic which is ΣP

2 -
complete [Dimopoulos et al., 2002].

Default logic as ABA. A Default theory (W,D) that consists of a set W of
propositional formulae17, called background theory, and a set D of default rules of
the form α∶Mβ1...Mβn

γ , where α, βi, γ are sentences in propositional logic, can be
interpreted as assumption-based framework ⟨L,R,A, ⟩ [Bondarenko et al., 1997].
As deductive system one uses the deductive system of propositional logic extended
by the set D of default rules, where the intuitive meaning of a default rule is that
if we know α is the case and have no basis on which to suppose any ¬βi holds it is
reasonable to assume γ. The ABF is now built as follows: the set of assumptions A
consists of the expressions of the form Mβ, the contrary Mβ of an assumption Mβ
is ¬β and the derivability relation ⊢ is given by ∆ ⊢ φ iff φ ∈ ThDL(W ∪∆) where
ThDL is the deductive closure of the deductive system described above.

Hardness of credulous admissible reasoning in DL. To show hardness for
credulous admissible reasoning in Default Logic, we give a reduction from the ΣP

2 -
17Notice that instead of using propositional logic one could also define Default logic on top of

first-order logic or any other formal logic.
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hard problem QSAT 2∃ of deciding whether a QBF2∃ is valid. That is, we start with a
QBF ∃Y ∀Z ϕ(Y,Z) and construct a DL theory (∅,D) and thus the corresponding
ABF F as follows. To construct the set of default rules D, we add the two default
rules (i) My

y and (ii) M¬y¬y for each variable y ∈ Y . This corresponds to the ABF F

with A = {My,M¬y ∣ y ∈ Y } and My = ¬y, M¬y = y for all y ∈ Y . By that we have
that an admissible set can only contain either My or M¬y but not both, and thus
that the admissible sets correspond to the partial truth assignments of Y . Moreover
for an admissible set E we have that E ⊢ ϕ iff ϕ(Y,Z) is true for all assignments
Z under the partial assignment given for Y . That is, ϕ is credulously accepted iff
there is a partial assignment of Y such that for each assignment to Z the formula
ϕ(Y,Z) evaluates to true, that is iff ∃Y ∀Zϕ(Y,Z) is valid.

Example 4.5. Consider the QBF Φ = ∃y1, y2∀z1, z2 (y1∨z2∨¬z3)∧ (¬y2∨z3). The
above reduction would construct

• the default rules My1
y1

, My2
y2

, M¬y1¬y1
and M¬y1¬y1

;

• the assumption set A = {My1,My2,M¬y1,M¬y2}; and
• the contrary function with My1 = ¬y1, My2 = ¬y2, M¬y1 = y1, and M¬y2 =¬y2.

Now, by the above, it must be that Φ is valid if and only if there is an admissible set
E ⊆ A such that E ⊢ (y1 ∨ z2 ∨ ¬z3) ∧ (¬y2 ∨ z3). The formula Φ is valid as setting
y1 to true and y2 to false makes both clauses true no matter which truth value is
assigned to the variables z1 and z2. On the other hand also the set E = {My1,M¬y2}
is admissible and, by our default rules, we have E ⊢ (y1 ∨ z2 ∨ ¬z3) ∧ (¬y2 ∨ z3). ◊
4.5 Discussion
The upper bounds for the complexity of the reasoning problems in Table 8 indi-
cate that assumption-based argumentation indeed has a higher complexity than just
Dung style argumentation. However, by the discussed results for flat argumentation
in Table 8 and the concrete instantiations of ABA in Table 9 one can see that the
actual complexity heavily depends on the complexity of derivability relation ⊢ and
the type of the assumption-based framework. For instance for LP we have a flat
assumption-based framework and a tractable derivability relation and end up with
the same complexity bounds as for Dung’s abstract argumentation frameworks. The
complexity of deciding the derivability relation directly corresponds to the costs of
constructing an argument, or drawing some conclusion when already given an exten-
sion. Thus the parameter C in Table 8 can be interpreted as the costs of these two
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steps, i.e., constructing arguments and drawing conclusions, in the argumentation
process.

For general ABFs the complexity of assumption-based argumentation is quite
high and thus it is promising to consider some restrictions of the formalism to get
better algorithms. In this work we considered flat ABFs which reduced the complex-
ity significantly. In [Dimopoulos et al., 2002] also two other classes, namely so called
simple and normal ABFs, are studied and shown to have computational advantages
for certain problems.

5 Computational Problems in Abstract Dialectical
Frameworks

In this section we consider abstract dialectical frameworks, a generalisation of Dung
style abstract argumentation frameworks. While arguments are still abstract enti-
ties abstract dialectical frameworks allow for more complex relations between the
arguments. That is, each abstract dialectical framework has a link relation between
the arguments, which is not necessarily an attack relation. The semantics of the
links is given by acceptance conditions for each argument that define the acceptance
status of an argument in dependence on the acceptance status of the predecessor
arguments. This allows for classical binary attacks between arguments but also for
joint attacks, support and more complex dependencies.

This section is based on the works of Brewka et al. [2013], Wallner [2014, Chapter
4], and Strass and Wallner [2015] and organised as follows. We first define abstract
dialectical frameworks and semantics thereof. We then discuss and formally define
the core computational problems and consider the general computational complexity
of abstract dialectical frameworks. Moreover, we discuss a restricted class of ADFs,
so called bipolar ADFs, that only allow for links that are attacking or supporting
(but might be both), and their computational advantages.

5.1 Abstract Dialectical Frameworks (ADFs)
Here we give a very brief discussion of Abstract Dialectical Frameworks.Notice that
in the literature there are several proposals how to define semantics for ADFs, here
we will follow the lines of Brewka et al. [Brewka et al., 2013].

Definition 5.1 ([Brewka et al., 2013]). An abstract dialectical framework
is a tuple D = (S,L,C) where

• S is a (finite) set of abstract arguments / statements,
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aca ∶ ⊺ b cb ∶ b ∧ ¬c

ccc ∶ a ∨ b d cd ∶ ¬b
Figure 8: Illustration of an ADF D = (S,L,C) with S = {a, b, c, d}, L ={(a, c), (b, b), (b, c), (c, b), (b, d)}, and C = {ca ∶ ⊺, cb ∶ b ∧ ¬c, cc ∶ a ∨ b, cd ∶ ¬b}).

• L ⊆ S × S is a set of links,

• C = {Cs}s∈S is a set of total functions Cs ∶ 2par(s) → {t, f}, one for each
statement s ∈ S. Cs is called acceptance condition of s.

Here, we will assume that each acceptance condition Cs is given by a proposi-
tional formula ϕs over the predecessors of s. An example is provided in Figure 8.

As first semantics we define (two-valued) models of ADFs. To this end we con-
sider two-valued interpretations I that to each s ∈ S assign either t or f . Given an
interpretation I we will use It to denote the set {s ∈ S ∣ I(s) = t} and If to denote
the set {s ∈ S ∣ I(s) = f}.
Definition 5.2. Let D = (S,L,C) be an ADF, a two-valued interpretation I defined
over S is a two-valued model of D if I ⊧ ϕs for each s ∈ It and I /⊧ ϕs for each s ∈ If .

Most of the ADF semantics are based on 3-valued interpretations [Kleene, 1952]
that map each argument in S to one of the values t, f and u. The three values t, f , u
are ordered, by <i, such that u <i t, u <i f , and t,f are incomparable. This ordering
is then extended to interpretations such that for 3-valued interpretations I, J we
have I ≤i J iff I(s) ≤i J(s) for all s ∈ S. We say that a two-valued interpretation I
extends a 3-valued interpretation J iff I ≤i J . That is, all arguments mapped to f
or t by J are mapped to the same by I and all arguments that are mapped to u by
J are mapped to either t or f by I. Given a 3-valued interpretation J , by [J]2 we
denote the set of all two-valued interpretations that extend J .

In Dung’s abstract argumentation frameworks the characteristic function and
its fixed-points are central in the definition of the semantics. We next define the
operator ΓD that will be central in our definitions of ADF semantics. ΓD generalises
the characteristic function in two directions: (i) it gives a three valued assignment
on arguments, i.e., beside marking arguments as accepted it also explicitly marks
arguments as rejected; and (ii) it allows for the more general acceptance conditions
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of ADFs.Given an interpretation I, the operator ΓD computes the arguments that
should be set to t or f under the current interpretation I.

Definition 5.3. For an ADF D and a three-valued interpretation I, the interpre-
tation ΓD(I) is given by

ΓD(I)(s) =⊓{w(ϕs) ∣ w ∈ [I]2}
where ⊓ is the consensus operation that assigns t ⊓ t = t, f ⊓ f = f , and assigns u
otherwise.

We are now prepared to define admissibility based semantics.

Definition 5.4 ([Brewka et al., 2013]). A three-valued interpretation I for an ADF
D is

• the grounded interpretation iff it is the least fixed point of ΓD.

• admissible iff I ≤i ΓD(I);
• complete iff I = ΓD(I).
• preferred iff it is ≤i-maximal admissible.

Finally, one can define stable semantics which, in order to avoid cyclic support,
makes use of a reduced ADF in the definition.

Definition 5.5 ([Brewka et al., 2013]). Let D = (S,L,C) be an ADF with C ={ϕs}s∈S. A two-valued model I of D is a stable model of D iff EI = {s ∈ S ∶ I(s) = t}
equals the set of statements that are t in the grounded interpretation of the reduced
ADF DI = (EI , LI ,CI), where LI = L∩ (EI ×EI) and for s ∈ EI we set ϕIs = ϕs[b/f ∶
I(b) = f].
5.2 Computational Problems
As the nature of abstract dialectical frameworks is quite similar to the nature of
Dung’s abstract argumentation frameworks also the core computational problems
coincide. That is, we first have credulous reasoning, i.e., an argument is accepted
if it is mapped to t by at least one interpretation, and skeptical reasoning, i.e.,
an argument is accepted only if it is mapped to t by all interpretations. These
two reasoning modes again give rise to the following computational problems for
argumentation semantics σ.
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• Credulous Acceptance Credσ: Given ADFD = (S,L,C) and an argument a ∈ S.
Is there an interpretation I ∈ σ(D) with I(a) = t?

• Skeptical Acceptance Skeptσ: Given ADF D = (S,L,C) and an argument a ∈ S.
Is I(a) = t for each interpretation I ∈ σ(D)?

Beside these reasoning problems we also consider the problem of verifying a given
interpretation, and deciding whether an ADF provides any coherent conclusion.
Depending on the actual semantics the latter can corresponds to deciding whether
the ADF has at least one interpretation, or whether the ADF has an interpretation
that maps at least one statement to either t or f .

• Verification of an interpretation Verσ: Given an ADF D = (S,L,C) and an
interpretation I. Is I ∈ σ(F )?

• Existence of an interpretation Existsσ: Given an ADFD = (S,L,C). Is σ(F ) ≠∅?
• Existence of a non-trivial interpretation Exists¬∅σ : Given an ADF D =(S,L,C). Does there exist an interpretation I with I(a) ∈ {t, f} for some

argument a ∈ S.
5.3 Complexity Results for ADFs
The ability of ADFs to express more complex relations between arguments resulted
in more evolved definitions of the semantics and as we will discuss next also in-
creases the complexity of the core reasoning tasks. As the complexity results for
ADFs in Table 10 show, all the non-trivial reasoning tasks are one level higher in
the polynomial-hierarchy than for Dung’s AFs. The main reason for that is the
complexity of the ΓD operator which replaces the characteristic function. While the
characteristic function can be evaluated in polynomial time (and even logarithmic
space) deciding problems associated with the ΓD operator are in general NP/coNP-
hard.18

In this section we discuss the complexity of admissible and grounded semantics
in more detail.

18For instance testing whether an argument is mapped to t is basically the validity problem of
propositional logic.
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σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ
gr coNP-c coNP-c DP-c trivial coNP-c
model NP-c coNP-c in P NP-c NP-c
st ΣP

2 -c ΠP
2 -c coNP-c ΣP

2 -c ΣP
2 -c

ad ΣP
2 -c trivial coNP-c trivial ΣP

2 -c
co ΣP

2 -c coNP-c DP-c trivial ΣP
2 -c

pr ΣP
2 -c ΠP

3 -c ΠP
2 -c trivial ΣP

2 -c

Table 10: Complexity of ADFs (C-c denotes completeness for class C).
Complexity of admissible semantics. Again the most fundamental problem is
to verify that an interpretation is admissible. To show that the problem is in coNP we
give an NP algorithm [Wallner, 2014] to falsify the admissibility of an interpretation
I. Such an algorithm would guess an argument s, such that (i) I(s) = t or (ii)
I(s) = f , and a 2-valued interpretation J ∈ [I]2 extending I such that either, in case
(i), J(ϕs) = f or, in case (ii), J(ϕs) = t. As I is admissible iff no such pair s, J exists
this is a NP algorithm that falsifies I being admissible and thus the complementary
problem of verifying an admissible interpretation is in coNP.

The coNP-hardness is by reduction from the coNP-complete UNSAT problem
[Wallner, 2014] of testing whether a propositional formula is unsatisfiable. To this
end consider a propositional formula ϕ over variables X and construct an ADF
D = (S,L,C) as follows: The set of arguments S consists of X and an additional
argument a, each x ∈X is linked towards a, and the acceptance conditions are given
by cx = x for x ∈ X and ca = ϕ. Now we consider the interpretation I mapping
all x ∈ X to u and a to f . We have that the two-valued interpretations J ∈ [I]2
correspond to the two-valued interpretations of ϕ and thus ΓD(I)(a) = f iff ϕ has
no model. That is, I is admissible iff ϕ is unsatisfiable and, as the ADF D can be
constructed in polynomial time, coNP-hardness follows.

Combining the coNP verification algorithm for admissible semantics with the
standard guess and check algorithms gives a ΣP

2 upper bound for credulous rea-
soning with admissible, complete and preferred semantics, and a ΠP

2 upper bound
for verifying a preferred interpretation. The latter then gives a ΠP

3 algorithm for
skeptical reasoning with preferred semantics.

Complexity of grounded semantics. The computational properties of
grounded semantics in ADFs are quite in contrast to the computational proper-
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aca ∶ ϕ

x

cx ∶ x
y

cy ∶ y
z

cz ∶ z
Figure 9: Illustration of the ADF constructed in the reduction from UNSAT to the
problem of verifying an admissible interpretation in an ADF, for a propositional
formula ϕ over atoms x, y, z.

ties of grounded semantics in AFs. When considering grounded semantics in ADFs,
a straight forward algorithm is, starting from the three-valued model mapping all
arguments to u, and then iteratively apply the operator ΓD until a fixed-point
is reached. The straight forward algorithm is only a PNP-algorithm, because of
the costly evaluation of ΓD. However, due to a sophisticated characterisation of
grounded semantics [Wallner, 2014] there is a more efficient way to test whether an
argument is mapped to t in the grounded interpretation of an ADF. Also notice that
verifying the grounded interpretation is in DP as we have to do verify both the t, f
assignments and the u assignments.

The DP-hardness of verifying the grounded interpretation is by a reduction from
the DP-complete SAT−UNSAT problem [Brewka and Woltran, 2010; Wallner, 2014].
To this end consider an instance (ϕ,ψ) of SAT−UNSAT where ϕ is a propositional
formula over atoms X and ψ is a propositional formula over different atoms Y . In
polynomial time we construct the ADF D = (S,L,C) with S = X ∪ Y ∪ {d, s, v},
L = {(x, s) ∣ x ∈ X} ∪ {(y, v) ∣ y ∈ Y } ∪ {(d, s)} and the acceptance conditions cx = x
for x ∈ X ∪ Y , cd = d, cs = ϕ ∧ d and cv = ψ. Now we consider the interpretation
I with I(v) = f and I(a) = u for all the other arguments a ∈ S ∖ {v}. We next
argue that I is the grounded model iff (ϕ,ψ) is a “yes” instance of SAT−UNSAT.
Let G be the grounded model. First notice that the arguments a ∈ X ∪ Y ∪ {d}
do not have incoming edges from other arguments. Whenever J(a) = u then there
are both an I1 ∈ [J]2 with I1(a) = t and an I2 ∈ [J]2 with I2(a) = f , and thus also
ΓD(J)(a) = u. That is, the grounded model G maps all arguments in X ∪ Y ∪ {d}
to u. Now consider the argument s and cs = ϕ ∧ d. The two-valued interpretations
J ∈ [G]2 correspond to the two-valued interpretations over X ∪ Y ∪ {d}. That is,
either (a) ϕ has a model and we can satisfy ϕ ∧ d by setting d to t as well as falsify
ϕ ∧ d by setting d to f and thus ΓD(G)(s) = G(s) = u, or (b) ϕ is unsatisfiable and
thus ΓD(J)(s) = G(s) = f . One the other hand, for v and cv = ψ, we have that
either ψ is unsatisfiable and ΓD(G)(v) = G(v) = f , ψ is satisfiable but not valid and
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dcd ∶ d s

cs ∶ ϕ ∧ d
v

cv ∶ ψ

x1

cx1 ∶ x1

x2

cx2 ∶ x2

x3

cx3 ∶ x3

y1

cy1 ∶ y1

y2

cy2 ∶ y2

y3

cy3 ∶ y3

Figure 10: Illustration of the ADF constructed in the reduction from SAT−UNSAT
to the problem of verifying the grounded model of an ADF, for an propositional
formulae ϕ, ψ over atoms X = {x1, x2, x3} and Y = {y1, y2y3} respectively.

ΓD(G)(v) = G(v) = u, or ψ is valid and ΓD(G)(v) = G(v) = t. Hence, we have that
G = I iff ϕ is satisfiable and ψ is unsatisfiable.

5.4 Complexity of Bipolar ADFs with Known Link Types
Again there are certain instances of ADFs that do not have the worst-case com-
plexity, but can be processed with milder complexity. Here we discuss so called
Bipolar ADFs which put some restriction on the link structure, i.e., each link has
to be supporting or attacking (but might be both). For a given set X ⊆ S let IX
be the two-valued interpretation with It = X and If = S ∖X. A link (a, b) is called
supporting if there is no X ⊆ S such that IX ⊧ ϕb and IX∪{a} /⊧ ϕb; whereas it is
called attacking if there is no X ⊆ S such that IX /⊧ ϕb and IX∪{a} ⊧ ϕb. While in
general testing the link type is itself coNP-complete [Brewka and Woltran, 2010;
Ellmauthaler, 2012] there are certain applications of ADFs where the link type is
known beforehand [Brewka and Gordon, 2010; Strass, 2013]. This motivates the
research on bipolar AFs with know link types which we discuss in the remainder of
this section.

The main observation that leads to the better complexity results for bipolar AFs
(see Table 11) is that the operator ΓD can be efficiently computed when all the links
are attacking or supporting. The matching hardness results are then by the lower
bounds for Dung’s abstract argumentation (cf. Table 1) and the observation that
AFs can be interpreted as bipolar ADFs with known link types [Brewka et al., 2013]
as follows.19 Given an AF (A,R) the equivalent ADF is given by (A,R,C) with
C = {ca ∶ ⋀(b,a)∈R ¬b ∣ a ∈ A}. Notice that all the links are indeed attacking.

19Notice that both ADF semantics models and stable models are generalisations of Dung’s stable
semantics.
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σ Credσ Skeptσ Verσ Existsσ Exists¬∅σ
gr P-c P-c P-c trivial in P
model NP-c coNP-c in P NP-c NP-c
st NP-c coNP-c in P NP-c NP-c
ad NP-c trivial in P trivial NP-c
co NP-c P-c P-c trivial NP-c
pr NP-c ΠP

2 -c coNP-c trivial NP-c

Table 11: Complexity of Bipolar ADFs with know link types (C-c denotes complete-
ness for class C).

To compute ΓD(I) in general ADFs, we have to consider all 2-valued interpreta-
tions that extend I, which is coNP-hard, but given the link type of each link we only
have to check two 2-valued interpretations for each argument as follows [Wallner,
2014; Strass and Wallner, 2014]. Let Supp be the set of supporting links and Att
the set of attacking links, but there might be links that are both supporting and
attacking (such links are called redundant links). For s ∈ S consider the the formula
ϕs and the interpretations J1, J2 as follows.

1. J1(s) = ⎧⎪⎪⎨⎪⎪⎩
t if I(s) = t, or I(s) = u and (s, a) ∈ Supp
f if I(s) = f , or I(s) = u and (s, a) ∈ Att ∖ Supp

2. J2(s) = ⎧⎪⎪⎨⎪⎪⎩
t if I(s) = t, or I(s) = u and (s, a) ∈ Att
f if I(s) = f , or I(s) = u and (s, a) ∈ Supp ∖Att

The interpretation J1 sets all yet undecided supporters to true and all yet undecided
(non-redundant) attackers to false. If J1(ϕs) = f then no 2-valued interpretation
extending I satisfies ϕs, and thus ΓD(I)(s) = f . Otherwise if J1(ϕs) = t then
clearly ΓD(I)(s) ≠ f . The interpretation J2 sets all yet undecided (non-redundant)
supporters to false and all yet undecided attackers to true. Now, whenever J2(ϕs) = t
then all 2-valued interpretations extending I satisfy ϕs, and thus ΓD(I)(s) = t.
Otherwise if J2(ϕs) = f then clearly ΓD(I)(s) ≠ t. Hence, we can compute ΓD(I)
by just considering J1 and J2 and set ΓD(I)(s) = t if J2(ϕs) = t; ΓD(I)(s) = f if
J1(ϕs) = f ; and ΓD(I)(s) = u otherwise.

Now, as ΓD(I) can be computed in polynomial time, we can also (i) efficiently
compute the grounded model by iteratively applying ΓD(I). Moreover, (ii) verifying
an admissible or complete interpretation just requires to apply the ΓD operator once
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and thus can be done in polynomial time. The remaining results in Table 11 are by
the combination of the polynomial-time verification algorithms with the standard
guess and check algorithms as used for Dung’s AFs.

6 Discussion
In this work we presented complexity results for the three argumentation formalisms
of Dung’s Abstract Argumentation Frameworks, Assumption-based Argumentation
and Abstract Dialectical Frameworks. We have identified several sources of compu-
tational complexity: (i) the construction of arguments and the interlinking structure,
e.g., the attack relation, (ii) the search for coherent sets of arguments, and (iii) the
decision about certain conclusions. Points (i) and (iii) are present in the complexity
results for Assumption-based Argumentation where the complexity of algorithms
heavily depends on the complexity of the derivability relation, which is the essen-
tial ingredient to build arguments, identify conflicts, and draw conclusions. Point
(ii) is present in all three formalisms. The discussed results show that the actual
computational complexity in this step may highly depend on the chosen semantics
and reasoning task. Moreover, faced with the typically high complexity we dis-
cussed approaches to identify instances with lower complexity and solve them more
efficiently.

Implications for the Design of Systems and Algorithms. First given the
upper bounds of the complexity analysis we have first guidelines how to implement
argumentation semantics, and on the computational resources required for that. An
efficient system should process any instance within the resources given by the upper
bound but moreover also should perform better on easier instances. In particular
an efficient system should also be able to process instances that fall into one of the
tractable fragments with milder complexity more efficiently. A system for abstract
argumentation that is explicitly built around this idea is CEGARTIX [Dvořák et
al., 2014a], that is based on easier fragments for semantics on the second level of the
polynomial-hierarchy.

The complexity classification of a semantics is also crucial for reduction-based
implementations. To get an appropriate reduction the target formalism should have
a similar complexity as the argumentation semantics, or one should only use a frag-
ment of the target formalism with similar complexity. One example is the ASPAR-
TIX [Egly et al., 2010] system that encodes abstract argumentation problems in
logic-programming in a query-based fashion. That is, the system provides fixed en-
codings for the supported argumentation semantics (the queries) that are then eval-
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uated on the encoding of considered AF (the input data).20 The polynomial-time
computable grounded semantics is encoded as stratified logic program, a fragment
whose data-complexity is in polynomial time (even P-complete), the semantics at
the NP, coNP level are encoded as programs without disjunction in the rule heads,
the data-complexity of this kind of logic programs is on the NP / coNP level, and the
full expressiveness of disjunctive logic programs is only used for the argumentation
semantics whose complexity is at the second level of the polynomial-hierarchy.21

Another example is the work on intertranslatability of abstract argumentation
semantics where one aims to efficiently translate one argumentation semantics to
another, by modifying the argumentation framework [Dvořák and Woltran, 2011;
Dvořák and Spanring, 2016]. Here a gap in the complexities of the semantics imme-
diately gives a negative result.

Function Complexity. In this paper we restricted ourselves to what we consider
to be the core computational problems and in particular to decision problems. In
terms of computational complexity function problems, problems where one wants
to compute a number, extensions or the set of extensions, are only rarely studied,
notable exceptions are the research line on ideal semantics [Dunne, 2009; Dunne
et al., 2013], the work on counting the number of extensions [Baroni et al., 2010,
and the work on computing an admissible set that results in a minimal socratic
discussion [Caminada et al., 2016]. Recently, Kröll et al. started the research on
enumeration complexity in abstract argumentation [Kröll et al., 2017], where one is
interested in the computational cost per extension.

Fine-Grained Lower Bounds. Lower bounds from classical computational com-
plexity theory like NP-hardness indicate that there are no polynomial-time algo-
rithms. However, they neither indicate lower bounds for the constants in the ex-
ponent of exponential running times nor rule out subexponential algorithms at all.
That is, there is still some gap between the best known algorithms for the hard prob-
lems, they are exponential-time (see, e.g., [Nofal et al., 2014]), and the existing lower
bounds. To overcome this gap, in the field of combinatorial algorithms, so called
conditional lower bounds are studied (see, e.g., [Abboud and Williams, 2014]). That
is, one uses conjectures about lower bounds for well studied algorithmic problems.
To obtain a lower bound for a new problem one then reduces the problem from the
conjecture to the problem under question such that a faster algorithm for the new

20The specific encoding of an AF as logic program has became popular beyond the logic pro-
gramming setting as the so-called ASPARTIX-format for encoding AFs.

21For a survey on the complexity of logic-programs see [Dantsin et al., 2001].
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problem would imply a faster algorithm for the original problem and thus would
contradict the conjecture. By that one gets an algorithmic lower bound for the new
problem conditioned on the original conjecture. Probably the most prominent such
conjecture is the (strong) exponential-time hypothesis (S)ETH [Impagliazzo and
Paturi, 1999], with ETH conjecturing that there is no subexponential algorithm for
3-SAT, and SETH conjecturing that there is no algorithm for CNF-SAT that runs
in time 2(1−ε)n ⋅ poly(n,m), for every constant ε > 0 and polynomial poly(n,m). As
many of the existing reductions in formal argumentation are based on propositional
logic (S)ETH is also a promising starting point for closing these complexity gaps in
formal argumentation.

Complexity Analysis of further Argumentation Formalisms. In this pa-
per we only cover three argumentation formalisms, while there are many more
around and many of them come with a complexity analysis. Below we give a brief
overview and pointers to the relevant literature. First, there are formalisms, e.g.
AFRAs [Baroni et al., 2011b], that extend Dung’s Abstract argumentation frame-
works and can be efficiently reduced to them. For such formalisms the complexity
results for AFs directly extend to the new formalism. Second, there are exten-
sions of AFs that can not be reduced in such a direct way and thus need their
own complexity analysis. Most prominently: The complexity of Extended argu-
mentation frameworks was studied in [Dunne et al., 2010] and later complemented
by a result in [Dvořák et al., 2015]; Valued-based argumentation has been dis-
cussed in an earlier survey [Dunne and Wooldridge, 2009] on the complexity of
abstract argumentation and more recent results can be found in, e.g., [Dunne, 2010;
Kim et al., 2011]; weighted argumentation systems and their complexity have been
studied in [Dunne et al., 2011]; and Constrained Argumentation Frameworks [Coste-
Marquis et al., 2006]. Finally, there are complexity results for logic-based argumenta-
tion formal isms. Complexity aspects of Deductive Argumentation were for instance
considered in [Besnard et al., 2009; Creignou et al., 2011], while the complexity of
Defeasible Logic Programming (DeLP) was studied in [Cecchi et al., 2006].

Complexity Analysis in Formal Argumentation. At the current state of the
field for most argumentation formalisms we already have a good understanding of
the computational complexity of the fundamental problems and the important se-
mantics. However, this by no means says that all research questions in that direction
are solved. Indeed the field of formal argumentation is very active and with almost
every new research topic there come associated computational problems that should
be analysed w.r.t. their computational complexity. Let us exemplify three such oc-
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casion where a complexity analysis can deepen our understanding: (a) For a newly
proposed semantics the complexity of the fundamental reasoning problems should be
analysed in order to compare it with existing semantics and identified computational
benefits/drawbacks. (b) When expanding existing argumentation formalisms with
additional (syntactic) concepts one is interested in the (additional) computational
costs of these concepts. That is by how much the complexity increases or whether
one can add these concepts without any computational drawbacks. (c) When consid-
ering novel tasks for argumentation systems a complexity classification gives a first
impression on the feasibility of the new task and guides the way to efficient imple-
mentations. For instance, recently the field of dynamics of argumentation received
some attention [Diller et al., 2015; Snaith and Reed, 2016; Wallner et al., 2016;
Kim et al., 2013] and raised a couple of computational problems, e.g., the so-called
extension enforcement problem [Baumann and Brewka, 2010] where one aims to
modify an AF such that a certain set of arguments becomes acceptable. The work
of [Wallner et al., 2016] first gives a comprehensive complexity analysis of the en-
forcement problem and then turns these results into algorithms and the prototype
system Pakota 22.
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Abstract
We survey the current state of the art of general techniques, as well as specific

software systems for solving tasks in abstract argumentation frameworks, struc-
tured argumentation frameworks, and approaches for visualizing and analysing
argumentation. Furthermore, we discuss challenges and promising techniques
such as parallel processing and approximation approaches. Finally, we address
the issue of evaluating software systems empirically with links to the Interna-
tional Competition on Computational Models of Argumentation.

1 Introduction
Compared to related areas such as argumentation theory [van Eemeren et al., 2014],
research conducted in the formal argumentation community seeks formal accounts
of argumentation with explicit links to knowledge representation and reasoning, and
artificial intelligence [Brachman and Levesque, 2004; Russell and Norvig, 2003]. An
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important feature for these accounts is computability, i. e., the possibility to provide
algorithmic methods to solve problems.

In this paper, we survey general computational techniques and concrete imple-
mentations for solving problems related to formal argumentation. We distinguish
between: (1) Approaches to abstract argumentation frameworks, (2) Approaches to
structured argumentation frameworks (such as ASPIC+ and DeLP), and (3) Other
approaches, including semi-formal systems related to visualization of argumentation
processes or exchange of arguments on the web.

Between them, the most active research direction within the formal argumen-
tation community1 is devoted to the first category—algorithms and systems for
abstract argumentation frameworks—reviewed in Section 2. The relevant compu-
tational problems and their (high) computational complexity have been studied in
e. g. [Dunne and Wooldridge, 2009]. Here, we focus on the algorithmic issues and
techniques to handle the high computational complexity of some of those problems.
The development of implementations has accelerated recently, also due to the foun-
dation of the International Competition on Computational Models of Argumentation
(ICCMA):2 besides discussing general techniques we will also survey concrete sys-
tems.

We will also look at techniques and systems solving problems for structured
approaches to formal argumentation. Due to the multitude of different approaches
to structured argumentation, computational techniques and algorithms are usually
tailored towards specific approaches. We will discuss them in Section 3.

In order to complement our survey we will also have a brief look at other sys-
tems that incorporate some kind of (semi-)formal argumentation such as argument
schemes and argumentation technologies (or debating technologies) which are popu-
lar in many other fields besides the formal argumentation community. In contrast to
the perspective of artificial intelligence and knowledge representation usually taken
by researchers in the formal argumentation community, the focus of the systems in
this third category is on human-computer interaction and supporting critical think-
ing. We will discuss these systems in Section 4, concluding the survey part of this
paper.

In Section 5 we will look beyond the current state of the art of algorithms and sys-
tems and current challenges for the development of systems, such as parallelization
and approximation algorithms, focusing on abstract and structured argumentation
approaches. A recent effort to promote the development of systems for solving ar-
gumentation tasks is the ICCMA: the first instance of the competition took place

1Approaches in the third category are also addressed by other research communities such as
human-computer-interaction and web science.

2http://argumentationcompetition.org (on 27/04/2017).
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in 2015 [Thimm et al., 2016]. We will discuss this competition and general methods
for empirically evaluating systems in Section 6.

2 Abstract Argumentation Implementations
In this section we will give an overview of implementations for abstract Argumen-
tation Frameworks (AFs) following the approach from Dung [Dung, 1995] and give
an overview of existing systems for Dung’s framework as well as for some related
formalisms.

One can divide the implementations for abstract AFs into two categories: the
reduction-based approach and the direct approach. The former one reduces the prob-
lem at hand into another formalism to exploit existing solvers from the other for-
malism. We will discuss this method and the dedicated implementations in the
following subsection. The other possibility is to design algorithms to directly solve
the problem. This implementation method will be presented in Subsection 2.2. For
a more detailed discussion on implementation methods for AFs we refer to [Charwat
et al., 2015].

Before we go into details on the different approaches we briefly introduce the
background on abstract argumentation [Dung, 1995] and the notation we will use in
this section. For comprehensive surveys on argumentation semantics the interested
reader is referred to [Baroni et al., 2011a].

Definition 2.1. An argumentation framework (AF ) is a pair AF = 〈Ar , att〉, where
Ar is a finite set of arguments and att ⊆ Ar × Ar is the attack relation. The pair
〈a, b〉 ∈ Ar means that a attacks b. A set S ⊆ Ar of arguments attacks b (in AF ),
if there is an a ∈ S, such that 〈a, b〉 ∈ att. An argument a ∈ Ar is defended by
S ⊆ Ar (in AF ) iff, for each b ∈ Ar , it holds that, if 〈b, a〉 ∈ att, then S attacks
b (in AF ). Given a set S ⊆ Ar , S+ = {a ∈ Ar | 〈b, a〉 ∈ att, b ∈ S}, and
S− = {a ∈ Ar | 〈a, b〉 ∈ att, b ∈ S}.

The inherent conflicts between the arguments are solved by selecting subsets
of arguments, where a semantics σ assigns a collection of sets of arguments to an
argumentation framework AF . The basic requirement for all semantics is that none
of the selected arguments attack each other3.

3We concentrate here on the basic Dung-style argumentation framework, and do not consider
approaches like value-based argumentation frameworks (VAFs) [Bench-Capon, 2003] or inconsis-
tency tolerant semantics [Dunne et al., 2009] (where this requirement does not hold), as our main
focus is on implementation methods.
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Definition 2.2. Let AF = 〈Ar , att〉 be an AF. A set S ⊆ Ar is said to be conflict-
free (in AF ), if there are no a, b ∈ S, such that 〈a, b〉 ∈ att. We denote the collection
of sets which are conflict-free (in AF ) by cf (F ).
Definition 2.3. Let AF = 〈Ar , att〉 be an AF, then S ∈ cf (AF ) is
• a stable extension, i. e. S ∈ EST (AF ), if each a ∈ Ar \ S is attacked by S in
AF ;

• an admissible extension, i. e. S ∈ EAD(AF ), if each a ∈ S is defended by S;

• a preferred extension, i. e. S ∈ EPR(AF ), if S ∈ EAD(AF ) and for each
T ∈ EAD(AF ), S 6⊂ T ;
• a complete extension, i. e. S ∈ ECO(AF ), if S ∈ EAD(AF ) and for each a ∈ Ar
defended by S it holds that a ∈ S;
• the grounded extension (of AF ), i. e. the unique set S = EGR(AF ), if S ∈
ECO(AF ) and for each T ∈ ECO(AF ), T 6⊂ S.

The typical problems of interest in abstract argumentation are the following
decision problems for given AF = 〈Ar , att〉, a semantics σ, a ∈ Ar and S ⊆ Ar :
• Verification Verσ: is S ∈ Eσ(AF )?

• Credulous acceptance Credσ: is a contained in at least one σ extension of AF?

• Skeptical acceptance Skeptσ: is a contained in every σ extension of AF?

• Non-emptiness Exists¬∅σ : is there any S ∈ Eσ(AF ) for which S 6= ∅?
Computational complexity of decision problems on AFs is well-studied. For an over-
view see e. g. [Dunne and Wooldridge, 2009].

2.1 Reduction-based Implementations
Reduction-based implementations are a very common approach as one benefits from
very sophisticated solvers developed and improved by several communities. The
underlying idea is to exploit existing efficient software which has originally been
developed for other purposes. To this end, one has to formalize the reasoning prob-
lems within other formalisms such as constraint-satisfaction problems (CSP) [Rossi
et al., 2006], propositional logic [Biere et al., 2009] or answer-set programming (ASP)
[Brewka et al., 2011]. The general methodology of the reduction-based approach is
to reduce the problem at hand to the target formalism, run the solver (of the tar-
get formalism) and interpret the output as the solutions of the original problem, as
depicted in Figure 1.
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Problem

Target Formalism Solver

Solution

Output
?

- -

6

Reduction Interpreting

Figure 1: Reduction-based approach.

2.1.1 SAT-based Approach

Reductions to SAT have been first advocated in [Dunne and Bench-Capon, 2002]
and [Dunne and Bench-Capon, 2003] and then further developed by Besnard and
Doutre [Besnard and Doutre, 2004], and later extended by means of quantified
propositional logic [Arieli and Caminada, 2013; Egly and Woltran, 2006]. Several
prominent systems use reductions to SAT, such as Cegartix [Dvořák et al., 2014]
and {j}ArgSemSAT [Cerutti et al., 2014c; Cerutti et al., 2016b; Cerutti et al.,
2017] that both rely on iterative calls to SAT solvers for argumentation semantics of
high complexity (i. e. being located on the second level of the polynomial hierarchy).
Further SAT-based systems include prefMaxSAT [Vallati et al., 2015; Faber et al.,
2016], which uses the MaxSAT approach for the computation of preferred semantics;
the LabSATSolver [Beierle et al., 2015], which uses propositional formulas based on
labellings and, for the subset maximization task, the PrefSat Algorithm [Cerutti et
al., 2014a] that then become {j}ArgSemSAT. The system CoQuiAAS [Lagniez
et al., 2015], which also uses SAT encodings for some semantics, will be explained
in Subsection 2.1.2, as the maximization task necessary for instance for preferred
semantics is performed by means of constraint programming.

Background. Let us consider a set of propositional variables (or atoms) P and the
connectives ∧,∨,→ and ¬, denoting respectively the logical conjunction, disjunction,
material implication and negation. The constants > and ⊥ denote respectively true
and false. In addition, we consider quantified Boolean formulae (QBF) with the
universal quantifier ∀ and the existential quantifier ∃ (both over atoms), that is,
given a formula φ, then Qpφ is a QBF, with Q ∈ {∀,∃} and p ∈ P. Q{p1, . . . , pn}φ
is a shorthand for Qp1 · · ·Qpnφ. A propositional variable p in a QBF φ is free if
it does not occur within the scope of a quantifier Qp and bound otherwise. If φ
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contains no free variable, then φ is said to be closed and otherwise open. We will
write φ[p/ψ] to denote the result of uniformly substituting each free occurrence of
p with ψ in formula φ.

An interpretation I ⊆ P defines for each propositional variable a truth assign-
ment where p ∈ I indicates that p evaluates to true while p /∈ I indicates that p
evaluates to false. This generalizes to arbitrary formulae in the standard way: Given
a formula φ and an interpretation I, then φ evaluates to true under I (i. e., I satisfies
φ) if one of the following holds (with p ∈ P).

• φ = p and p ∈ I

• φ = ¬p and p 6∈ I

• φ = ψ1 ∧ ψ2 and both ψ1 and ψ2 evaluate to true under I

• φ = ψ1 ∨ ψ2 and one of ψ1 and ψ2 evaluates to true under I

• φ = ψ1 → ψ2 and ψ1 evaluates to false or ψ2 evaluates to true under I

• φ = ∃pψ and one of ψ[p/>] and ψ[p/⊥] evaluates to true under I

• φ = ∀pψ and both ψ[p/>] and ψ[p/⊥] evaluate to true under I.

If an interpretation I satisfies a formula φ, denoted by I |= φ, we say that I is a
model of φ.

Reductions to propositional logic. The first reduction-based approach
[Besnard and Doutre, 2004; Egly and Woltran, 2006] we consider here uses propo-
sitional logic formulae (without quantifiers) to encode the problem of finding ad-
missible sets. Given an AF AF = 〈Ar , att〉, for each argument a ∈ Ar a propo-
sitional variable va is used. Then, S ⊆ Ar is an extension under semantics σ iff
{va | a ∈ S} |= φ, with φ being a propositional formula that evaluates AF AF
under semantics σ (below we will present in detail how to translate AFs into for-
mulae). Formally, the correspondence between sets of extensions and models of a
propositional formula can be defined as follows.

Definition 2.4. Let T ⊆ 2Ar be a collection of sets of arguments and let I ⊆ 2P
be a collection of interpretations. We say that T and I correspond to each other, in
symbols T ∼= I, if

1. for each S ∈ T , there exists an I ∈ I, such that {a | va ∈ I, a ∈ Ar} = S;

2. for each I ∈ I, there exists an S ∈ T , such that {a | va ∈ I, a ∈ Ar} = S; and

2628



Foundations of Implementations for Formal Argumentation

a b c d e

Figure 2: Example argumentation framework.

3. |T | = |I|.

Given an AF AF = 〈Ar , att〉, the following formula can be used to solve the
enumeration problem of admissible semantics.

admAr ,att :=
∧

a∈Ar

(
(va →

∧

〈b,a〉∈att
¬vb) ∧ (va →

∧

〈b,a〉∈att
(
∨

〈c,b〉∈att
vc))

)
(1)

Note that an empty conjunction is treated as >, whereas the empty disjunction is
treated as ⊥.

The models of admAr ,att now correspond to the admissible sets of AF , i. e., we
have EAD(AF ) ∼= {M | M |= admAr ,att}. The first conjunction in (1) ensures
that the resulting set of arguments is conflict-free, that is, whenever we accept an
argument a (i. e., va evaluates to true under a model), all its attackers cannot be
accepted. The second conjunct expresses the defense of arguments by stating that,
if we accept a, then for each attacker b, some defender c must be accepted as well.
Example 2.5. Let AF = 〈Ar , att〉 be an AF with Ar = {a, b, c, d, e} and att =
{〈a, b〉, 〈b, c〉, 〈c, b〉, 〈d, c〉, 〈d, e〉, 〈e, e〉} as depicted in Figure 2. The corresponding
propositional formula admAr ,att is as follows.

admAr ,att ≡(va → >)∧
(vb → (¬va ∧ ¬vc))∧
(vc → (¬vb ∧ ¬vd))∧
(vd → >)∧
(ve → (¬vd ∧ ¬ve))∧
(va → >)∧
(vb → (⊥ ∧ (vb ∨ vd)))∧
(vc → ((va ∨ vc) ∧ ⊥))∧
(vd → >)∧
(ve → (⊥ ∧ vd))
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It is easy to see that I = {I1, I2, I3, I4} represents the set of models of admAr ,att,
where

I1 = {va 7→ ⊥, vb 7→ ⊥, vc 7→ ⊥, vd 7→ ⊥, ve 7→ ⊥},
I2 = {va 7→ >, vb 7→ ⊥, vc 7→ ⊥, vd 7→ ⊥, ve 7→ ⊥},
I3 = {va 7→ ⊥, vb 7→ ⊥, vc 7→ ⊥, vd 7→ >, ve 7→ ⊥},
I4 = {va 7→ >, vb 7→ ⊥, vc 7→ ⊥, vd 7→ >, ve 7→ ⊥}.

As T = {S1, S2, S3, S4}, with S1 = {}, S2 = {a}, S3 = {d} and S4 = {a, d}, is the
set of all admissible sets of AF we clearly have the correspondence I ∼= T as desired.

Reductions to quantified Boolean formulas. For problems beyond NP we
require a more expressive formalism than propositional logic. For this purpose we
consider QBFs. In the following we will show how to reduce a given AF into a
QBF such that the models of the QBF correspond to the preferred extensions of the
AF [Egly and Woltran, 2006].

In order to realize the maximality check for preferred semantics we need to be
able to compare two sets of atoms w.r.t. set inclusion. Consider the formula

Ar < Ar ′ :=
∧

a∈Ar
(va → va′) ∧ ¬

∧

a′∈Ar ′
(va′ → va),

where Ar ′ = {a′ | a ∈ Ar}. This formula ensures that any model M |= (Ar < Ar ′)
satisfies {a ∈ Ar | va ∈ M} ⊂ {a ∈ Ar | va′ ∈ M}. Now we can state the QBF
prf Ar ,att for preferred extensions. Let the quantified variables be Ar ′v = {va′ | a′ ∈
Ar ′} and att ′ = {〈a′, b′〉 | 〈a, b〉 ∈ att}. Then

prf Ar ,att := admAr ,att ∧ ¬∃Ar ′v((Ar < Ar ′) ∧ admAr ′,att′) . (2)

Thus, for any AF AF = 〈Ar , att〉 an interpretation I is a model of prf Ar ,att iff it
satisfies the formula for admissible sets and there exists no “bigger” interpretation
I ′ that also satisfies the the corresponding formula for admissible sets.
Example 2.5 (continued) There, I4 is the only interpretation which satisfies the
QBF prf Ar ,att and the corresponding set S4 is the only preferred extension of AF .

Similar approaches have been proposed by Arieli and Caminada in [Arieli and
Caminada, 2013] and for Abstract Dialectical Frameworks by Diller et al. in QADF
[Diller et al., 2015].
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Iterative application of SAT solvers. The final approach we outline here is
based on the idea of iteratively searching for models of propositional formulae and
has been instantiated in the systems {j}ArgSemSAT [Cerutti et al., 2014a; Cerutti
et al., 2014c; Cerutti et al., 2016b] and Cegartix [Dvořák et al., 2014]. The idea is
to use an algorithm which iteratively constructs formulae and searches for models
of these formulae. A new formula is generated based on the model of the previous
one (or based on the fact that the previous formula is unsatisfiable). At some point
the algorithm reaches a final decision and terminates.

The iterative approach is suitable when the problem to be solved cannot be
decided in general—under standard complexity theoretic assumptions—by the sat-
isfiability of a single propositional formula, constructible in polynomial time without
quantifiers. This is, for instance, the case with skeptical acceptance under preferred
semantics, where the corresponding decision problem is ΠP

2 -complete. Instead of
reducing the problem to a single QBF formula, the solving task is delegated to the
iterative scheme of an algorithm querying a SAT solver multiple times.

The algorithms for preferred semantics work roughly as follows. To compute
preferred extensions we traverse the search space of a computationally simpler se-
mantics. For instance, we can iteratively search for admissible sets or complete
extensions and iteratively extend them until we reach a maximal set, which is a
preferred extension. By generating a new candidate for an admissible set or a com-
plete extension, which is not contained in an already visited preferred extension, we
can enumerate all preferred extensions in this manner. This allows answering both
credulous and skeptical reasoning problems as well.

For deciding e. g. skeptical acceptance of an argument under preferred semantics
one requires, in the worst case, an exponential number of calls to the SAT solver—
under standard complexity-theoretic assumptions. However, the actual number of
SAT calls in the iterative SAT scheme depends on the number of preferred extensions
of the given AF, see [Dvořák et al., 2014].

In the following, we sketch the Cegartix approach from [Dvořák et al., 2014]
for skeptical acceptance of an argument under preferred semantics. The algorithm
returns YES if a is skeptically accepted, NO otherwise. To do so we try to construct
a preferred extension which does not contain a. If this is possible we know that a is
not skeptically accepted under preferred semantics, otherwise the algorithm returns
YES.

1) Check if there is an interpretation I satisfying the formula φ (initially φ =
admAr ,att ∧ ¬va). If such an interpretation I exists, go to Step 2. Otherwise
there is no admissible set which does not contain a, and the algorithm returns
YES.
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2) Try to add new arguments to I by updating it (as long as possible) with
interpretations satisfying the formula

admAr ,att ∧ ¬va ∧ (
∧

a∈Ar ,va∈I
va) ∧ (

∨

a∈Ar ,va 6∈I
va).

3) For the maximized interpretation I, check if it is possible to add the argument
a to it by checking for models of the formula

φ′ = admAr ,att ∧ (
∧

a∈Ar ,va∈I
va) ∧ (

∨

a∈Ar ,va 6∈I
va).

If there is an interpretation I ′ satisfying φ′, there is a preferred extension
which contains a. Otherwise, there is a preferred extension, namely the one
represented by the interpretation I, which does not contain the argument a.
In this case the algorithm outputs NO and terminates.

4) The algorithm continues with the search for a different preferred extension
which does not contain the arguments of I by modifying the formula φ as
follows:

φ′ = φ ∧ (
∨

a∈Ar ,va 6∈I
va).

Go to Step 1.

Example 2.5 (continued) Let us exemplify the algorithm of Cegartix on our AF
from Example 2.5, where we want to decide skeptical acceptance of the argument d.
We know that there are four interpretations satisfying the formula for admissible sets
and only I1 and I2 satisfy the formula φ = admAr ,att∧¬vd of Step 1. Let us continue
with I = I1 which represents the admissible set S1 = {}. In Step 2, we update I by
setting va to >. Remember, we cannot set vd to > as φ contains the clause ¬vd. In
Step 3 we check if there is an I ′ satisfying the formula φ′ = admAr ,att ∧ va ∧ (vb ∨
vc ∨ vd ∨ ve). Indeed I ′ = {va 7→ >, vb 7→ ⊥, vc 7→ ⊥, vd 7→ >, ve 7→ ⊥} is a model
of φ′, thus we constructed a preferred extensions, namely S = {a, d} containing the
argument a. In Step 4 we update our formula to φ = admAr ,att∧¬vd∧(vb∨vc∨vd∨ve)
and go to Step 1. In the next iteration, we check the new formula φ for models, but
as φ is not satisfiable the algorithm outputs YES and terminates.

One can use a modified version of the above algorithm to enumerate all preferred
extensions. More concretely, one can add the obtained preferred extension from Step
2 to the output-set and then update the formula as in Step 4, while omitting Step
3. Further, the conjunct containing a negated variable for the queried argument
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must be removed. The PrefSat approach [Cerutti et al., 2014a] as implemented in
the system {j}ArgSemSAT [Cerutti et al., 2014c; Cerutti et al., 2016b] uses this
method to compute all preferred labellings.

2.1.2 Reductions to Constraint Satisfaction Problems

In the following we introduce reductions to another target formalism, namely Con-
straint Satisfaction Problems (CSPs) [Rossi et al., 2006], which allow to solve combi-
natorial search problems. Reductions to CSP have been addressed by Amgoud and
Devred [Amgoud and Devred, 2011] and Bistarelli, Pirolandi, and Santini [Bistarelli
et al., 2009; Bistarelli and Santini, 2010; Bistarelli and Santini, 2011; Bistarelli and
Santini, 2012b; Bistarelli and Santini, 2012a]; the latter works led to the development
of the ConArg system. Further systems based on CSP are CoQuiAAS [Lagniez
et al., 2015] and ASGL [Sprotte, 2015]. The approach of CSP is inherently related
to propositional logic reductions as introduced in Subsection 2.1.1, see also [Walsh,
2000] for a formal analysis of the relation between the two approaches.

A CSP can generally be described by a triple (X,D,C), where X = {x1, . . . , xn}
is the set of variables, D = {D1, . . . , Dn} is a set of finite domains for the variables
and C = {c1, . . . , cm} a set of constraints. Each constraint ci is a pair (hi, Hi) where
hi = (xi1, . . . , xik) is a k-tuple of variables and Hi is a k-ary relation over D. In
particular, Hi is a subset of all possible variable values representing the allowed
combinations of simultaneous values for the variables in hi. An assignment v is a
mapping that assigns to every variable xi ∈ X an element v(xi) ∈ Di. An assignment
v satisfies a constraint ((xi1, . . . , xik), Hi) ∈ C iff (v(xi1), . . . , v(xik)) ∈ Hi. Finally,
a solution is an assignment v to all variables such that all constraints are satisfied,
denoted by (v(x1), . . . , v(xn)).

Finding a valid assignment of a CSP is in general NP-complete. Nevertheless,
several programming libraries support constraint programming, like ECLiPSe,4 SWI
Prolog,5 Gecode,6 JaCoP,7 Choco,8 Turtle9 (just to mention some of them) and allow
for efficient implementations of CSPs. These constraint programming solvers make
use of techniques like backtracking and local search.

Given an AF AF = 〈Ar , att〉, the associated CSP (X,D,C) is specified as X =
Ar and for each ai ∈ X, Di = {0, 1}. The constraints are formulated depending on
the specific semantics σ. For example, solutions that correspond to conflict-free sets

4http://eclipseclp.org/ (on 27/04/2017).
5http://www.swi-prolog.org/ (on 27/04/2017).
6http://www.gecode.org/ (on 27/04/2017).
7https://github.com/radsz/jacop (on 27/04/2017).
8http://www.choco-solver.org/ (on 27/04/2017).
9https://github.com/timfel/turtle (on 27/04/2017).
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can be obtained by defining a constraint for each pair of arguments a and b with
〈a, b〉 ∈ att, where the two variables may not be set to 1 at the same time. Here,
the constraint is of the form ((a, b), ((0, 0), (0, 1), (1, 0))) which is equivalent to the
cases when the propositional formula (a→ ¬b) evaluates to true.

In the following, we will use the notation from [Amgoud and Devred, 2011],
because it reflects the similarities between the CSP approach and the reductions to
propositional logic as outlined above.

For admissible semantics we get the following constraints.

CAD =
{

(a→
∧

b:〈b,a〉∈att
¬b) ∧ (a→

∧

b:〈b,a〉∈att
(

∨

c:〈c,b〉∈att
c))

∣∣∣ a ∈ Ar
}

(3)

The first part ensures conflict-free sets and the second part encodes the defense
of arguments. Then, for an AF AF = 〈Ar , att〉 and its associated admissible CSP
(X,D,CAD), (v(x1), . . . , v(xn)) is a solution of the CSP iff the set {xj , . . . , xk} s.t.
v(xi) = 1 is an admissible set in AF .
Example 2.5 (continued) For our AF we obtain the following admissible CSP
(X,D,CAD). X = A, for each ai ∈ X we have Di = {0, 1} and

CAD = {(a→ >) ∧ (a→ >), (b→ ¬a ∧ ¬c) ∧ (b→ ⊥∧ d),
(c→ ¬b ∧ ¬d) ∧ (c→ (a ∨ c) ∧ ⊥), (d→ >) ∧ (d→ >),
(e→ ¬d ∧ ¬e) ∧ (e→ ⊥∨ d)}.

This CSP has the following solutions: (0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 0, 0, 1, 0), (1, 0,
0, 1, 0) which correspond to the admissible sets of AF , namely {}, {a}, {d} and {a, d}.

Most CSP solvers do not support subset maximization. Thus, for preferred
semantics, Bistarelli and Santini [2012a] propose an approach that iteratively com-
putes admissible/complete extensions and adds constraints to exclude certain sets,
such that one finally obtains the preferred extensions.

Reductions to Weighted Partial Max-SAT. This approach has been imple-
mented in CoQuiAAS [Lagniez et al., 2015] and in prefMaxSAT [Vallati et al.,
2015; Faber et al., 2016] and is particularly tailored to maximization problems as
needed to compute preferred semantics. A Weighted Partial Max-SAT problem is a
problem which maximizes the sum of weights associated to constraints, where the
term partial means that some constraints have an infinite weight, which means they
need to be satisfied. The system CoQuiAAS uses a SAT-Solver but the problem
of Weighted Partial Max-SAT is more related to Constraint Programming, therefore
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we discuss this approach in this section, but of course it is also closely related to the
previous section.

The computation of preferred extensions in [Lagniez et al., 2015] is based on
complete extensions which are obtained as follows. For an AF AF = 〈Ar , att〉 and
for each a ∈ Ar we use a boolean variable va.

compAr ,att :=
∧

a∈Ar

(
va → (

∧

b∈Ar :〈b,a〉∈att
¬vb) ∧ (va ↔ (

∧

b∈Ar :〈b,a〉∈att

∨

c∈Ar :〈c,b〉∈att
vc))

)

The models of compAr ,att correspond to the complete extensions of AF , i. e., we
have ECO(F ) ∼= {M |M |= compAr ,att}. Then, the maximal models of compAr ,att
correspond to the preferred extensions of AF . To obtain these one uses the concept
of a maximal satisfiable subset (MSS). For a set of formulas F the set of formulas
S ⊆ F is a MSS iff S is satisfiable and for each c ∈ F \ S, S ∪ {c} is unsatisfiable.

Now, the computation of preferred extension reduces to the computation of MSSs
of the sets of weighted formulas

prf Ar ,att = {(compAr ,att ,+∞), (a1, 1), . . . , (an, 1)}

where a1, . . . , an ∈ Ar .

2.1.3 Reductions to Answer Set Programming

The use of logic programming to solve abstract argumentation problems has been
initiated by several authors (the survey article by Toni and Sergot [Toni and Ser-
got, 2011] provides a good overview), including the approach proposed by Nieves et
al. [Nieves et al., 2008], where the program is re-computed for every input instance;
Wakaki and Nitta [Wakaki and Nitta, 2008], who use labelling-based semantics; and
the approach by Egly et al. [Egly et al., 2010a], which follows extension-based seman-
tics. Here, we focus on the latter—the ASPARTIX approach—[Egly et al., 2010a;
Dvořák et al., 2013a; Gaggl et al., 2015], which relies on a query-based implemen-
tation where the argumentation framework to be evaluated is provided as an input
database. From this point of view, the SAT or CSP methods can be seen as a
compiler-like approach to abstract argumentation, while the ASP method acts like
an interpreter.

A large collection of such ASP queries is provided by the ASPARTIX-D and
ASPARTIX-V systems. Furthermore, the DIAMOND system [Ellmauthaler
and Strass, 2014] for Abstract Dialectical Frameworks (ADFs), as well as theGERD
system [Dvořák et al., 2015] for extended argumentation frameworks (EAFs) are
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based on ASP. In the following, we first give a brief introduction to ASP. We then
present how the computation of admissible sets can be encoded in ASP. In order
to obtain preferred extensions, it is necessary to check for subset-maximality of
admissible sets. We will give pointers to the literature on several approaches for the
subset-maximality check and refer to [Charwat et al., 2015] for a detailed discussion.

Background. Let us consider disjunctive logic program under the answer-set se-
mantics [Gelfond and Lifschitz, 1991].10 We fix a countable set U of (domain)
elements, also called constants, and suppose a total order < over the domain ele-
ments. An atom is an expression p(t1, . . . , tn), where p is a predicate of arity n ≥ 0
and each ti is either a variable or an element from U . An atom is ground if it is free
of variables. BU denotes the set of all ground atoms over U .

A (disjunctive) rule r with n ≥ 0, m ≥ k ≥ 0, n+m > 0 is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm

where a1, . . . , an, b1, . . . , bm are atoms, and “not ” stands for default negation. An
atom a is a positive literal, while not a is a default-negated literal. The head of r
is the set H(r) = {a1, . . . , an} and the body of r is B(r) = B+(r) ∪ B−(r) with
B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A rule r is normal if n ≤ 1 and a
constraint if n = 0. A rule r is safe if each variable in H(r) occurs in B+(r). A rule
r is ground if no variable occurs in r. A fact is a ground rule with a single literal in
the head and with an empty body. An (input) database is a set of facts. A program
is a finite set of safe disjunctive rules. For a program π and an input database D,
we often write π(D) instead of D ∪ π. If each rule in a program is normal (resp.
ground), we call the program normal (resp. ground).

For any program π, let Uπ be the set of all constants appearing in π. Gr(π) is
the set of rules rτ obtained by applying, to each rule r ∈ π, all possible substitutions
τ from the variables in r to elements of Uπ. An interpretation I ⊆ BU satisfies a
ground rule r iff H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. I satisfies
a ground program π, if each r ∈ π is satisfied by I. A non-ground rule r (resp. a
program π) is satisfied by an interpretation I iff I satisfies all groundings of r (resp.
Gr(π)). I ⊆ BU is an answer set of π iff it is a subset-minimal set satisfying the
Gelfond-Lifschitz reduct πI = {H(r) ← B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(π)}. For a
program π, we denote the set of its answer sets by AS(π).

Reduction to ASP. We now provide fixed queries for admissible sets in such a
way that an argumentation framework AF is given as an input database F̂ and the

10For further background, see [Eiter et al., 1997; Brewka et al., 2011].
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answer sets of the program πe(F̂ ) are in a certain one-to-one correspondence with
the respective extensions, where e ∈ {AD,PR}. For an AF AF = 〈Ar , att〉, we
define

F̂ = { arg(a) | a ∈ Ar} ∪ {att(a, b) | 〈a, b〉 ∈ att }.
We have to guess candidates for the selected type of extensions and then check
whether a guessed candidate satisfies the corresponding conditions, where default
negation is an appropriate concept to formulate such a guess within a query. In
what follows, we use unary predicates in(·) and out(·) to perform a guess for a set
S ⊆ Ar , where in(a) means a ∈ S.

Similar to Definition 2.4, we define the subsequent notion of correspondence
which is relevant for our purposes.

Definition 2.6. Let T ⊆ 2U be a collection of sets of domain elements and let
I ⊆ 2BU be a collection of sets of ground atoms. We say that T and I correspond
to each other, in symbols T ∼= I, iff

1. for each S ∈ T , there exists an I ∈ I, such that {a | in(a) ∈ I} = S;

2. for each I ∈ I, there exists an S ∈ T , such that {a | in(a) ∈ I} = S; and

3. |T | = |I|.

Let AF = 〈Ar , att〉 be an argumentation framework. The following program
fragment guesses, when augmented by F̂ , any subset S ⊆ A and then checks whether
the guess is conflict-free in AF :

πcf = { in(X)← not out(X), arg(X);
out(X)← not in(X), arg(X);
← in(X), in(Y ), att(X,Y ) }.

The program module πAD for the admissibility test is as follows:

πAD = πcf ∪ { defeated(X)← in(Y ), att(Y,X);
← in(X), att(Y,X),not defeated(Y ) }.

For each conflict-free set one computes the arguments defeated by the set via the
predicate defeated/1. The constraint then rules out those sets where an argument
in the guessed set is attacked by an argument which is not defeated by the set, thus
there is an argument in the conflict-free set which is not defended.

For any AF AF = 〈Ar , att〉, the admissible sets of AF correspond to the answer
sets of πAD augmented by F̂ , i. e. EAD(AF ) ∼= AS(πAD(F̂ )).
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For semantics beyond NP we need to make use of disjunction in the logic pro-
gram. There are several different ways how to encode these semantics. The first
approach was to use the so called saturation encodings as pointed out in [Egly et
al., 2010a] which are part of ASPARTIX. Other encodings also incorporated in
ASPARTIX are the metasp encodings [Dvořák et al., 2013a], and the recently pro-
posed encodings based on conditional disjunction which make use of a particular
property of preferred semantics as shown in [Gaggl et al., 2015].

2.2 Direct Implementations

A direct implementation refers to a dedicated algorithm for a reasoning problem of
a specific semantics. The advantage is that direct implementations directly incor-
porate some problem-specific shortcuts, which is often not possible—or it leads to
limited improvement—in the case of reduction-based implementations.

2.2.1 Labelling-based Algorithms

Many direct implementations are based on an alternative characterization for seman-
tics using certain labelling functions for arguments [Verheij, 1996b; Doutre and Men-
gin, 2001; Modgil and Caminada, 2009; Nofal et al., 2014b; Nofal et al., 2014a; Ver-
heij, 2007]. A labelling usually assigns each argument one of the following labels Λ =
{in, out,
undec}, which stand for accepted, rejected and undecided arguments. A labelling
is a total function Lab : Ar → Λ. In the following we write x(Lab) for {a ∈
Ar | Lab(a) = x}. For instance, in(Lab) is the set of all in-labeled arguments.
Sometimes we will also represent a labelling Lab as the triple 〈in(Lab), out(Lab),
undec(Lab)〉.

One advantage of labellings is that the label of one argument has an immediate
consequence to its neighbours. For example, if an argument a is labeled with in, all
arguments attacked by a will be labeled with out. Such labelling-based algorithms
have been materialized in several systems, see Table 1.

Enumeration. Several labelling-based algorithms to enumerate all extensions for
various semantics have been proposed. For instance, the algorithm in [Nofal et
al., 2014a] makes use of five labels, namely Λ = {in, out, must_out, blank, undec},
where the additional label blank denotes the not yet labeled arguments and
must_out is assigned to arguments that attack in-labeled arguments. Initially all
arguments are labeled with blank. Then, the algorithm selects an a ∈ blank(Lab)
which is labeled with in in the left branch and undec in the right branch of the
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search tree. Every time an argument a is labeled with in all arguments attacked
by it are labeled out and all remaining arguments which attack a are labeled with
must_out. These steps are repeated until there are no arguments left to be labeled.
The algorithm stores a preferred extension in one branch if each argument has one
of the labels in, out and undec and the in-labeled arguments are not a subset of a
previously stored preferred extension. Then, the algorithm backtracks to try to find
all preferred extensions.

For the selection of the next argument to be labeled out from blank(Lab) the
following heuristics are used.

• Don’t pick an argument a to label it in iff there is a b ∈ {a}− such that
Lab(b) 6= out and there is no c ∈ {b}− with Lab(c) = blank.

• Don’t pick an argument a to label it undec iff each b ∈ {a}− is either labeled
with out or must_out.

• First select those blank-labeled argument to be labeled in which are not at-
tacked at all or all its attacker are labeled with out or must_out.

• Otherwise, select a blank-labeled argument to be labeled in which attacks the
most not out-labeled arguments.

Here we have only considered the case of preferred semantics, but for most of
the semantics labelling-based algorithms have been proposed in the literature: algo-
rithms for grounded and stable semantics are given in [Modgil and Caminada, 2009];
algorithms for semi-stable and stage semantics can be found in [Caminada, 2007;
Caminada, 2010; Modgil and Caminada, 2009]. Recently [Nofal, 2013] studied im-
proved algorithms for enumerating grounded, complete, stable, semi-stable, stage
and ideal semantics. Labelling-based Algorithms are implemented in the ArguLab
[Podlaszewski et al., 2011] system as well as in the ArgTools [Nofal et al., 2012].

Decision Procedures. In the following we will exemplify the use of labellings in
an algorithm dedicated to credulous reasoning with preferred semantics, following
the work of [Verheij, 2007], which is implemented in the CompArg system. In
credulous reasoning one is only interested if a particular argument is accepted in at
least one extension, thus we try to produce a witness (or counter-example) for this
argument, instead of computing all extensions.

The algorithm starts with labelling the queried argument with in and all the
other arguments with undec. Then, it iterates the following two steps. Firstly,
it checks whether the set of in-labeled arguments is conflict-free and if so label
all arguments attacking them with out. Otherwise terminate the branch of the
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algorithm. Secondly, for each argument a which is labeled out but not attacked
by an argument labelled in, it picks an undec labeled attacker b of a and label it
with in. In case there are several such arguments, it starts a new branch of the
algorithm for each choice. If no such argument exists it terminates the branch. It
stops a branch as soon as no more changes to labellings are made. In that case, it
has reached an admissible labelling acting as proof for the credulous acceptance of
the queried argument.

Consider the AF of Example 2.5 and the argument c. In the first step we obtain
the following intermediate labelling

Lab1 = 〈{c}, {}, {a, b, d, e}〉.

As in(Lab1) is conflict-free, we label all arguments attacking c with out:

Lab2 = 〈{c}, {b, d}, {a, e}〉.

Next we need to make arguments b and d legally out by labelling at least one of their
attacker with in. In case of b this is already fulfilled as c is labeled with in. However,
the argument d has no attacker, so the algorithm stops. We could not construct an
admissible labelling for accepting the argument c, thus it is not credulously accepted
under preferred semantics.

2.2.2 Dynamic Programming-based Approaches

We briefly mention the dynamic programming-based approach, which is defined on
tree decompositions of argumentation frameworks. Many argumentation problems
have been shown to be solvable in linear time for AFs of bounded tree-width [Dunne,
2007; Dvořák et al., 2012c; Courcelle, 1989].

First introduced in [Dvořák et al., 2012b], this approach especially aims at the
development of efficient algorithms that turn complexity-theoretic results into prac-
tice. The algorithms from [Dvořák et al., 2012b] are capable of solving credulous
and skeptical reasoning problems under admissible and preferred semantics. Later,
this approach was extended to work with stable and complete semantics [Char-
wat, 2012]. Further fixed-parameter tractability results were obtained for AFs with
bounded clique-width [Dvořák et al., 2010] and in the work on backdoor sets for ar-
gumentation [Dvořák et al., 2012a]. Negative results for other graph parameters like
bounded cycle-rank, directed path-width, and Kelly-width can be found in [Dvořák
et al., 2012b].

Systems implemented towards this approach are dynPARTIX [Charwat, 2012;
Dvořák et al., 2013b] as well asD-FLAT [Bliem, 2012; Bliem et al., 2012]. D-FLAT
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Figure 3: Dynamic-programming approach based on tree-decompositions.

is a general-purpose system that is capable of solving problems from multiple do-
mains. The methodology underlying both of these systems is to build a tree-
decomposition of a framework and then run a dynamic programming algorithm
on the tree-decomposition to obtain the extensions of the desired semantics, as de-
picted in Figure 3. For an extensive discussion of the approach we refer the reader
to [Charwat et al., 2015].

2.3 Summary
In this section we discussed the two main approaches to implement abstract argu-
mentation frameworks, namely the reduction-based and the direct implementation
approach. Systems which implement the reduction-based approach are very popular,
as they benefit from highly sophisticated solvers. One can say that they delegate
the difficult part of the design of an efficient algorithm to the solvers of the target
formalism. This might be the reason why so many solvers make use of this approach
(see Table 1). On the other side the direct implementations can incorporate short-
cuts if specific properties for certain structures in AFs are known, and in particular
when it comes to the reasoning problems of skeptical and credulous acceptance,
these algorithms can benefit from them. Many direct implementation algorithms
make use of labellings. Table 1 summarizes all systems.

3 Structured Argumentation Implementations
This section gives an overview of algorithmic approaches to structured argumen-
tation [Besnard et al., 2014] and their respective systems. In contrast to abstract
argumentation where arguments are interpreted as abstract entities and only logical
relationships between arguments are taken into account, structured argumentation
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{j}ArgSemSAT Yes SAT [Cerutti et al., 2014c;
Cerutti et al., 2016b;
Cerutti et al., 2017]

ArgTools Yes Labellings [Nofal et al., 2014b]
ArguLab Yes Labellings [Podlaszewski et al., 2011]
ASGL Yes CSP [Sprotte, 2015]
ASPARTIX-D Yes ASP, SAT [Egly et al., 2010a;

Gaggl and Manthey, 2015]
ASPARTIX-V Yes ASP [Gaggl et al., 2015]
ASSA Yes Matrices [Hadjisoteriou, 2015]
Carneades Yes Labellings [Gordon et al., 2007]
Cegartix Yes SAT [Dvořák et al., 2014]
CompArg Yes Labellings [Verheij, 2007]
ConArg Yes CSP [Bistarelli et al., 2015]
CoQuiAAS Yes SAT [Lagniez et al., 2015]
DIAMOND Yes ASP [Ellmauthaler and Strass, 2014]
Dungell Yes Haskell [van Gijzel and Nilsson, 2013]
EqArgSolver Yes Equations,

Labellings
[Rodrigues, 2016]

GERD Yes ASP [Dvořák et al., 2015]
GRIS Yes Equations,

Labellings
[Gabbay and Rodrigues, 2015]

LabSATSolver Yes SAT, Labellings [Beierle et al., 2015]
LamatzSolver Yes [Lamatz, 2015]
prefMaxSAT Yes SAT [Vallati et al., 2015;

Faber et al., 2016]
ProGraph Yes [Groza and Groza, 2015]
QADF Yes QBF, Labellings [Diller et al., 2015]
ZJU-ARG Yes Labellings [Liao et al., 2013]

Table 1: Summary of abstract argumentation implementations.
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considers an argument’s internal structure for several aspects including evaluation.
Within formal argumentation, formalisms for structured argumentation assume a
formalized knowledge base, often in a logical or rule-based form, from which argu-
ments and their relations are constructed. Conceptually, formalisms for structured
argumentation often follow the steps of the so-called argumentation process or ar-
gumentation pipeline (see e. g. [Dung, 1995, Sections 4 and 5] and [Caminada and
Amgoud, 2007, Section 2]):

1. argument construction;

2. determining conflicts among arguments;

3. evaluation of acceptability of arguments; and

4. drawing conclusions.

Argument construction typically refers to the task of building arguments com-
posed of a claim and a derivation of that claim (e. g. a proof tree) from the given
knowledge base. Moreover, conflicts need to be recorded, e. g., when claims of two
arguments are contradictory, or when the derivation of an argument’s claim con-
tradicts with the claim of another argument. Evaluation of acceptability refers to
formal means of finding acceptable arguments, and finally conclusions can be drawn
from the acceptable arguments.

From a computational point of view, all of the steps of the process taken in-
dividually can be quite computationally expensive: for instance even construction
of single arguments may be computationally complex (NP-hard in cases); a large
number of arguments may be constructed; finding conflicts can be non-trivial; and
evaluation of acceptability has in general a high complexity, as in the case of abstract
argumentation.

Several algorithmic approaches have been proposed, which result in a quite het-
erogeneous and evolving field comprising of many different solutions. In the follow-
ing we highlight properties that distinguish algorithms for structured argumentation
from each other.

Reasoning on structural or abstract representation. The first aspect that
distinguishes algorithms and systems for structured argumentation is that they may
deviate from the conceptual argumentation process. In particular, the approaches
can be roughly categorized whether they perform

• (query-based) structural reasoning; or

• reasoning on an abstract representation.
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Figure 4: Argumentation process from a computational point of view

The latter classification encompasses algorithms that explicitly construct an abstract
representation, e. g. an AF, and perform reasoning solely on that representation. Al-
gorithms following the other approach construct no such representation, but combine
argument construction, conflict discovery, and argument evaluation in possibly in-
terleaving steps and take structured information from the input knowledge base into
consideration in possibly every step.

Algorithms that perform structural reasoning are typically query-based, i. e., de-
cide acceptability of a certain claim, and construct arguments for and counterargu-
ments against the queried claim from the knowledge base. A structural approach can
restrict argument construction more easily than the abstract approach, in particular
for query-based reasoning, since structural information can be used to determine
which arguments have an effect on the query or the currently processed argument.

On the other hand, the abstract approach first “compiles” the structured knowl-
edge base and subsequently all reasoning can be performed on the abstraction. In
some cases “full” knowledge of all arguments occurring in the abstract representa-
tion is required to perform reasoning, e. g. for stable semantics. Conceptually, the
abstract approach follows more closely the argumentation process. We illustrate
structural and abstract approaches to algorithms for structured argumentation in
Figure 4. In this figure triangles are arguments with internal structure and round
vertices are abstract arguments.

Dedicated and reduction-based approaches. Similarly as for approaches to
implement abstract argumentation, we can distinguish between direct or dedicated
approaches and reduction-based approaches to implement structured argumentation.
An approach is reduction-based if the input is translated to a problem of another
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target formalism with available solvers for that problem. Direct algorithms solve
the problem at hand with a domain-specific dedicated algorithm. Direct algorithms
have the benefit of incorporating domain-specific properties and optimizations more
easily. On the other hand, reduction approaches can re-use off-the-shelf solvers.
Reduction-based approaches for structured argumentation typically incorporate all
involved tasks, i.e., argument construction, conflict evaluation, and deciding accept-
ability of arguments. When constructing an abstract representation, approaches
to structured argumentation can also be hybrid systems, i.e., providing a direct or
reduction-based approach for constructing the abstraction, and providing another
for abstract reasoning. Usual target systems for reduction-based approaches are
Prolog systems, solvers for Boolean satisfiability (SAT) and related formalisms, and
solvers for answer-set programming (ASP) [Brewka et al., 2011]. We also call an
algorithm or system reduction-based if it incorporates a translation of subproblems
to a target language with available solvers.

Considered Approaches. In the following we overview concrete algorithmic ap-
proaches to structured argumentation, introducing them with examples and dis-
cussing the main computational problems, properties of interest from a computa-
tional point of view, and algorithms and systems proposed to solve the problem.11

We focus on implemented algorithms for abstract rule-based argumentation (in par-
ticular concrete instantiations of the general ASPIC+ formalism) [Prakken, 2010;
Modgil and Prakken, 2014], assumption-based argumentation (ABA) [Bondarenko
et al., 1997; Toni, 2014], argumentation based on logic programming, in particular
based on defeasible logic programs (DeLPs) [García and Simari, 2004; García and
Simari, 2014], argumentation based on classical logic [Besnard and Hunter, 2008],
and Carneades [Gordon et al., 2007]. Complementing information can be found in
a review of implementations for defeasible reasoning [Bryant and Krause, 2008], in
particular sections 4.2.7, 4.3.1, 4.3.2, 4.3.3, and 4.3.4; in the review for argumenta-
tion for the social web [Schneider et al., 2013]; and in the overview on research in
argumentation systems given by [Simari, 2011].

3.1 Abstract Rule-Based Argumentation
In this section we focus on systems for abstract rule-based argumentation, in par-
ticular concrete instantiations of the ASPIC+ [Prakken, 2010; Modgil and Prakken,
2014] formalism. We begin with a brief introduction to a concrete instantiation

11Tools presented and referenced within the following subsections sometimes do not solve the
same reasoning tasks proposed for a formalism. We refer the reader to the references for each
algorithm and tool for the exact problem definitions that are solved.
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rules arguments
p→ b A1 : p
b⇒ f A2 : A1 → b

p→ f A3 : A1 → f
A4 : A2 ⇒ f

p

b

f

p

f

A1A2A4

A3

A1

A2

A4 A3

Figure 5: Tweety example knowledge base in ASPIC+ (left) with axiom p, structure
of corresponding arguments (middle), and AF (right).

of ASPIC+ following notation of [Modgil and Prakken, 2014]. Input in this for-
malism is a knowledge base consisting of several components, central among them
are (ordinary) premises and axioms, defeasible and strict rules, and preferential in-
formation. Semantics are specified via a translation to an abstract argumentation
framework. Arguments are constructed by chaining premises or axioms with rules.
Conflicts among arguments are defined via so-called undercuts, rebuts, and under-
mining among arguments, all respecting the preferential information.

We illustrate the concepts in a toy example knowledge base in Figure 5.

Example 3.1. Figure 5 shows two strict rules (with a simple arrow →) and one
defeasible rule (using a double-lined arrow⇒), and assuming p (Tweety is a penguin)
to be an axiom, one can infer the four arguments shown in the figure, namely by
a strict rule that Tweety is a bird (b), that birds normally fly (via a defeasible rule
inferring f), and that penguins do not fly (via a strict rule inferring f ; note that
overlining indicates contrariness). The structure of the arguments is visualized in
the middle of Figure 5 where we also see the only conflict in this example, namely
that argument A3 attacks A4 via rebut (contradictory conclusions). On the right of
Figure 5 the abstract AF is shown.

Computational problems for abstract rule-based argumentation include argu-
ment construction, conflict discovery, and semantic evaluation. These problems may
be tackled in an intertwined way, for instance interleaving construction and evalu-
ation or following more closely the argumentation process step-by-step and thus
firstly constructing the abstract argumentation framework and then proceeding by
semantical evaluation.

As a rough and general outline for algorithms based on structural reasoning,
given a potential conclusion (e. g. Tweety can fly in example Figure 5), arguments
can be constructed via backward chaining using rules until premises or axioms are
found. For instance, argument A4 can be constructed from conclusion f and back-
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chaining of two rules until axiom p is reached. Counterarguments can be found
in a similar manner by back-chaining from conclusions of arguments that would
attack the arguments constructed so far. The so constructed arguments, i. e., ar-
guments in favor of the queried claim and the counterarguments, corresponds to a
game-theoretic approach to compute acceptability of the given query (and one of its
argument in favor) under the specified semantics. For instance, one can conclude
that A3 is contained in an admissible set {A3}.

We begin our survey of systems for abstract rule-based argumentation with the
TOAST system12 [Snaith and Reed, 2012]. TOAST directly follows the steps of the
argumentation pipeline by constructing an abstract AF from given input knowledge
base and delegates the reasoning tasks to a dedicated AF reasoner, namely the
Dung-O-Matic web service [Snaith et al., 2010]. As an example, given the input in
Figure 5 (left) the system would return a semantical evaluation of the AF shown on
the right of that figure. The TOAST and Dung-O-Matic system together provide
a system supporting axioms, premises, assumptions, and preferential information
(last link and weakest link principles, see also [Modgil and Prakken, 2014]), rules,
and a user-specified contrariness relation. The system further supports reasoning
on the resulting AF under grounded, preferred, semi-stable, and stable semantics.
TOAST is available as both a Java-based web service and web form.

Next we overview contributions to systems for abstract rule-based argumentation
by Vreeswijk, which influenced subsequent successor systems. These systems follow
query-based structural reasoning. Vreeswijk’s works for argumentation systems are
well summarized in the survey of [Bryant and Krause, 2008, Sections 4.3.1, 4.3.2,
4.3.3, and 4.3.4]. A system that resulted from Vreeswijk’s PhD thesis [Vreeswijk,
1993], IACAS (InterActive Argumentation System), was written in LISP and is
one of the earliest implementations of structured argumentation that is capable
of handling input with strict and defeasible rules. This system allows for argu-
ment generation for or against a queried claim, and concluding its acceptability tak-
ing all the arguments into consideration. Vreeswijk’s argumentation system (AS)
is a Ruby-based implementation that handles strict and defeasible rules and tries
to construct an admissible set containing an argument that concludes the queried
claim. Two systems based on Vreeswijk’s AS have been developed, namely the
ASPIC Inference Engine and Argue tuProlog [Bryant et al., 2006].

The ASPIC Inference Engine is available from the ASPIC resources at the
Cancer Research UK’s Advanced Computation Laboratory.13 It provides both a
web-based front-end and a Java-based system that implement query-based structural

12http://www.arg.dundee.ac.uk/toast/ (on 27/04/2017).
13http://aspic.cossac.org (on 27/04/2017).
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reasoning under grounded and (credulous) admissible semantics. The Java-based
implementation offers a graphical user-interface.

A reduction approach to the language of Prolog is used in Argue tuProlog
and the system is presented in [Bryant et al., 2006]. The reduction utilizes a game-
theoretic approach for implementing ASPIC, similarly as the previous approaches.
In contrast to reduction approaches for other formalisms, Argue tuProlog reduces
the input to several Prolog queries, i. e., every query for an argument for each player
is instantiated as a separate Prolog call and thus the dialogue can be terminated at
any time.

We conclude this section with Wietske Visser’s Epistemic and Practical Reasoner
(EPR)14 [Visser, 2008] which is a direct Java-based implementation that implements
query-based reasoning under grounded semantics, (credulous) admissible semantics,
and e-p semantics [Prakken, 2006]. The system provides a graphical user-interface,
and is documented in detail in Wietske Visser’s master’s thesis [Visser, 2008].

3.2 Assumption based argumentation
In assumption-based argumentation (ABA) [Bondarenko et al., 1997; Toni, 2014],
arguments and conflicts are drawn from three main components: a knowledge base,
a set of assumptions, and a contrariness relation. We illustrate these concepts in
Figure 6. On the left of Figure 6 we see an ABA framework, with four rules, the set
of assumptions A containing a and e, and the contrariness relation relating the two
assumptions to be contrary to f and d respectively (denoted via a = f and e = d).
Arguments (in squares) and conflicts (with solid arrows) that can be drawn from
this framework are shown on the right of the figure. These arguments correspond
to proof trees of claims. More concretely, the arguments’ structure is based on the
rules with the conclusion shown on the top of the squares and attacks take place
based on assumptions and their contraries. For instance, the argument with f as the
conclusion attacks the argument with conclusion b, since this argument requires the
assumption a which is the contrary of f (a = f). Arguments without assumptions
are not attacked, e. g. argument with conclusion c.

Semantics of ABA can be defined via extensions as sets of arguments or, equiv-
alently, as sets of assumptions. For instance, in the example in Figure 6 the set
of arguments with claims for c, f , and e (that in this instance uniquely determine
the corresponding arguments) is an admissible extension of the ABA framework
(no attacks between these arguments are present and all attackers from outside are
counterattacked). The corresponding set of assumptions is {e}.

14http://www.wietskevisser.nl/research/epr/ (on 27/04/2017).
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c← A = {a, e}
b← a a = f
d← b, c e = d
f ← e a

>
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a

b

>

c

d

e

Figure 6: ABA framework (left) and its corresponding arguments and attacks (right)

A typical reasoning task for ABA frameworks is to check whether an argument
for a given claim is contained in an extension under a specified semantics. The
computational complexity for reasoning with an abstract ABA formalism has been
investigated in [Bondarenko et al., 1997]. In [Bondarenko et al., 1997] decision
problems for credulous and skeptical acceptance are studied and the complexity
ranges from polynomial-time decidable to completeness for ΣP

4 , a class on the fourth
level of the polynomial hierarchy.

Common to several algorithms for computing acceptability of a given claim un-
der a specified semantics in a given ABA framework are so-called dispute deriva-
tions [Craven and Toni, 2016; Dung et al., 2006; Dung et al., 2007; Gaertner and
Toni, 2007b; Gaertner and Toni, 2008; Toni, 2013]. Intuitively, dispute derivations
can be seen as a game-theoretic constructive proof of acceptability of the given claim
by constructing (part of) the argument in favor of the claim as well as construct-
ing (parts of) its counterarguments and their counterarguments. Dispute derivations
were proposed for grounded, admissible, and ideal semantics, called respectively GB,
AB, and IB15 dispute derivations [Dung et al., 2007], which are an advancement of
the proof trees proposed in [Dung et al., 2006]. In [Gaertner and Toni, 2007b;
Gaertner and Toni, 2008] structured dispute derivations were proposed that explic-
itly compute the dialectical structure hidden in dispute derivations, e. g., computing
the attack structure explicitly. A parametrized version of dispute derivations was
proposed in [Toni, 2013] that have a richer output incorporating both equivalent
views of semantics of ABA, namely the view of extensions as sets of arguments and
sets of assumptions.

In this paper we illustrate concepts of dispute derivations by showing GB-dispute
15Here, the “B” stands for belief.
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derivations [Dung et al., 2007]. In Figure 7 we see on the left a representation of
a simple ABA framework with assumptions A = {b, c} and a rule that infers a
without assumptions. The grounded extension of this ABA framework contains the
arguments for c and a, which are uniquely determined in this particular framework.
A GB-dispute derivation is a sequence of quadruples (Pi, Oi, Ai, Ci) with integer
i denoting the sequence or step. The ingredients for a step are the sentences or
nodes for proponent (Pi) and opponent (Oi), the assumptions for defense of the
queried claim (Ai) and assumptions for the opponent, so-called culprits (Ci). The
component Pi is a set of sentences and both Ai and Ci are sets of assumptions. The
second component of the quadruple, Oi, is a set of sets containing sentences. For
querying acceptability for a claim α we initialize with P0 = {α}, A0 = α ∩ A, and
empty O0 and C0, where A is the set of assumptions in the ABA framework. We
next illustrate the basics of GB-dispute derivations by recalling the corresponding
sequences from [Dung et al., 2007], where we assume a selection function f that
selects at each step either an element in Pi or in Oi and in the latter case an element
of the set selected. For a given ABA framework and a selection function f , a GB-
dispute derivation of a defense set D for sentence α is a finite sequence of quadruples

(P0, O0, A0, C0), . . . , (Pi, Oi, Ai, Ci), . . . , (Pn, On, An, Cn)

with P0 = {α}, A0 = α ∩A, and empty O0 and C0; Pn = On = ∅ and An = D; and
for every 0 ≤ i < n and X = f(Pi, Oi, Ai, Ci) the selected element s. t.

1. if X ∈ Pi then

(a) if X ∈ A then
Pi+1 = Pi \X, Ai+1 = Ai,
Ci+1 = Ci, Oi+1 = Oi ∪ {{X}}

(b) else (there exists a rule X ← R with body R s.t. Ci ∩R = ∅)
Pi+1 = (Pi \X) ∪R, Ai+1 = Ai ∪ (A ∩R),
Ci+1 = Ci, Oi+1 = Oi

2. else (T ∈ Oi is selected with X ∈ T )

(a) if X ∈ A then
Pi+1 = Pi ∪ {X}, Ai+1 = Ai ∪ ({X} ∩A),
Ci+1 = Ci ∪ {X}, Oi+1 = Oi \ {T}

(b) else
Pi+1 = Pi, Ai+1 = Ai,
Ci+1 = Ci, Oi+1 = (Oi \ {T})∪

{T \ {X} ∪R | X ← R ∈ R}
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c b >

a

i Pi Oi Ai Ci selected
0 {c} ∅ {c} ∅ −
1 ∅ {{b}} {c} ∅ c
2 {a} ∅ {c} {b} {b}, b
3 {>} ∅ {c} {b} a

Figure 7: ABA with A = {b, c}, b = a, c = b, and rule a ← (left); GB-dispute
derivation for c (right)

with R the set of rules of the given ABA framework. In Figure 7 we see on the right
a sequence of a GB-dispute derivation. Briefly put, in each step in the sequence
we select either an element of proponent or opponent, which in turn can either
be assumptions or non-assumptions. Depending on the choice, different updates
to the step have to be applied. For instance, if we choose an assumption of the
proponent, then we remove that assumption from the sentence the proponent holds
and add the contrary to the opponent who may construct an argument in favor of the
contrary. We can note that each step in the sequence individually is straightforward
to compute, however computation relies heavily on the selection function (also on
selecting a rule in one case), which is discussed in more detail e. g. in [Gaertner and
Toni, 2007b; Craven and Toni, 2016], which also highlights design choices for an
algorithm based in dispute derivations.

Several systems have been developed implementing algorithms based on variants
of dispute derivations. Current state of the art of dispute-derivation-based algo-
rithms and systems for ABA are query-based and reason on the structural level and
generally do not construct the full abstract representation to perform reasoning.
Interestingly, most implementations, that build upon dispute derivations, rely on
a reduction to Prolog with one exceptions sxdd [Craven et al., 2012], which is an
implementation in C++.

The system CaSAPI,16 which stands for “Credulous and Sceptical Argumen-
tation: Prolog Implementation”, is, as the name suggests, an implementation for
ABA in Prolog. In version 2.0 [Gaertner and Toni, 2007a], CaSAPI implements
GB, AB, and IB dispute derivations to perform query-based structural reasoning.
Further, in versions 3.0 [Gaertner and Toni, 2007b] and 4.3 [Gaertner and Toni,
2008; Dung et al., 2007] structured dispute derivations are employed. Nowadays,
CaSAPI acts as a precursor system for more recent systems.

Several tools with refined dispute derivations and reduction to Prolog have been

16http://www.doc.ic.ac.uk/~ft/CaSAPI/ (on 27/04/2017).
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proposed and implemented to perform query-based structural reasoning for ABA.17

In the tool proxdd [Toni, 2013] the parametrized versions of dispute derivations are
used. Graph-based versions of dispute derivations have been applied in the systems
grapharg [Craven et al., 2013] and its follow-up system abagraph [Craven and
Toni, 2016]. These tools include graphical visualization.

Recently, two systems for ABA were developed which are not based on dispute
derivations: ABAplus18 and the system from [Lehtonen et al., 2017], which we call
here ABAToAF. Both of these systems compute semantics of ABA frameworks
via an AF reasoner, ASPARTIX [Egly et al., 2010a], on an abstract representation
of the ABA framework.

The system ABAplus implements ABA+ [Cyras and Toni, 2016a], an exten-
sion of ABA with preferences. More concretely, this system provides computations
for flat ABA+ frameworks satisfying the axiom of weak contraposition [Cyras and
Toni, 2016b] (this class subsumes flat ABA frameworks). The system ABAplus
is capable of enumeration of extensions (as sets of assumptions together with their
conclusions) under grounded, complete, preferred, stable, and ideal semantics. In
contrast to systems described above, ABAplus constructs an abstract AF to reason
on the ABA, with arguments being sets of assumptions, with the AF being solved
via encodings of ASPARTIX. The system ABAplus generates arguments, using
Python, based on (i) sets of assumptions that deduce contraries of assumptions and
(ii) singleton sets of assumptions. Both the ABA+ framework and the enumerated
extensions are visualized in a web frontend.

The other system for ABA that relies on an AF reasoner,ABAToAF, constructs
arguments and attacks, similarly to ABAplus, based on sets of assumptions and
derived sentences. Argument construction, implemented in Java 8, approximates
here the restriction to generate arguments only for those sets of assumptions where
at least one sentence can be derived from such a set, but not any proper subset.
The system ABAToAF solves credulous (under admissible and stable semantics)
and skeptical (under stable semantics) acceptance queries via calling an ASP solver
on modified ASPARTIX encodings on the constructed AF.

Empirical evaluations of systems for ABA have been carried out for sxdd [Craven
et al., 2012], grapharg [Craven et al., 2013], abagraph [Craven and Toni, 2016],
and ABAToAF [Lehtonen et al., 2017].

The work of [Craven and Toni, 2016], based on preliminary research of [Craven
et al., 2013], improves on several computational aspects of dispute derivations by
altering the arguments’ tree-structure to general graphs and introducing graphical

17Available at http://www.doc.ic.ac.uk/~rac101/proarg/ (on 27/04/2017).
18Web front end available at http://www-abaplus.doc.ic.ac.uk/ (on 27/04/2017) and stand-

alone version at https://github.com/zb95/2016-ABAPlus/ (on 27/04/2017).
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dispute derivations (graph-DDs). In addition to tackle certain circularity questions
for computation, in [Craven and Toni, 2016] an improvement for the problems of
so-called flabbiness and bloatedness is provided. Briefly put, flabbiness refers to the
potential shortcoming that the same sentence or claim is proved in several different
ways, and bloatedness talks about deriving a claim in multiple ways in different
arguments in an extension. That is, the former talks about computation of claims
for individual arguments and the latter talks about computation of extension-based
acceptability questions incorporating redundancy. In [Craven and Toni, 2016] graph-
DDs are proposed for admissible and grounded semantics.

3.3 Argumentation based on logic programming

In this section we focus on algorithms and systems for argumentation based on
logic programming, in particular defeasible logic programming [García and Simari,
2004; García and Simari, 2014].A defeasible logic program (DeLP) consists of strict
(←) and defeasible (�) rules as illustrated in Figure 8. Arguments in a DeLP
are composed of a claim (a literal) and a set of defeasible rules. Acceptance of
arguments is decided via a dialectical tree, see Figure 8 (right) for an example
which includes an argument (A, a) that argues for literal a with set of rules A,
arguments (B1,∼b) and (B2,∼b) that argue for (strongly) negated b, and argument
(E,∼e) that argues for (strongly) negated e. Argument (B2,∼b) defeats (A, a)
because the former contradicts a subargument of the latter (arguing for b). Such a
dialectical tree is then marked conceptually in a bottom-up manner with undefeated
U and defeated D, i. e., leaves are undefeated and arguments are defeated if at
least one child node is undefeated. Arguments are undefeated if all its children are
defeated. Important for determining conflicts are preference relations which can
either be given as input or derived via specificity, see [García and Simari, 2004;
Stolzenburg et al., 2003] for details. In our example, the argument (A, a) is not
warranted, simply because it is defeated by (B1,∼b). If the rules used in argument
(B1,∼b) would be removed from the input DeLP, then argument (A, a) would be
warranted.

Complexity of decision problems in DeLP has been studied in [Cecchi et al.,
2006], showing complexity results for problems of deciding whether a given structure
is an argument in a given DeLP (polynomial-time decidable), existence of arguments
(a problem in NP), and further results regarding data complexity.

Algorithms for DeLP, which are based on dialectical trees, inherently solve query-
based structural reasoning and check whether the queried claim is acceptable or
warranted in a dialectical tree. Regarding enhancements for algorithms for com-
puting acceptance of DeLPs, as stated in the survey of [Bryant and Krause, 2008],
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A B1 B2 E
a� b ∼b� d ∼b� e ∼e← g
b� c d← e� f g ←
c← f ←

(A, a)D

(B1,∼b)U (B2,∼b)D

(E,∼e)U

Figure 8: DeLP knowledge base (left) and dialectical tree (right)

three concepts have been proposed to optimize efficiency for deciding acceptance
in DeLPs: (i) pruning of dialectical trees [Chesñevar et al., 2000], (ii) using pre-
compiled arguments in a dialectical database [Capobianco et al., 2004], and (iii)
using parallelism [García and Simari, 2000]. We briefly illustrate these concepts
and also refer the reader to the survey [Bryant and Krause, 2008] which includes a
section on DeLP (Section 4.2.7).

For pruning of dialectical trees, as can be seen in the example dialectical tree
of Figure 8, we do not need to consider all arguments in the tree to determine
the dialectical status of the root argument. In particular, since argument (B1,∼b) is
undefeated, it is immediate that the top argument in this case is defeated. Therefore
the right subtree is not relevant for concluding the overall result. Details on general
pruning procedures for DeLP can be found in [Chesñevar et al., 2000], in particular
how to “choose” the most promising argumentation line (path from root to a leaf in
a dialectical tree) that determines an answer to the acceptability question as soon
as possible.

In [Capobianco et al., 2004] for speeding up algorithms for ODeLP, a pre-
compiled so-called dialectical database is suggested. Briefly put, potential argu-
ments and defeats from the initial knowledge base are pre-compiled. In this way
queries can incorporate first look-ups in the pre-compiled dialectical database.

For exploiting parallelism, in [García and Simari, 2000] it is suggested to par-
allelize computation for (i) finding several arguments for the same conclusion, (ii)
discovering several defeaters for an argument, and (iii) finding several argumentation
lines.

For concrete systems, DeLP reasoning has been implemented in Prolog accessible
via the DeLP client,19 and in the general-purpose libraries of Tweety20 [Thimm,
2014]. In Tweety both the algorithm outlined in [García and Simari, 2004] for
marking a dialectial tree and a translation to an AF have been implemented (the
latter does not preserve the dialectical semantics of DeLP and only interprets the ar-

19Web interface available at http://lidia.cs.uns.edu.ar/delp_client/ (on 27/04/2017).
20http://tweetyproject.org (on 27/04/2017).
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guments and counterargument relationship within an abstract framework). Tweety
also provides a web-interface for DeLP. Also, an abstract machine called JAM (justi-
fication abstract machine) [García, 1997] has been designed for DeLP. Furthermore,
a reduction to ASP is given in [Thimm and Kern-Isberner, 2008].

Two further notable reduction-based approaches for extensions of DeLP have
been proposed and implemented.21 Possibilistic DeLP (P-DeLP) extends DeLP
rules by attaching levels of strength. In [Alsinet et al., 2010] a recursive semantics
for P-DeLP has been proposed, the corresponding framework is called RP-DeLP. An
ASP-based approach to compute queries for RP-DeLP, i. e., to decide if a literal is
warranted in the framework, is presented and experimentally evaluated in [Alsinet et
al., 2012], which is based on results and complexity bounds of [Alsinet et al., 2011].
We call the corresponding system ASP-RP-DeLP. A reduction-based approach to
SAT for multiple outputs of R-DeLP, we call the system SAT-R-DeLP, has been
presented in [Alsinet et al., 2013] and also experimentally evaluated in that paper.
The SAT approach is based on results of [Alsinet et al., 2011].

3.4 Argumentation based on classical logic
In argumentation based on classical logic, or deductive argumentation, arguments
and conflicts are generated from a (classical) logic knowledge base [Besnard and
Hunter, 2008]. A knowledge base is here a set of formulas and arguments are pairs
(S,C) of support S and claim C. The first component is a consistent, minimal
(w.r.t. ⊆) subset of the knowledge base that entails the claim, which in turn is a
formula. Arguments can be compared w.r.t. conservativeness, i. e., (S,C) is more
conservative than (S′, C ′) iff S ⊆ S′ and C ′ |= C. Several notions of conflicts
among arguments have been studied [Gorogiannis and Hunter, 2011]. We illustrate
here the notion of (canonical) undercuts. Argument (S,C) undercuts (S′, C ′) if
C = ¬(φ1 ∧ · · · ∧ φn) with {φ1, . . . , φn} ⊆ S′. Canonical undercuts incorporate
notions of maximal conservativeness and canonical enumeration of formulas, i. e.,
the sequence of formulas φi in the conjunction C does not matter. In Figure 9 we
see on the left (a) a knowledge base and on the right (c) three arguments where the
middle one is a canonical undercut of the top one and the bottom one a canonical
undercut of the middle one. Note that in contrast to other structured approaches
to argumentation, the arrows in formulas in this section denote logical (material)
implication, i. e., within formulas a → b is logically equivalent to ¬a ← ¬b and
¬a ∨ b. A further important notion is that of (complete) argument trees. A given
argument is the root of an argument tree, for each node its children are its canonical

21Available via web-front-end at http://arinf.udl.cat/rp-delp (on 27/04/2017).
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{a, a→ b,¬b}

{¬b,¬b→ ¬a, a}

(b)

knowledge base
a

a→ b
¬b

¬b→ ¬a

(a)

({a, a→ b}, b)

({¬b},¬(a ∧ (a→ b)))

({¬b→ ¬a, a}, b)
(c)

Figure 9: Knowledge base for deductive argumentation (a), inconsistent subsets of
that knowledge base (b), and argument tree based on the inconsistent subsets as
constructed by compilation-based approach (c)

undercuts, and the support of no node is a subset of the union of supports of all its
ancestor nodes.

Computational complexity is in general very high for deductive argumenta-
tion [Parsons et al., 2003; Hirsch and Gorogiannis, 2010; Wooldridge et al., 2006;
Creignou et al., 2011], as can be intuitively explained from the definitions which
incorporate both minimality and entailment properties.22 Complexity of finding in-
dividual arguments has been analyzed in [Parsons et al., 2003], decisions problems
concerning instantiation of argument graphs with classical logic in [Wooldridge et
al., 2006], and finding argument trees in [Hirsch and Gorogiannis, 2010]. Complexity
for problems for deductive argumentation based on propositional logic can reach up
to PSPACE.

Proposed algorithms and systems for deductive argumentation are based on
minimal unsatisfiable subsets (MUSes) of formulas [Besnard and Hunter, 2006;
Besnard et al., 2010], connection graphs [Efstathiou and Hunter, 2011; Efstathiou
and Hunter, 2008], reductions to QBF [Besnard et al., 2009] and ASP [Charwat et
al., 2012], so-called “contours” [Hunter, 2006b] and approximate arguments [Hunter,
2006a]. Algorithms that utilize contours, approximate arguments, and one MUS-
based approach [Besnard and Hunter, 2006] are also discussed in detail in the
book [Besnard and Hunter, 2008].

We begin with our algorithmic overview with two MUS-based approaches. The
first one [Besnard and Hunter, 2006] falls into the general scheme of knowledge
compilation [Darwiche and Marquis, 2002] where a given input is compiled into a

22Another explanation for complexity of deductive argumentation is to consider its connection to
(propositional) abduction, see [Besnard and Hunter, 2014, Section 7.4]. Complexity of propositional
abduction is analyzed in [Eiter and Gottlob, 1995], with problems complete for ΣP2 a class that is
presumably more complex than the class NP.
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structure to which one can pose queries that are computationally easier to compute
on that structure compared to the original input. For deductive argumentation, the
input knowledge base is compiled into a graph consisting of minimal inconsistent
subsets of the knowledge base as the vertices and edges between non-disjoint subsets.

In Figure 9 we see in the middle (b) the compiled graph from knowledge base in
the left (a). Given an argument, say ({a, a→ b}, b) (top right of Figure 9) one can
construct an argument tree for this argument using the inconsistent subsets. Note
that the support {a, a→ b} of this argument is contained in a MUS. The remainder
of that MUS (¬b) then is the support for a canonical undercut of the argument, since
both parts of the MUS, {a, a→ b} and {¬b}, each entail a negated conjoined subset
of the other, e. g. {¬b} entails ¬(a ∧ (a → b)). Using this line of reasoning recur-
sively, one can construct all counterarguments and in turn the argument tree (shown
on the right of Figure 9). For details on the algorithm see [Besnard and Hunter,
2006]. The compilation-based approach has been implemented in the Tweety li-
braries [Thimm, 2014] which can be configured to use different MUS solvers, for
instance MARCO [Liffiton et al., 2016] or MIMUS [McAreavey et al., 2014].

Another approach using MUSes [Besnard et al., 2010] directly constructs argu-
ments and counterarguments with a MUS solver, without an “offline” compilation
beforehand. The idea underlying argument construction of [Besnard et al., 2010] is
that (S,C) is an argument iff S ∪ {¬C} is a MUS of the knowledge base together
with ¬C. Conditions of minimality and entailment for argument (S,C) follow from
the fact that if S ∪ {¬C} is a MUS, then S is consistent and entails C and S′ with
S′ ⊂ S does not entail C. The algorithms for argument construction and argument
tree generation proposed in [Besnard et al., 2010], BA and BT, follow this line of
reasoning and directly incorporate algorithmic issues like construction of formulas
in conjunctive normal form. Algorithm BA has been implemented with the MUS
solver HYCAM [Grégoire et al., 2009] and experimentally evaluated in [Besnard et
al., 2010].

A different approach for generating argument trees for a given claim is proposed
in [Efstathiou and Hunter, 2011], building on earlier work in [Efstathiou and Hunter,
2008] which utilizes connection graphs. Connection graphs consist of clauses as
vertices and edges between clauses with complementary literals. Briefly put, for a
given claim one can reduce the connection graph in such a way that, if non-empty, a
support for the claim is contained in the reduced connection graph. In [Efstathiou
and Hunter, 2011] this idea is used to construct argument trees. The approach has
been implemented in Java in the tool JArgue and experimentally evaluated.

Reduction-based approaches are given in [Besnard et al., 2009; Charwat et al.,
2012]. The former is a reduction to QBF and the latter to ASP. The latter has
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been implemented in the system called vispartix23 within the tool ARVis [Ambroz
et al., 2013] for visualizing relations between answer-sets of an ASP encoding. In
vispartix an AF is generated from a given knowledge base and pre-specified set
of claims, and conflicts are constructed as specified in [Gorogiannis and Hunter,
2011], thus partially deviating from other works in this section. The construction
process is done via two ASP calls, the first constructing the arguments and the
second constructing the attacks. In a final step the AF is visualized. Semantics can
be computed via tools developed for AFs.

Algorithms following the concept of contours [Hunter, 2006b] are based on the
idea of providing boundaries of what is provable in a knowledge base. Briefly put,
an upper (lower) contour stores for a given formula which subsets of the knowledge
base entail (do not entail) the formula. Finally, algorithms for approximate argu-
ments [Hunter, 2006a] are based on the idea of relaxing one of the conditions for
arguments (consistency, entailment, or minimality).

3.5 Carneades

snake

rope

issue

issue

moved when prodded

did not move when jumped over

a1

a2 did not move when prodded

moved when jumped over

looks like a snake

looks like a rope

issue

Figure 10: Example Carneades argument graph

Carneades [Gordon and Walton, 2016; Gordon et al., 2007] is both a formal
model of argument structure and evaluation, and a system24 implementing the

23http://www.dbai.tuwien.ac.at/proj/argumentation/vispartix/ (on 27/04/2017).
24https://carneades.github.io/ (on 27/04/2017).
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model. Evaluation of acceptance incorporates proof standards [Freeman and Farley,
1996], argument strength, and several ingredients available to a user. We illustrate
briefly some of the capabilities of Carneades in a simple example25 in Figure 10
and refer the reader for more details on the language and acceptability definitions
to the literature [Gordon and Walton, 2016]. On the right part of Figure 10 there
are six statements, i. e., that an object looks like a snake or a rope, and whether
the object moved when jumped over or prodded. Issue nodes connect contradictory
statements. Two arguments are formed (a1 and a2), which build on their premises
(right of the figure) to conclude (left of the figure) that the seen object is indeed
a snake or a rope. Let us assume that the object indeed looks like a snake and a
rope (e.g. due to poor illumination), but neither did the object move when prodded
with a stick nor when jumped over (e. g. by an adventurous person). In this case we
conclude that the object is indeed a rope and not a snake (all premises of argument
a2 are given but only one for a1).

The system Carneades (currently in version 4.2), features collaborative argu-
ment construction, argument visualization, and argument evaluation both for the
structured arguments like we have seen in Figure 10 and also for Dung’s AFs under
grounded, complete, preferred, and stable semantics. Construction of structured ar-
guments relies partially on internal calls to Prolog, and evaluation in the Carneades
system can be classified as structural reasoning, since explicit abstract representa-
tion in the form of an AF is not utilized. Carneades is also available as a web-service
and front-end [Gordon, 2012; Gordon, 2013], and includes a detailed manual.

3.6 Further implementations
Here we give pointers to related algorithms and implementations for structured
argumentation that fall outside the previous sections.

In addition to other approaches to structured argumentation, Tweety [Thimm,
2014] features an implementation to structured argumentation as proposed in
[Thimm and García, 2010]. Further, Wyner et al’s [Wyner et al., 2013] approach to
instantiate rule-based knowledge bases with strict and defeasible rules as AFs has
been encoded in ASP26 [Strass, 2014].

A translational approach27 to implement structured argumentation formalisms
has been proposed in [van Gijzel and Nilsson, 2014] using Haskell as the programming

25Example taken from http://carneades.github.io/ (on 27/04/2017). Variants of this exam-
ple are discussed in [Walton et al., 2014].

26Main ASP encoding available under http://sourceforge.net/p/diamond-adf/code/ci/
master/tree/lib/theorybase.lp (on 27/04/2017).

27http://www.cs.nott.ac.uk/~bmv/COMMA/ (on 27/04/2017).
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language to capture definitions of these formalisms as directly as possible inside the
programming language. For instance, in [van Gijzel and Nilsson, 2014] it is shown
how to utilize this approach to translate Carneades to AFs: we call the corresponding
system CarneadesToDung.

3.7 Summary

In this section we have given an overview of several algorithmic approaches to struc-
tured argumentation and their respective systems. Formalisms developed for struc-
tured argumentation and their implementations draw a quite heterogeneous picture.
In particular, algorithms and systems range from query evaluation on the given
structure to reasoning on an abstract representation where structural information
is abstracted away. In Table 2 we see a summary of the presented approaches that
have implementations and how they can be classified. Systems implementing struc-
tural reasoning typically solve queries in the form of deciding acceptance of a given
claim and constructing arguments for this claim and counterarguments against the
claim in a recursive fashion. Abstract reasoning involves construction of an ab-
stract representation, i. e., an AF, and performing reasoning on this representation
resulting typically in sets of extensions. For reduction-based approaches, the column
“language” refers to the target formalism of the approach. These systems typically
also include parsers or compilers written in an imperative language that translate
or reduce the given input to the formalism. In this table, ASP stands for answer-set
programming, SAT for satisfiability solvers, and MUS for solvers capable of solving
problems related to minimal unsatisfiable subsets of formulas.

The Tweety libraries [Thimm, 2014] implement several reasoning tasks from
multiple formalisms for structured argumentation. We name the respective ap-
proaches in parenthesis for Tweety. We note that not all tools mentioned in Table 2
provide reasoning support themselves, i. e., some tools focus on argument construc-
tion and delegate evaluation to other systems. The tools BA [Besnard et al., 2010]
and vispartix [Charwat et al., 2012] handle argument construction for deductive
argumentation without evaluation, in particular, BA generates arguments and
vispartix an AF. One of Tweety’s algorithms translates a given DeLP to an AF
and leaves the choice for an AF reasoner to the user. CarneadesToDung [van
Gijzel and Nilsson, 2014] translates input as specified in the Carneades model to a
Dung AF. TOAST [Snaith and Reed, 2012] incorporates Dung-O-Matic [Snaith et
al., 2010] for evaluation.
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ASPIC+
TOAST Yes Java Yes
ASPIC Inference Engine Yes Java Yes
EPR Yes Java Yes
Argue tuProlog Yes Prolog Yes

ABA
CaSAPI Yes Prolog Yes
proxdd Yes Prolog Yes
abagraph Yes Prolog Yes
grapharg Yes Prolog Yes
ABAplus Yes ASP Yes
ABAToAF Yes ASP Yes

DeLP
DeLP client Yes Prolog Yes
Tweety (DeLP) Yes Java Yes
Tweety (DeLP to AF) Yes Java Yes
ASP-RP-DeLP Yes ASP Yes
SAT-R-DeLP Yes SAT Yes

Deductive
JArgue Yes Java Yes
Tweety (deductive) Yes Java/MUS Yes
vispartix Yes ASP Yes
BA Yes MUS

Carneades
Carneades Yes Prolog Yes
CarneadesToDung Haskell Yes

Table 2: Summary table for structured implementations.
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4 Other Implementation Approaches

This paper would not be complete without a description of implemented systems that
provide a general purpose gateway to formal structures of argumentation. They are,
for instance, systems supporting text annotation for producing corpora that can be
exploited by argument mining algorithms as well as systems for supporting critical
thinking by the means of formal models of argumentation thus reusing elements
discussed in previous sections. Our aim here is to summarize the most notable
examples with some guidance for the reader interested in using—or reusing—existing
implementations.

In particular, we analyse 34 promising implementations chosen among those
that are active projects. Since it is beyond the scope of this paper to provide
a comprehensive description for each of those, we briefly review them in Section
4.1. Moreover, there are four additional projects that, although they appear to
have been discontinued, have been relevant from an academic perspective, and we
believe they should be mentioned in order to provide the reader with a complete
background. Those are reviewed in Section 4.2, while in Section 4.3 we provide a
comparative analysis of the active projects. Finally, the excellent review of Schneider
et al. [Schneider et al., 2013] mentions other interesting projects—mostly online
platforms—that are briefly discussed in Section 4.4, even if they do not implement
any evident formal model of argumentation.

4.1 Active Projects

The following 34 systems are representative among active projects incorporating
some argumentation techniques.

AGORA [Hoffmann, 2005; Hoffmann, 2007] is a Computer-Supported Collabora-
tive Argument Visualization (CSCAV) tool. An argument is defined here as a set
of statements—claim and one or more reasons—where the reasons jointly provide
support for the claim, or are at least meant to support the claim.

AIFdb [Lawrence et al., 2012b] is a database solution for the Argument Web thus
implementing the AIF model of arguments [Bex et al., 2013; Rahwan et al., 2011;
Chesñevar et al., 2006]. AIFdb offers an array of web service interfaces allowing a
wide range of software to interact with the same argument data. Various dataset
are available as part of the Argument Corpora [Reed, 2013].
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AnalysisWall [Bex et al., 2013] is a collaborative workspace, a touchscreen mea-
suring 11 feet by 7 feet, located at the University of Dundee.

Arg&Dec [Aurisicchio et al., 2015] is a web application for collaborative decision-
making, encompassing the quantitative argumentation-based framework QuAD, and
its decision matrix model, assisting their comparison through automated transfor-
mation.

ArgTeach [Dauphin and Schulz, 2014] is an interactive tutor that facilitates the
learning of different labelling semantics in abstract argumentation. It now exists
both as a standalone desktop application and as a web application.28

ArgTrust [Tang et al., 2012] relates the grounds of an argument to the agent that
supplied the information, and can be used as the basis to compute acceptability
statuses of arguments that take trust into account.

ArgueApply [Pührer, 2017] is a Java app for mobile phones, with a graphical in-
terface, that lets users put forward arguments, and positive or negative links between
arguments, in a fragment of the GRAPPA [Brewka and Woltran, 2014] language.29

ArgMed [Hunter and Williams, 2012; Williams et al., 2015] is a project investigat-
ing the use of computational argumentation for analysing and aggregating clinical
evidence for making recommendations. In addition to the theoretical framework, it
also has a public website.30

ArguMed [Verheij, 1998] introduces ARGUE!, based on the logical system CU-
MULA that abstractly models defeasible argumentation [Verheij, 1996a]. The devel-
opment of ARGUE! was soon followed by the ArguMed family [Verheij, 2003a]
based on the DefLog system [Verheij, 2003b], where dialectical arguments consist of
statements that can have two types of connections between them: a statement can
support another, or a statement can attack another. Dialectical arguments can be
evaluated with respect to a set of prima facie justified assumptions.

28http://www-argteach.doc.ic.ac.uk/ (on 27/04/2017).
29http://www.informatik.uni-leipzig.de/~puehrer/ArgueApply/ (on 27/04/2017).
30http://www0.cs.ucl.ac.uk/staff/a.hunter/projects/argmed/ (on 27/04/2017).
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Argument Blogging [Bex et al., 2014] allows users to construct debate and dis-
cussions across blogs, linking existing and new online resources to form distributed,
structured conversations. Arguments and counterarguments can be posed by giving
opinions on one’s own blog and replying to other bloggers’ posts. The resulting
argument structure is connected to the Argument Web [Bex et al., 2013], in which
argumentative structures are made semantically explicit and machine-processable.

Argunet [Schneider et al., 2007] is a desktop tool coupled with an open source
federation system for sharing argument maps.

Arvina [Bex and Reed, 2012; Lawrence et al., 2012a] is a dialogical support system
that allows for the structured execution of a reasoning process by implementing
dialogue protocols and then allowing users to play the dialogue game against virtual
agents and against each other in an instant-messaging environment.

ASPARTIXWeb [Egly et al., 2010b] is a web-based interface to the ASPARTIX
system for computing extensions for various semantics of abstract argumentation.31

bCisive is a professional argument mapping and critical thinking support sys-
tem.32

CISpaces [Toniolo et al., 2014; Toniolo et al., 2015] is an agent-based tool to help
intelligence analysts in acquiring, evaluating, and interpreting information in col-
laboration. Agents assist analysts in reasoning with different types of evidence to
identify what happened and why, what is credible, and how to obtain further evi-
dence. Argument schemes lie at the heart of the tool, and sensemaking agents assist
analysts in structuring evidence and identifying plausible hypotheses. A crowdsourc-
ing agent is used to reason about structured information explicitly obtained from
groups of contributors, and provenance is used to assess the credibility of hypotheses
based on the origin of the supporting information.

Cohere/Compendium [De Liddo and Buckingham Shum, 2010; Shum, 2008] is
an open source software for sensemaking using argumentation maps and annotation.

31http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/index.faces (on 27/04/2017).
32https://www.bcisiveonline.com/ (on 27/04/2017).
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ConargWeb is a web-based interface to the Conarg system for computing exten-
sions of Dung’s argumentation frameworks.33

CoPe_it! [Tzagarakis et al., 2009] is a tool to support synchronous and asyn-
chronous argumentative collaboration in a Web environment. It introduces the
notion of incremental formalization of argumentative collaboration. The tool per-
mits a stepwise evolution of the argumentation space, through which formalization
is not imposed by the system but is at the user’s control. By permitting the users to
formalize the discussion as the collaboration proceeds, more advanced services can
be made available. Once the collaboration has been formalized to a certain point,
CoPe_it! can exhibit an active behavior facilitating the decision making process.

D-BAS [Krauthoff et al., 2016] is a web and dialogue-based system to facilitate
online argumentation, with the aim to guide users through statements, their pro-
arguments and counterarguments, and adding new arguments as well as conflicts
between these arguments.34

Debategraph [Macintosh, 2009] is a collaborative debate visualisation tool.

GERD [Dvořák et al., 2015] is a web-based interface of an ASP-based system for
enumerating extensions of various semantics of the framework from [Modgil, 2009],
which extends Dung’s abstract argumentation framework with preferences among
arguments.35

Gorgias [Kakas and Moraitis, 2003] is a general argumentation framework that
combines preference reasoning and abduction. It can form the basis for reason-
ing about adaptable preference policies in the face of incomplete information from
dynamic and evolving environments [Kakas et al., 1994].

Gorgias-B [Spanoudakis et al., 2016] supports the development of applications
of argumentation under Gorgias. Gorgias-B guides the developer to structure
their knowledge at several levels. The first level serves for enumerating the possible
decisions and arguments that can support these options under some conditions, while
each higher level serves for resolving conflicts at the previous level by taking into
account default or contextual knowledge.

33http://www.dmi.unipg.it/conarg/ (on 27/04/2017).
34https://dbas.cs.uni-duesseldorf.de/ (on 27/04/2017).
35http://gerd.dbai.tuwien.ac.at/index.php (on 27/04/2017).

2665



Cerutti, Gaggl, Thimm and Wallner

Grafix [Cayrol et al., 2014] is a graphical tool for handling abstract argumentation
frameworks and bipolar frameworks. Grafix allows editing and drawing of argumen-
tation graphs (or sets of graphs), and the execution of some “predefined treatments”
(called “server treatments”) on the current graph(s), such as, e. g., computing vari-
ous acceptability semantics, or computing the strength of arguments.

GrappaVis is a Java graphical tool to specify GRAPPA [Brewka and Woltran,
2014] and ADF [Brewka et al., 2013] frameworks, evaluate them, and visualize the
results of the evaluation. In particular, GRAPPA is a general semantical frame-
work for assigning a precise meaning to graphical models of arguments or labelled
argument graphs, which makes them suitable for automatic evaluation. GRAPPA
rests on the notion of explicit acceptance conditions, as discussed in ADF
[Brewka et al., 2013].36

MARFs (Markov Argumentation Random Fields) [Tang et al., 2016] is a sys-
tem combining elements of formal argumentation theory and probabilistic graphical
models. In doing so it provides a principled technique for the merger of probabilistic
graphical models and non-monotonic reasoning.

Opinion Space [Faridani et al., 2010] is an online interface incorporating ideas
from deliberative polling, dimensionality reduction, and collaborative filtering that
allows participants to visualize and navigate through a diversity of comments.

OVA+ [Janier et al., 2014] provides a drag-and-drop interface for analysing tex-
tual arguments. It is designed to work with web pages It is available as a web
interface and does not require a local installation. It also natively handles AIF
structures, and supports real-time collaborative analysis.

Parmenides [Cartwright and Atkinson, 2008; Cartwright et al., 2009; Cartwright
and Atikinson, 2009] is primarily a forum by which government bodies can present
policy proposals to the public so that users can submit their opinions on the justi-
fication presented for a particular policy. Within Parmenides, the justification for
action is structured to exploit a specific representation of persuasive argument based
on the use of argumentation schemes and critical questions.

36http://www.dbai.tuwien.ac.at/proj/adf/grappavis/ (on 27/04/2017).
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PIRIKA (PIlot for the RIght Knowledge and Argument) [Oomidou et al., 2014]
is an argument-based communication tool for humans and agents, which supple-
ments current communication systems such as Twitter. It allows for asynchronous
argumentation for anyone, anytime, anywhere on any issues, as well as synchronous
argumentation and stand-alone argumentation.

Quaestio-it [Evripidou and Toni, 2014] is based on a framework for modelling and
analysing social discussions. It offers debating infrastructure for opinion exchanges
between users and providing support for extracting intelligent answers to user-posed
questions.

Rationale is a professional argument mapping and critical thinking support sys-
tem.37

Reason [Introne, 2009] is a platform for supporting group decisions by leveraging
the argumentative structure of deliberative conversation to drive a decision support
algorithm. The platform uses argument visualization to mediate the collaborators’
conversation.

Truthmapping is a professional, collaborative argument mapping tool.38

4.2 Discontinued Projects
In addition to the 34 systems discussed in Section 4.1, we briefly mention the fol-
lowing four as well. Although discontinued at the time of writing, those works have
significantly impacted the research field and are still inspirational.

Avicenna [Rahwan et al., 2011] is an OWL-based argumentation system that
consists of three main tiers: the data tier, the middle tier, and the client tier. The
argumentation ontology is stored in the form of RDF statements (triples) in the
back-end database, which constitutes the data tier. The middle tier is responsible
for reasoning based on description logics and the interface to the web, through which
applications in the client tier connect.

37http://rationale.austhink.com/ (on 27/04/2017).
38https://www.truthmapping.com/ (on 27/04/2017).
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Dispute Finder [Ennals et al., 2010] is a browser extension that alerts a user
when information they read online is disputed by a source that they might trust.
Dispute Finder examines the text on the page that the user is browsing and highlights
any phrases that resemble known disputed claims. If a user clicks on a highlighted
phrase then Dispute Finder shows her a list of articles that support other points of
view.

SEAS [Lowrance et al., 2008] is a collaborative, semi-automatic approach to ev-
idential reasoning that uses template-based structured argumentation. Graphical
depictions of arguments readily convey lines of reasoning, from evidence through to
conclusions, making it easy to compare and contrast alternative lines of reasoning.

Trellis [Chklovski et al., 2003] allows users to add their observations, viewpoints,
and conclusions as they analyze information by making semantic annotations to
documents and other on-line resources. Users can associate specific claims with
particular locations in documents used as “sources” for analysis, and then structure
these statements into an argument detailing pros and cons on a certain issue.

4.3 Comparative Analysis
To provide a concise overview over the active systems discussed in Section 4.1, we
identified seven features that characterize the commonalities and differences among
those systems, namely whether a system

(F1) is able to handle some form of structured argumentation;

(F2) gives the ability to manipulate arguments;

(F3) is collaborative;

(F4) enables a dialogue between different parties involved in its usage; and, in par-
ticular, if it

(F5) enables a dialogue based on speech acts;

(F6) includes a reasoner based on Dung’s theory of abstract argumentation; or if it

(F7) includes a reasoner not based on Dung’s theory of abstract argumentation.

It is evident that F5 is a specific case of F4: if a system offers speech acts, by
definition it also offers a dialogue system. Moreover, F6 and F7 only apparently are
mutually exclusive: indeed, a system can offer multiple choices of reasoners—the
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case of CISpaces—or it can encompass Dung’s theory of abstract argumentation
as a special case—e. g. MARFs.

Table 3 provides a comparative overview of the 34 active projects from Section 4.1
with respect to the seven features identified. This list of features is clearly far from
being complete or unquestionable. However, it is sufficient for describing a large
variety of possible usages of the systems.

Indeed, if a system supports F1 and F6, it is evident that it can be used in
the conventional meaning of structured argumentation and perhaps it implements
a specific approach for structured argumentation [Besnard et al., 2014]. This is, for
instance, the case of OVA+, which allows to represent and reason about ASPIC+
knowledge bases. Moreover, since OVA+ also possesses the feature F2, it is evident
that it can be used interactively; and since it possesses F3 as well, it can used in a
distributed fashion.

It is worth noticing that there is only one system exhibiting all the seven features,
CISpaces, which is unfortunately not (yet) available as an open-source implementa-
tion. Differently from OVA, CISpaces implements a subset of ASPIC, notably the
ability to express only defeasible rules, and it follows a customised methodology for
handling preferences, similar to ASPIC+ but using AFRA [Baroni et al., 2011b] as
the meta-representation system. However, it also encompasses both the ability to
use an evolution of ArgTrust as a web-service, as well as models of probabilistic
reasoning based on [Li et al., 2012].

To conclude this analysis, it is worth showing the chronological evolution of all
38 systems reviewed in this survey, depicted in Figure 11. It is evident that 2014
has been the most prolific year, as also testified by the significant number (19) of
demo submissions to COMMA 2014.

4.4 Projects for Informal Argumentation
Following the review of Schneider et al. [2013], there are further systems worth
mentioning that make use of “informal” argumentation techniques. Indeed, they
tend to be closer to user experience and they generally have a low entry barrier. At
the same time, they do not offer much support for structuring arguments in a formal
fashion, nor automated reasoning capabilities.

There is a large number of social networking debating systems such as Argue-
how,39 Climate CoLab [Gürkan et al., 2010], ConsiderIt [Kriplean et al., 2011],

39http://arguehow.com/ (on 27/04/2017).
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F1 F2 F3 F4 F5 F6 F7

AGORA Yes Yes Yes
AIFdb Yes Yes Yes
AnalysisWall Yes Yes Yes Yes
Arg&Dec Yes Yes Yes Yes
ArgTeach Yes
ArgTrust Yes Yes Yes
ArgueApply Yes Yes Yes Yes Yes
ArgMed Yes Yes Yes
ArguMed Yes Yes Yes
Argument Blogging Yes Yes Yes
Argunet Yes Yes Yes
Arvina Yes Yes Yes Yes
ASPARTIXWeb Yes
bCisive Yes Yes
CISpaces Yes Yes Yes Yes Yes Yes Yes
Cohere/Compendium Yes Yes Yes
ConargWeb Yes Yes
CoPe_it! Yes Yes Yes
D-BAS Yes Yes Yes
Debategraph Yes Yes Yes Yes
GERD Yes Yes
Grafix Yes Yes
GrappaVis Yes Yes Yes
Gorgias Yes Yes Yes
Gorgias-B Yes Yes
MARFs Yes Yes Yes
Opinion Space Yes
OVA+ Yes Yes Yes Yes Yes
Parmenides Yes Yes
PIRIKA Yes Yes Yes
Quaestio-it Yes Yes Yes Yes Yes
Rationale Yes Yes
Reason Yes Yes Yes
Truthmapping Yes Yes Yes Yes

Table 3: Comparative overview of systems (discontinued systems are omitted) using
some form of formal argumentation. F1: structured argumentation; F2: argument
manipulation; F3: collaborative; F4: enables dialogues, F5: based on speech acts;
F6: Dung’s reasoner, or F7: non-Dung’s reasoner.
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2017 • ArgueApply
2016 • D-BAS

Gorgias-B
GrappaVis
MARFs

2015 • Arg&Dec
GERD

2014 • ArgTeach
Argument Blogging
CISpaces
ConargWeb
Grafix
OVA+
PIRIKA
Quaestio-it

2013 • AnalysisWall
bCisive
Rationale

2012 • AIFdb
ArgMed
Arvina

2011 • ArgTrust
Avicenna (discontinued)

2010 • ASPARTIXWeb
Opinion Space
Dispute Finder (discontinued)

2009 • CoPe_it!
Debategraph
Reason

2008 • Cohere/Compendium
Parmenides
SEAS (discontinued)

2007 • Argunet
2005 • AGORA
2004 • Truthmapping
2003 • ArguMed

Gorgias
Trellis (discontinued)

1998 • ARGUE! (then ArguMed in
2003)

Figure 11: History of systems from Section 4, both active and discontinued. The
year refers to the first tracked publication or to the first time the system appears
online.
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ConvinceMe,40, CreateDebate,41 Debate.org,42 Debatepidia,43 Debatewise,44 Hyper-
news,45 and LivingVote.46 Further systems worth mentioning are, e. g., Belvedere,47

an open-source critical thinking support system; the Cabanac’s annotation system48

for investigating social validation of arguments in comments; and DiscourseDB,49

that is used to collaboratively collect policy-related commentary.

5 Challenges
In this section we discuss current challenges in devising and implementing algorithms
for solving problems related to formal argumentation. In particular, for abstract
argumentation problems we discuss parallel algorithms (Section 5.1), approximation
algorithms (Section 5.2), and dynamic selection of algorithms depending on graph
features (Section 5.3). We also have a brief look at advanced techniques and the
related challenges for some structured argumentation approaches (Section 5.4).

5.1 Parallelization
Reasoning tasks related to computational models of argumentation in general, and
abstract argumentation in particular, are usually hard from the perspective of com-
putational complexity, cf. e. g. [Dunne and Wooldridge, 2009]. In order to make sys-
tems applicable to real-world scenarios, specific measures have to be taken in order
to overcome the NP-complexity barrier—or even higher. One such measure is to use
parallelization. Modern computing systems usually provide many CPU cores that
allow for multiple threads to be executed in parallel. Moreover, grid- or cluster-based
systems collect the computational capacity of many single machines and provide an
abstraction with access to many computing cores. In order to exploit the compu-
tational power of such parallel systems, algorithms have to be devised that allow
for the decomposition of complex problems, independent solving of the individual
sub-problems, and an effective aggregation of the partial results into a global solu-
tion. While not every computational problem allows for such a parallelization—or

40http://hamschank.com/convinceme/index.html (on 27/04/2017).
41http://www.createdebate.com/ (on 27/04/2017).
42http://debate.org (on 27/04/2017).
43http://www.debatepedia.com/ (on 27/04/2017).
44http://debatewise.org/ (on 27/04/2017).
45http://sourceforge.net/projects/hypernews/ (on 27/04/2017).
46http://www.livingvote.org/ (on 27/04/2017).
47http://belvedere.sourceforge.net/ (on 27/04/2017).
48http://www.irit.fr/~Guillaume.Cabanac/expe/ (on 27/04/2017).
49http://www.discoursedb.org/ (on 27/04/2017).
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at least does not allow for parallelization with a significant gain in performance—
parallelization has been applied to many NP-complete (or harder) problems in the
past with some success, most notably to the problem SAT [Hölldobler et al., 2011]
allowing for considerable speed-ups on certain subclasses of instances.

For abstract argumentation, a natural feature to exploit for devising parallel
algorithms is SCC-recursiveness [Baroni et al., 2005]. A semantics is SCC-recursive
if the problem of enumerating the extensions for the graph as a whole can be be
decomposed in computing the extensions of its strongly connected components50

(SCC). Once SCCs have been identified, extensions can be computed on each SCC
separately and the resulting sub-extensions can be joined in order to obtain the
extensions of the whole graph paying attention to the inter-dependencies among
different SCCs.51 This basic approach is followed by the algorithm presented in
[Cerutti et al., 2015], which itself is an enhancement to the previously published
algorithm from [Cerutti et al., 2014e].

The approach for parallelizing the computation of extensions in abstract argu-
mentation outlined in [Cerutti et al., 2015] is effective as long as the number of
SCCs is “relatively” large in comparison to the size of the argumentation framework.
Computing the SCCs of a graph can be done in polynomial time (see e. g. Tarjan’s
algorithm [Tarjan, 1972]) and, thus, the computational overhead of decomposing
the problem is negligible in comparison to the computational effort of computing
extensions, which is, as discussed before, often NP-hard or harder, depending on
the chosen semantics. The computational effort required for the aggregation step
is highly dependent on the actual instance of the problem and may be exponential
in the worst case, as a sub-graph may possess an exponential number of extensions
[Baumann and Strass, 2014] that need to be aggregated. However, for “reason-
able” instances, this step is also negligible in comparison to the effort of computing
extensions. As the empirical evaluation in [Cerutti et al., 2015] suggests, exploit-
ing SCC-recursiveness for parallelization may yield a speedup (up to 280%) when
increasing the number of cores from 1 to 4.

Another approach to parallelization is not based on decomposing a problem into
sub-problems, but on parallel execution of different algorithms for the whole prob-
lem. For many computationally hard problems there is usually a limited number of
algorithms that can solve “most” of the instances in reasonable time, and the core
problem is to determine which algorithm should be selected to solve a particular
instance. This problem is called the Algorithm selection problem and will be dis-

50A subgraph of a directed graph is a strongly connected component, if there is a directed path
from every vertex to each vertex and the subgraph is maximal.

51Other decomposition methods might take advantages of I/O-multipoles [Baroni et al., 2014],
but no approaches have been yet proposed.
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cussed in more detail in Section 5.3. It is worth noticing that [Vallati et al., 2017]
proposes a first parallel algorithm selection approach. A straightforward solution
to this problem is to devise a meta-algorithm that runs several algorithms on the
original problem in parallel. As soon as the first algorithm terminates, the meta-
algorithm terminates as well and the result of the meta-algorithm is the result of
this algorithm. This approach, also called variant-based parallel computation, has
been implemented in [Craven et al., 2012] for the problem of deciding acceptance
of arguments in assumption-based argumentation (ABA)52 and has been applied in
the medical domain. More specifically, the approach of [Craven et al., 2012] is based
on discussion games and different algorithms for solving acceptance use different
expansion strategies in advancing the game.

The two approaches from above are complementary in the way how paralleliza-
tion is realized. While the first approach uses a single algorithm and decomposes
the problem instance into a parallel execution, the second approach uses multiple
algorithms on the whole problem. Of course, combinations of the paradigms are
imaginable.

5.2 Approximation Techniques
Parallelization offers an approach to overcome complexity barriers while maintaining
soundness and completeness. A different and also often applied approach is to give
up soundness and/or completeness and devise approximation algorithms, see e. g.
[Vazirani, 2002; Cormen et al., 2009]. Roughly, an approximation algorithm is not
expected to solve the problem correctly but only within a certain margin of error.
On the other hand, an approximation algorithm is expected to be more efficient
than a correct algorithm.

In general, an algorithm A is said to be an ε-approximation algorithm for an
optimization problem P (with ε > 0), if for every instance the output of A is in the
interval [(1− ε)C, (1 + ε)C], where C is the optimal solution, and ε thus represents
the relative error in the approximation. Usually, one is interested in polynomial-time
ε-approximation algorithms with ε being as small as possible. In case the algorithm
returns more refined solutions—i. e. it decreases the ε-approximation further—if
provided with additional runtime, it belongs to the class of anytime algorithms.

Approximation techniques for problems of abstract argumentation have not been
investigated in-depth yet, with only very few exceptions. For example, the equational
approach to abstract argumentation (see also [Gabbay, 2012; Gabbay and Rodriguez,
2014]) views an argumentation framework as a generator of equations for value

52While ABA is actually an approach to structured argumentation, we discuss it here as it is the
only known parallel approach to structured argumentation.
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assignments V such that V (X) = 1 indicates that X is in; V (X) = 0 indicates
that X is out; and V (X) ∈ (0, 1) that X is undecided. In [Gabbay and Rodriguez,
2014] the authors introduce an iteration schema for computing complete extensions,
starting from an arbitrary assignment V0 and then, by use of a specific update
rule, generating a sequence of assignments V0, V1, . . .. In [Gabbay and Rodriguez,
2014] it is shown that this sequence will eventually converge and form a complete
extension. This algorithm can therefore be interpreted as an anytime algorithm for
computing complete extensions, but a thorough analysis of this algorithm in terms
of approximation quality has not been done yet.

In the area of probabilistic abstract argumentation [Li et al., 2012; Thimm, 2012;
Hunter, 2014], which is concerned with combining abstract argumentation frame-
works with probabilistic reasoning, approximation techniques from probabilistic rea-
soning have been applied to overcome the additional complexity necessary to deal
with quantitative uncertainty [Hadoux et al., 2015; Li et al., 2012]. As probabilis-
tic abstract argumentation is a topic that will be covered in later volumes of this
handbook, we omit discussing these techniques here.

In summary, approximation techniques for computational models of arguments
are still underdeveloped, but may gain attention in the near future.

5.3 Algorithm Selection

In Section 5.1 we already discussed the variant-based parallel computation approach
of [Craven et al., 2012] which is a specific solution for solving the Algorithm Se-
lection problem by running different algorithms for the same problem in paral-
lel. If parallelization is not possible for devising an algorithm, another solution
is given by the algorithm portfolio approach [Rice, 1976; Leyton-Brown et al., 2003;
Xu et al., 2008]. A portfolio is a meta-algorithm that has access to several specific
algorithms for solving the same problem. When presented with a problem instance,
the meta-algorithm selects one of those specific algorithms. In the case of dynamic
portfolios, the meta-algorithm first extracts some features of the problem instance
and then selects an algorithm that has, in a preprocessing step, proven to be the
best algorithm for instances with the given features. This approach has been proven
quite successful in solving many hard problems, such as SAT [Xu et al., 2008].

The crucial step in developing a dynamic portfolio algorithm is to define which
features are relevant both to assess the quality of the algorithms in the prepro-
cessing step and to select the appropriate algorithm during runtime. Further-
more, it is important that the overhead introduced for computing features of the
problem instance during runtime is “reasonably” small. In [Vallati et al., 2014b;
Cerutti et al., 2014b] the authors presented 50 features of abstract argumenta-
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tion frameworks and derived empirical performance models (EPMs) to determine
the “best” implementation for enumerating preferred extensions, given CPU-time
as evaluation criterion and a limited set of solvers. The features considered there
were basic graph theory-based measures such as size of the graph, average degree
of arguments, flow hierarchy, and so on. The two EPMs presented in [Cerutti et
al., 2014b] show an overall accuracy of 80% (classification) and, depending on the
implementation, the ability to predict quite accurately the runtime required by a
solver to enumerate the preferred extensions (regression). Unsurprisingly, the set
of most informative features—according to a greedy forward search-based on the
Correlation-based Feature Selection attribute evaluator [Hall, 1998] and with re-
spect to the experimental setting used by the authors—includes the density of the
argumentation graph, as well as number of SCCs and the size of the maximum
SCC. When the computed EPMs have been applied to the problem of algorithm
selection, both of them perform significantly well: in 78% of cases (resp. 75%) the
classification-based EPM (the regression-based EPM) selects the best implementa-
tion. In most of the cases, 83%, both EPMS select the same algorithm, which is the
correct one in 82% of cases.

Complete static and dynamic portfolios have been proposed in [Cerutti et al.,
2016d], and parallel portfolios are proposed and discussed in [Vallati et al., 2017].
However, it is still unclear whether there may be better features to use for the se-
lection problem or whether a combination of different techniques discussed in this
section may yield improved performance. In [Brochenin et al., 2015], abstract solvers
[Nieuwenhuis et al., 2006] are used as a formal machinery to formally specify different
algorithms addressing extension-enumeration problems. By using these formaliza-
tions, algorithms could be combined and extended to more effective algorithms.
Hence, using this machinery to also include the concepts discussed in this section
may be a fruitful endeavor.

5.4 Advanced Techniques for Structured Argumentation

In structured argumentation, further computational problems than argument evalua-
tion may occur. Many approaches to structured argumentation consider a knowledge
base formalized in some logical formalism, and then derive arguments and conflicts
between them on top of that, cf. Figure 4. Therefore, additional computational effort
is required to construct arguments and to discover the conflict relationship between
them. In general, computational approaches to structured argumentation can be
categorized in two classes: those that use abstract argumentation frameworks as
the underlying argument evaluation mechanism and those that provide proprietary
evaluation mechanisms.
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For the class of approaches providing proprietary evaluation mechanisms—such
as Defeasible Logic Programming and earlier versions of Deductive Argumentation—
the processes of argument construction, defeat discovery, and argument evaluation
are usually intertwined, but each step still imposes some challenges.53

For argument construction, an important issue is relevance of arguments. In
particular, for approaches building on classical logics—such as Deductive
Argumentation—the number of arguments that can be derived from knowledge base
may be potentially infinite. Given a specific query to the knowledge base, usually
only those arguments are constructed that are relevant to the query and possess a
certain normal form (in Deductive Argumentation these are the maximally conser-
vative undercuts). In [Besnard and Hunter, 2006] an effective method for construct-
ing both arguments and the defeat relation for a certain query is presented. This
method relies on a preprocessing step that generates a so-called compilation from a
knowledge base, which is an undirected graph with vertices being the minimal in-
consistent subsets of the knowledge base and two vertices are connected if they have
a non-empty intersection. Given a specific query, a traversal algorithm allows the
complete construction of an argument tree from this compilation. Considering only
approximate arguments [Hunter, 2006a]—e. g. arguments which are not necessarily
minimal—also allows to gain efficiency by trading-off completeness or soundness (to
some extent).

Another advanced technique for structured argumentation is pruning of dialecti-
cal trees in, e. g., Defeasible Logic Programming [Chesñevar et al., 2000; Chesñevar
and Simari, 2007; Rotstein et al., 2011]. This technique also offers a solution to re-
frain from considering all arguments for evaluating a query. This is realized by only
expanding the dialectical tree so far until the evaluation status of the query is de-
cided. For example, if an argument possesses multiple attackers, and it can already
be decided that the first attacker is ultimately accepted and defeats the argument,
then there is no need to evaluate the acceptance status of the remaining attackers
as it can already be decided that the argument under consideration is not accept-
able. Yet another approach to address the very same issue is to evaluate different
argumentation lines in a dialectical tree in parallel [García and Simari, 2000].

53For those approaches relying on abstract argumentation for argument evaluation, similar so-
phisticated techniques as outlined in this and the previous sections apply, but will not be discussed
separately.
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6 Evaluation of Implementations
While theoretical approaches to computational models of argumentation are usually
analytically evaluated using rationality postulates or comparison of behavior on toy
examples—see e. g. [Gorogiannis and Hunter, 2011; Caminada and Amgoud, 2005;
Amgoud, 2014]—the evaluation of algorithms and implementations focuses on the
three aspects of correctness, performance, and usability. The correctness of algo-
rithms and implementations is usually shown in an analytical way and involves
showing that the algorithmic representation corresponds to the formal definition,
e. g. that the result of performing an algorithm indeed returns the grounded exten-
sion of a given abstract argumentation framework. In order to evaluate an algorithm
with respect to performance, one usually conducts an analytical runtime or com-
plexity analysis. For the performance evaluation of implementations an empirical
evaluation on either artificial or real-world benchmarks and runtime measurement
on the corresponding computational problems is essential for obtaining a compar-
ative analysis of different approaches. Finally, in order to evaluate the usability of
implementations, user studies have to be performed.

For the remainder of this section, we will focus on the problem of empirical per-
formance evaluation of implementations of computational models of argumentation.
In particular, we will focus on evaluations of implementations that solve problems
for abstract argumentation frameworks, cf. Section 2. Those problems are an im-
portant aspect of any evaluation of implementations as well, as they provide clear
formalizations of what are the expected outcomes of computational tasks. Another
important aspect of such evaluations is the identification of suitable benchmarks,
i. e. abstract argumentation graphs, that can be used to compare the performance
of different implementations, which we discuss in Section 6.1. We discuss existing
comparative analyses, in particular the International Competition on Computational
Models of Argumentation (ICCMA),54 in Section 6.2.

6.1 Benchmark Examples
A crucial issue in setting up an evaluation of an implementation of abstract argumen-
tation problems is the identification of argument graphs that are used as benchmark
examples. Ideally, real-world applications would provide these kind of benchmark
graphs in order to test implementations on actually existing problems. Unfortu-
nately, the availability of real-world benchmarks for argumentation problems is quite
limited, some few exceptions are [Cabrio et al., 2013; Cabrio and Villata, 2014b;

54http://argumentationcompetition.org (on 27/04/2017).
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Cabrio and Villata, 2014a] and AIFdb.55 Moreover, these benchmarks are tailored
towards problems of argument mining [Wells, 2014] and their representation as ab-
stract argumentation frameworks usually lead to topologically simple graphs, such
as cycle-free graphs, which are unsuitable for comparing abstract argumentation
solvers: all classical semantics coincide with grounded semantics on cycle-free graphs
[Dung, 1995]. In order to compare solvers for—among others—preferred and stable
semantics, artificially-generated argumentation graphs have been used so far.

Generating graphs for testing computational approaches or hypotheses on phys-
ical or social phenomena has already some tradition in network theory [Erdös and
Rényi, 1959; Albert and Barabási, 2002; Pfeiffer et al., 2012; Tabourier et al., 2011;
Barabasi and Albert, 1999]. However, it is questionable whether these graph models
are suitable to model argumentation problems. For instance, the Barabási-Albert
model [Barabasi and Albert, 1999] generates networks based on preferential attach-
ment. The concept preferential attachment refers to the tendency of nodes that have
already many connections to other nodes, to receive even more connections in the
evolution of the network: an example of this phenomenon is the saying “the rich
get richer, while the poor get poorer.” To the best of our knowledge, there is no
evidence that real-world argumentation adheres to this concept. Another concept
from network theory often (indirectly) implemented in graph models is that of tri-
angle closure, i. e., the tendency of nodes directly connecting to the neighbors of its
neighbors (as in the saying “the friend of my friend is also my friend”). This con-
cept is hardly applicable to argumentation graphs as this would imply that defense
(an argument attacking the attacker of another argument) tends also to be a direct
attack (the first argument attacking the argument it also defends).

Graph models from network theory also usually generate undirected graphs.
Adapting a model to generate directed edges is of course trivial, but it is questionable
whether the resulting graphs have any interpretation with respect to the original
intention of the model.

Finally, from the perspective of challenging benchmarks for abstract argumen-
tation, the graphs generated by such models are usually also not adequate. Initial
experiments for ICCMA’15 [Thimm et al., 2016] (see also below and the next sec-
tion) suggest that those generated graphs usually contain an empty or a very small
grounded extensions, usually no stable extensions (also due to the triangle closure
property), and very few and small complete and preferred extensions. The latter
observation is due to the fact that these graph models aim at modeling the “small
world” property of many real-world graphs.56 This leads to many arguments di-

55http://corpora.aifdb.org (on 27/04/2017).
56This property basically states that there are always “relatively short” paths from any node to

every other node [Watts and Strogatz, 1998], provided that the network is connected and not too
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rectly or indirectly being in conflict with each other. However, these models have
been used for benchmark generation in earlier evaluations of implementations of
abstract argumentation solvers [Bistarelli et al., 2013; Bistarelli et al., 2014].

In order to provide challenging benchmarks, ICCMA’15 used proprietary graph
generators, each addressing different aspects of computationally hard graphs for
specific semantics. For example, the StableGenerator aims at generating graphs
with many stable extensions, and thus also many complete and preferred extensions.
Graphs generated by this generator pose substantial combinatorial challenges for
solvers addressing the computational tasks of determining (skeptical or credulous)
acceptance of arguments and of enumerating extensions. For a given number of
arguments, this generator first identifies a subset of these arguments to form an
acyclic subgraph which will contain the grounded extension. Afterwards, another
subset of arguments is randomly selected and attacks are randomly added from some
arguments within this set to all arguments outside the set (except to the arguments
identified in the first step). This process is repeated until a number of desired stable
extensions is reached. The source code for this and other generators can be found
in the source code repository57 of probo [Cerutti et al., 2014f], the benchmark suite
used to run the competition. Another general tool for generating argumentation
frameworks from a set given graph features is given by AFBenchGen58 [Cerutti et
al., 2014d; Cerutti et al., 2016a].

6.2 Comparative Analysis
The first systematic evaluations of implementations of abstract argumentation
solvers have been conducted in [Bistarelli et al., 2013; Bistarelli et al., 2014]. In these
evaluations a small number of implementations have been evaluated with respect to
runtime on graphs generated by different graph models from social networking theory
such as the Barabási-Albert model (see above). A similar performance evaluation
is provided in [Vallati et al., 2014a; Cerutti et al., 2016d]. In addition, in [Cerutti
et al., 2016c] the authors discuss the effect of solver and instances configuration on
performance.

A large-scale and systematic comparison of different implementations of com-
putational models of argumentation is offered by the International Competition on
Computational Models of Argumentation (ICCMA)59, which has already been men-
complete. For example the theory of “six degrees of separation” suggests that in the social network
of the known world the longest shortest path between any two persons is six.

57http://sourceforge.net/p/probo/code/HEAD/tree/trunk/src/net/sf/probo/generators/
(on 27/04/2017).

58https://sourceforge.net/projects/afbenchgen/ (on 27/04/2017).
59http://argumentationcompetition.org (on 27/04/2017).
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tioned before and is an international event established in 2014. The first instance of
the competition took place in 2015 and focused on comparing implementations for
various decision and enumeration problems in abstract argumentation.

The competition in 2015 received 18 solvers from research groups in Austria,
China, Cyprus, Finland, France, Germany, Italy, Romania, and UK. It was con-
ducted using the benchmark framework probo [Cerutti et al., 2014f], which provides
the possibility to run the instances on the individual solvers, verify the results, mea-
sure the runtime, and log the results accordingly. The software probo is written in
Java and requires the implementation of a simple command line interface from the
participating solvers.60 All benchmark graphs—generated using proprietary genera-
tion algorithms, see previous section—were made available in two file formats. The
trivial graph format61 (TGF) is a simple representation of a directed graph which
simply lists all appearing vertices and edges. The Aspartix format (APX) [Egly et
al., 2008] is an abstract argumentation-specific format which represents an argumen-
tation framework as facts in a logic programming-like way. In order to verify the
answers of solvers, the solutions for all instances were computed in advance using
the Tweety libraries for logical aspects of artificial intelligence and knowledge rep-
resentation62 [Thimm, 2014]. Tweety contains naïve algorithms for all considered
semantics that implement the formal definitions of all semantics in a straightforward
manner and thus provides verified reference implementations for all considered prob-
lems. Besides serving as the benchmark framework for executing the competition,
probo also contains several abstract classes and interfaces for solver specification
that can be used by participants in order to easily comply with the solver interface
specification.

The competition in 2015 evaluated the runtime performance of the solvers for
four different semantics and four different computational tasks, yielding a total of 16
tracks. Among the best solvers throughout all tracks were CoQuiAAS, ArgSemSAT,
and LabSATSolver (see also Section 2). For detailed performance comparisons and
current competitions see the webpage of ICCMA.63

7 Discussion
In this paper we discussed (1) approaches for addressing reasoning problems in
abstract argumentation frameworks; (2) approaches for handling structured argu-

60See http://argumentationcompetition.org/2015/iccma15notes_v3.pdf (on 27/04/2017)
for the formal interface description.

61http://en.wikipedia.org/wiki/Trivial_Graph_Format (on 27/04/2017).
62http://tweetyproject.org (on 27/04/2017).
63http://argumentationcompetition.org (on 27/04/2017).
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mentation frameworks; and (3) other approaches that might be relevant to the ar-
gumentation community although they do not belong to the previous two classes.

As per approaches for abstract argumentation frameworks, it is beyond doubt
that currently the majority of proposals adopt a reduction-based approach (Section
2.1), thus relying on SAT-solvers, or CSP-solvers, or ASP-solvers. However, we have
covered the few direct implementations as discussed in Section 2.2.

Coming to approaches for structured argumentation frameworks, we considered
the four large families developed in some 20 years of studies, viz. (in alphabetical
order) ABA, ASPIC+, Deductive argumentation, and DeLP. We also considered
the case of Carneades, which is both a formal model of argument structure and
evaluation, and a system implementing the model.

Then, we reviewed 34 implemented systems that provide a general purpose gate-
way to formal structures of argumentation. They can be systems for producing
corpora that can be exploited by argument mining algorithms as well as system for
supporting critical thinking by the means of formal models of argumentation.

This touches one of the main topic of discussion still open in the community,
namely applying machine learning techniques for automatic argument elicitation
from natural language text, or argument mining, see [Budzynska et al., 2014; Wells,
2014]. This is a fast growing research field, but at the same time, it encompasses
a large variety of topics, from mining legal arguments, to mining tweets, and it is
unlikely to have a one-size-fits-all approach. At the same time, this is an extremely
young research field and best practices did not yet emerge in the community.

While we did not devote space to argument mining techniques, we instead dis-
cussed what are the main challenges we envisage for implementation of formal ar-
gumentation, as well as what are sensible ways for comparing different implementa-
tions. In particular, we reviewed (Section 5) the few approaches for making systems
applicable to real-world scenarios, and thus overcoming the NP-complexity barrier,
namely parallelization and approximation techniques. Moreover, machine learn-
ing techniques might also play an important role in selecting the right solver for a
specific problem. There are, indeed, some embryonic approaches for automatic al-
gorithm selection on the basis of abstract argumentation frameworks features. How-
ever, most—if not all—of the reviewed approaches consider abstract argumentation
frameworks only.

This leads us to the last element of discussion we touched in this paper (Section
6), namely how to compare different systems by the means of benchmarks and com-
petitions. Although the community already made a move in the context of abstract
argumentation, with the first edition of the International Competition of Compu-
tational Models of Argumentation, we still have a long way ahead for addressing
questions related to structured argumentation. Comparative studies on different
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formalisms, i. e. [Schulz and Caminada, 2015] and [Heyninck and Straßer, 2016],
might shed some light on common grounds, thus allowing for a fair comparison.
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Abstract

The current review paper examines how to apply Dung’s theory of abstract
argumentation to define meaningful forms of non-monotonic inference. The idea
is that arguments are constructed using strict and defeasible inference rules, and
that it is then examined how these arguments attack (or defeat) each other. The
thus defined argumentation framework provides the basis for applying Dung-
style semantics, yielding a number of extensions of arguments. As each of the
constructed arguments has a conclusion, an extension of arguments has an as-
sociated extension of conclusions. It are these extensions of conclusions that we
are interested in. In particular, we ask ourselves whether each of these exten-
sions is (1) consistent, (2) closed under the strict inference rules and (3) free
from undesired interference. We examine the current generation of techniques
to satisfy these properties, and identify some research issues that are yet to be
dealt with.

1 Introduction
Argumentation, as it takes place in everyday life, is never completely abstract. Com-
monly, arguments are exchanged in order to determine what to do or what to believe.
These arguments tend to be composed of reasons, some of which are strict and some
of which are defeasible. Strict reasons (like rules of logic) provide conclusive evi-
dence for a claim (like “Socrates is a man. All men are mortal. Therefore, Socrates
is mortal.”) whereas defeasible reasons (like rules of thumb) provide evidence for
their claim that is only valid in the absence of counter evidence (like “Tux is a bird.
Therefore Tux can fly.”). The existence of defeasible reasons illustrates that for

The current paper will also be published as a chapter in the Handbook of Formal Argumentation.
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commonsense reasoning, classical logic is often not sufficient, and that some form of
nonmonotonic reasoning (as for instance provided by formal argumentation theory)
is necessary.

Whereas defeasible reasons (formally represented as defeasible rules) provide a
basis for nonmonotonic reasoning, strict reasons (formally represented as strict rules)
provide the ability to model hard constraints (like “given our budget, if we acquire
both product X and Y, then we cannot acquire product Z anymore”). By doing
so, strict rules provide an important aspect of commonsense reasoning: the ability
to reason about an outside world that has particular constraints (for instance of
physical or financial nature) that are not subject to discussion.1

Suppose one would like to apply Dung’s theory in the presence of strict and
defeasible rules. That is, the idea is to apply the strict and defeasible rules to
construct the arguments of the argumentation framework.2 How can one be sure
that the outcome makes sense from a logical perspective? Suppose there exists a
rule representing the reason “given the current budget, if we acquire both product
X and Y, then we cannot acquire product Z anymore”, together with various other
rules. In that case, what one would like to avoid is arguments for buying product X,
Y and Z becoming justified (perhaps even in the same extension) because this would
mean the constraint is violated. In principle, we could of course look inside of the
arguments to check that what we select does not violate any constraint. However, the
whole idea of Dung’s abstract argumentation theory3 is not to look at the internal
structure of the arguments, and to select them based purely on their position in the
graph. However, if one cannot look inside of the arguments when selecting them,
then how does one make sure that the overall outcome (regarding conclusions on,
say, what to do or what to believe) makes any sense?

In the current paper, we examine the question of how to apply Dung’s theory

1Some argumentation researchers have claimed (personal communication) that if one digs deep
enough, even strict rules start to have exceptions, and that therefore only defeasible rules exist.
While this may be true from a philosophical perspective, one often wants to restrict the domain
of reasoning and not take the more esoteric exceptions into account. The rule “given the current
budget, if we acquire both product X and Y, we cannot acquire product Z anymore” may have
exceptions if one is willing to steal, but this exception is of little relevance when the setting is a
meeting at work. Also, the very idea of modelling information (be it by means of rules or by any
other means) is that one limits oneself to a particular Universe of Discourse. Hence, strict rules can
be seen as defeasible rules whose exceptions are beyond our current Universe of Discourse.

2Basically, this is done by chaining the rules together into inference trees, like is for instance
done in [Modgil and Prakken, 2014; Toni, 2014; Caminada et al., 2014b; Caminada et al., 2015].

3Keep in mind that in Dung’s theory, arguments are abstract, not atomic. Atomic would mean
that arguments have no internal structure at all. Abstract means that arguments do have an internal
structure, but that one does not take this structure into account (that is, one has abstracted from
the internal structure).
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of abstract argumentation for the purpose of non-monotonic reasoning with strict
and defeasible rules. That is, we examine how to apply abstract argumentation
semantics while making sure the overall outcome (in terms of justified conclusions)
still makes sense. The remaining part of this paper is structured as follows. First,
we will state some formal preliminaries on rule-based argumentation in Section 2.
Then, in Section 3 we examine three desirable properties of the overall outcome
(direct consistency, indirect consistency and closure) and examine various ways of
satisfying these properties. Then, in Section 4 we examine two additional desirable
properties (non-interference and crash resistance) that are particularly relevant when
the strict rules are derived from classical logic, and again examine various ways of
satisfying these properties. We round off with a summary and discussion in Section
5.

2 Formal Preliminaries
In the current section, we outline the process of constructing an argumentation
framework from a set of strict and defeasible rules. For current purposes, we base
our approach on the work of Caminada et al. [2014b].4

Definition 1. Given a logical language that is closed under negation (¬), an argu-
mentation system is a tuple AS = (Rs,Rd, n,≤) where:

• Rs is a finite set of strict inference rules of the form ϕ1, . . . , ϕn → ϕ (where
ϕi, ϕ are meta-variables ranging over L and n ≥ 0)

• Rd is a finite set of defeasible inference rules of the form ϕ1, . . . , ϕn ⇒ ϕ
(where ϕi, ϕ are meta-variables ranging over L and n ≥ 0)

• n is a partial function such that n : Rd −→ L

• ≤ is a partial pre-order on Rd
We write ψ = −ϕ in case ψ = ¬ϕ or ϕ = ¬ψ (we will sometimes informally say
that formulas ϕ and −ϕ are each other’s negation).

To keep things simple, we assume that the logical language L consists of literals
only.5

4As such, we will for instance not consider the notion of contraries [Modgil and Prakken, 2014]
or any other notions in aspic+ that are not relevant for current purposes.

5In Section 4 we generalise things by having L be the language of propositional logic.
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In the following definition, arguments are constructed from strict and defeasible
rules in an inductive way. This process starts from the strict and defeasible rules
with empty antecedents (so where n = 0).

Definition 2. An argument A on the basis of an argumentation system AS =
(Rs,Rd, n,≤) is defined as:

1. A1, . . . , An → ψ if A1 . . . An (n ≥ 0) are arguments, and there is a strict rule
Conc(A1), . . . ,Conc(An)→ ψ in Rs. In that case we define
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}.
DefRules(A) = DefRules(A1) ∪ . . . ∪DefRules(An),
TopRule(A) = Conc(A1), . . . ,Conc(An)→ ψ

2. A1, . . . , An ⇒ ψ if A1 . . . An (n ≥ 0) are arguments, and there is a defeasible
rule Conc(A1), . . . ,Conc(An)⇒ ψ in Rd. In that case we define
Conc(A) = ψ,
Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},
DefRules(A) = DefRules(A1) ∪ . . . ∪DefRules(An) ∪
{Conc(A1), . . . ,Conc(An)⇒ ψ},
TopRule(A) = Conc(A1), . . . ,Conc(An)⇒ ψ.

Furthermore, for any argument A and set of arguments E:

• A is strict iff DefRules(A) = ∅; defeasible iff DefRules(A) 6= ∅;

• If DefRules(A) = ∅, then LastDefRules(A) = ∅, else;
if A = A1, . . . , An ⇒ φ then LastDefRules(A) = {Conc(A1), . . . ,Conc(An)⇒
φ}, otherwise LastDefRules(A) = LastDefRules(A1)∪ . . .∪ LastDefRules(An).

• Concs(E) = {Conc(A) | A ∈ E}

• The closure under strict rules of E, denoted ClS(E) is the smallest set con-
taining Concs(E) and the consequent of any strict rule in Rs whose antecedent
is contained in ClS(E).

For current purposes (as well as is done in [Caminada and Amgoud, 2007;
Prakken, 2010; Caminada et al., 2014b]) we assume that the set of strict rules is
consistent in the following way.

Definition 3. Let AS = (Rs,Rd, n,≤) be an argumentation system. We say that
AS and Rs are consistent iff no strict arguments A and B exist such that Conc(A)
= −Conc(B)
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Definition 4. Let A and B be arguments. We say that

• A undercuts B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B) with
TopRule(B′) = r and r ∈ Rd

• A restrictively rebuts B (on B′) iff Conc(A) = −Conc(B′) for some B′ ∈
Sub(B) with TopRule(B′) ∈ Rd
• A unrestrictively rebuts B (on B′) iff Conc(A) = −Conc(B′) for some B′ ∈

Sub(B) with B′ being a defeasible argument

To illustrate the difference between restricted rebut and unrestricted rebut,
first consider the example of an argumentation system AS1 with Rs = ∅ and
Rd = {⇒ a; a⇒ b; ⇒ c; c⇒ ¬b}. Here, the argument (⇒ a)⇒ b restrictively and
unrestrictively rebuts the argument (⇒ c)⇒ ¬b, and vice versa. In the argumenta-
tion system AS2 with Rs = {→ a; a→ b} and Rd = {⇒ c; c⇒ ¬b}, the argument
(→ a) → b restrictively and unrestrictively rebuts the argument (⇒ c) ⇒ ¬b, but
the argument (⇒ c) ⇒ ¬b does not restrictively or unrestrictively rebut the argu-
ment (→ a) → b. In the argumentation system AS3 with Rs = {a → b; → c} and
Rd = {⇒ a; c ⇒ ¬b} the argument (⇒ a) → b restrictively and unrestrictively re-
buts the argument (→ c)⇒ ¬b, and the argument (→ c)⇒ ¬b unrestrictively (but
not restrictively) rebuts the argument (⇒ a)→ b. To sum up, with restrictive rebut
one needs to check whether the last rule of the attacked conclusion6 is defeasible
whereas with unrestricted rebut one needs to check whether any previous rule of the
attacked conclusion is defeasible.

The intuition behind unrestricted rebut is that a conclusion is defeasible iff it has
been derived using at least one defeasible rule. If the conclusion has been derived
using strict rules only, then the conclusion is strict and cannot be argued against.
The intuition behind restricted rebut, on the other hand, is that (like in classical
logic) in order to argue against a particular derivation, one has to argue against its
premises. So instead of attacking the consequent of a strict rule, one has to attack
its antecedent, unless this antecedent itself consists of the consequents of strict rules,
in which case one has to keep on going backwards until finding a defeasible rule. It
holds that if A restrictively rebuts B, then A also unrestrictively rebuts B, but not
vice versa.

One last subtle aspect of the definition of restricted and unrestricted rebut
(Definition 4) is that one only looks at the subargument B′ that yields the con-
clusion that one is arguing against. So in the argumentation system AS4 with
Rs = {→ c; c → ¬b} and Rd = {⇒ a; a ⇒ b; ¬b ⇒ d} the argument (⇒ a) ⇒ b

6meaning: of the conclusion one argues against by providing an argument for its contrary
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does not (restrictively or unrestrictively) rebut the argument ((→ c) → ¬b) ⇒ d,
even though the latter argument is defeasible, because the subargument that yields
the attacked conclusion ¬b is strict.

The difference between restricted and unrestricted rebut is relevant not just be-
cause they are based on different intuitions, but also because choosing to implement
either restricted or unrestricted rebut has consequences for how one should define
the rest of the argumentation formalism if the aim is to yield some kind of reasonable
output in terms of justified conclusions. Details will follow further on in the current
paper.

Apart from (restrictive and unrestrictive) rebutting, Definition 4 also introduces
the concept of undercutting. Whereas with rebutting, one argues against the conclu-
sion of an argument (or against the conclusion of a subargument), with undercutting
one argues against the applicability of a particular defeasible rule. A classical ex-
ample of undercutting has been given by Pollock [1995]: “If an object looks red,
then it actually is red, unless it is illuminated by a red light”. Formally, this can
be modelled using argumentation system AS5 with Rs = {→ looksred; → redlight},
Rd = {looksred ⇒ isred; redlight ⇒ ¬lris} and n(looksred ⇒ isred) = lris. Here, the
argument (→ looksred) ⇒ isred is undercut by the argument (→ redlight) ⇒ ¬lris.
Although undercutting does not play a major role in the remaining part of the cur-
rent paper, we have still chosen to introduce it, as it is a piece of functionality that
can be implemented while still warranting an overall reasonable outcome regarding
the justified conclusions.

Another piece of functionality that some formalisms have implemented is that
of argument strength.7 Argument strength is often defined based on an ordering of
the defeasible rules. However, as arguments can be constructed using more than one
defeasible rule, one needs a way of applying the strength ordering between individual
rules to determine a strength ordering between sets of rules. Two principles for doing
so have been defined in the literature: the elitist and the democratic set ordering
[Modgil and Prakken, 2014; Caminada et al., 2014b].

Definition 5. Let ≤⊆ (Rd×Rd) be a total pre-ordering on the defeasible inference
rules, where as usual, r < r′ iff r ≤ r′ and r � r′, and r ≡ r′ iff r ≤ r′ and r′ ≤ r.
Then for any E , E ′ ⊆ Rd Es (s ∈ {Eli, Dem}) is defined as follows:

1. If E = ∅ then E 5s E ′ ;

2. If E ′ = ∅ and E 6= ∅ then E Es E ′; else:

7Argument strength is sometimes referred to as argument preferences in the work of Prakken
[2010], Modgil and Prakken [2014] and of Caminada et al. [2014b].
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3. if s = Eli: E EEli E ′ if ∃r1 ∈ E s.t. ∀r2 ∈ E ′, r1 ≤ r2; else:

4. if s = Dem: E EDem E ′ if ∀r1 ∈ E, ∃r2 ∈ E ′, r1 ≤ r2.

As usual E �s E ′ iff E Es E ′ and E ′ 5s E

The elitist and democratic set ordering principles assume the presence of sets of
defeasible rules. This leads to the question of how to determine the relevant sets
of defeasible rules when one argument rebuts another. Again, two principles have
been formulated in the literature, called weakest link and last link. With weakest
link, one takes into account all defeasible rules (of both the rebutting argument and
the rebutted (sub)argument), whereas with last link, one takes into account only
the last defeasible rule(s). Given the weakest link and the last link principles for
determining the sets of relevant defeasible rules, as well as the elitist and democratic
set ordering principles for evaluating these sets of defeasible rules, one can identify
four different principles for determining argument strength.

Definition 6. Let Ar be the set of arguments that can be constructed using argu-
mentation system (Rs,Rd, n,≤). Then ∀A,B ∈ Ar :

1. A �Ewl B iff DefRules(A) EEli DefRules(B)

2. A �Ell B iff LastDefRules(A) EEli LastDefRules(B)

3. A �Dwl B iff DefRules(A) EDem DefRules(B)

4. A �Dll B iff LastDefRules(A) EDem LastDefRules(B)

where Ewl, Ell, Dwl and Dll respectively denote ‘ Elitist weakest link’,
‘ Elitist last link’, ‘ Democratic weakest link’ and ‘ Democratic last link’.
We may write A ≺p B iff A �p B and B �p A, and write A ≈p B iff A �p B,B �p
A (where p ∈ {Ewl, Ell, Dwl, Dll}). It is straightforward to show that ≺p is a strict
partial ordering (irreflexive, transitive and asymmetric).

We are now ready to define the overall notion of defeat. For this, we follow
the approach of formalisms like aspic+ [Modgil and Prakken, 2014] and aspic-
[Caminada et al., 2014b], where the notion of defeat stands for attack after argument
strength has been taken into account. It is defeat, not attack, that is then used to
define the argumentation framework.

Definition 7. Let Ar be the set of arguments that can be constructed using argu-
mentation system AS = (Rs,Rd, n,≤). Let �p be the associated argument strength
order on Ar as defined in Definition 6. Then def ur ⊆ Ar × Ar is defined as
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(A,B) ∈ def ur iff A undercuts B or A unrestrictively rebuts B on B′ and A 6≺p B′,
and def rr ⊆ Ar×Ar is defined as (A,B) ∈ def rr iff A undercuts B or A restrictively
rebuts B on B′ and A 6≺p B′.

We observe that the set of arguments Ar , together with the associated defeat
relation (either def ur or def rr) defines a Dung-style argumentation framework. On
this argumentation framework, one can then apply the standard argumentation se-
mantics.

3 Direct Consistency, Indirect Consistency and Closure
To illustrate the issue of rationality postulates, consider the following example.

Example 1 ([Caminada and Amgoud, 2007]). Consider an argumentation system
AS = (Rs,Rd, n,≤) with Rs = {→ r; → n; m → hs; b → ¬hs}, Rd = {r ⇒
m; n⇒ b}, n = ∅ and ≤= ∅.

An intuitive interpretation of this example is the following:
“John wears a ring (r) on his finger. John is also a regular nightclubber (n). Some-
one who wears a ring on his finger is usually married (m). Someone who is a
regular nightclubber is usually bachelor (b). Someone who’s married by definition
has a spouse (hs). Someone who’s bachelor by definition does not have a spouse
(¬hs).”

We can construct the following arguments.
A1 :→ r A3 : A1 ⇒ m A5 : A3 → hs
A2 :→ n A4 : A2 ⇒ b A6 : A4 → ¬hs
If one were to apply unrestricted rebut, the only defeat would be between A5

and A6. That is, def ur = {(A5, A6), (A6, A5)}. This then implies that for instance
the grounded extension is {A1, A2, A3, A4}, yielding the associated set of (grounded)
justified conclusions {r, n,m, b}. The problem with these conclusions, however, is
that they do not take into account the meaning of the strict rules of the argumentation
system: that if one holds the antecedent of a strict rule to be the case, one must also
hold what deductively follows from it (the consequent of the rule). For instance,
from the fact that we obtain m, together with the strict rule m → hs we should
also have obtained hs, as a married person by definition has a spouse, so by John
being married we cannot escape the conclusion that he has a spouse. Yet, the fact
that John has a spouse is not represented in the set of justified conclusions (that is,
hs 6∈ {r, n,m, b}). This brings us to the first problem: the set of justified conclusions
is not closed under the strict rules.

Another problem appears when also applying the strict rule b → ¬hs. After all,
John is also considered to be a bachelor, so we cannot escape the conclusion that he
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does not have a spouse (¬hs). However, when we also apply the rule m→ hs, as we
did earlier, then we derive that John both has a spouse and does not have a spouse.
So not only is our set {r, n,m, b} of justified conclusions not closed under the strict
rules, if we do try to compute its closure, this closure turns out to be inconsistent!

So far, we examined what happens regarding the justified conclusions in case
we apply unrestricted rebut. However, if we were to base the defeat relation on
restricted rebut instead, then the outcome would even be worse, as the defeat relation
would become empty (that is, def rr = ∅) which means that (when still applying
grounded semantics) one obtains {A1, A2, A3, A4, A5, A6} as the grounded extension
and {r, n,m, b, hs,¬hs} as the associated justified conclusions. So here, we don’t
even need to close the justified conclusions under the strict rules in order to obtain
an inconsistent outcome, as the set of justified conclusions is already inconsistent by
itself.

From Example 1 we observe that there are at least three desirable properties a
set of conclusions should satisfy.

Postulate 1. Let S ⊆ L be a set of justified conclusions yielded by an argumentation
system. S should satisfy:

• direct consistency, meaning that ¬∃x : x,−x ∈ S

• closure, meaning that ClRs(S) = S

• indirect consistency, meaning that ¬∃x : x,−x ∈ ClRs(S)

Early formalisations of argumentation theory tried to avoid problems like those
illustrated in Example 1 by tinkering with the definition of defeat. However, as
explained by Caminada and Amgoud [2007], this does not actually lead to the prop-
erties of Postulate 1 being satisfied. Clearly, some more fundamental solutions are
needed. In the following two subsections, we examine some of the solutions that have
been described in the literature, distinguishing between solutions that have been ob-
tained for restricted rebut and solutions that have been obtained for unrestricted
rebut.

3.1 Restricted Rebut Solutions
In the current section, we examine some of the solutions that have been described
in the literature for satisfying direct consistency, indirect consistency and closure
when the defeat relation is based on restricted rebut.

We recall that, when applying restricted rebut to Example 1 this results in the
empty defeat relation, that is def rr = ∅. One could argue that this is because
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something is wrong with the information encoded in the argumentation system AS ,
in particular with the set of strict rule Rs. If one were for instance to add the
additional strict rules ¬hs → ¬m and hs → ¬b then the problem would be solved.
This is because one could then construct additional arguments A7 : A5 → ¬b and
A8 : A6 → ¬m. It holds that A7 restrictively rebuts A4 (as well as each argument
that contains A4, so also A6 and A8) and that A8 restrictively rebuts A3 (as well
as each argument that contains A3, so also A5 and A7). So overall we obtain the
argumentation framework shown in Figure 1. This argumentation framework yields
the grounded extension {A1, A2} (with associated conclusions {r, n}) and preferred
extensions {A1, A2, A3, A5, A7} (with associated conclusions {r, n,m, hs,¬b}) and
{A1, A2, A4, A6, A8} (with associated conclusions {r, n, b,¬hs,¬m}). As we can see,
each set of conclusions yielded under grounded or preferred semantics satisfies the
postulates of direct consistency, closure and indirect consistency.

A2A1

A3 A7 A5

A6A8A4

Figure 1: Argumentation framework of Example 1 after adding the rules ¬hs→ ¬m
and hs→ ¬b.

Adding the rules ¬hs→ ¬m and hs → ¬b can be seen as a reasonable thing to
do. After all, Rs already contains a rule m → hs, meaning that without possible
exception, someone who is married by definition has a spouse. This implies that
someone who does not have a spouse cannot be married. Hence, ¬hs→ ¬m. Using
similar reasoning, one can use the rule b → ¬hs to derive hs → ¬b. Hence, the
rules ¬hs → ¬m and hs → ¬b were already “implicitly” contained in Rs. Adding
them explicitly can therefore be seen as doing justice to Rs, and has as a side effect
that the postulates of direct consistency, closure and indirect consistency become
satisfied.

Adding the “contraposed” version of a strict rule is relatively straightforward
when the antecedent of the rule consists just of a single formula (as is for instance
the case for m→ hs and b→ ¬hs) but gets more complicated when the antecedent
consists of multiple formulas. For this, a generalised version of contraposition is
needed, which is referred to as transposition [Caminada and Amgoud, 2007].
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Definition 8 ([Caminada and Amgoud, 2007]). Let ϕ1, . . . , ϕn → ϕ (n ≥ 0)
be a strict rule. A transposed version of this rule is of the form ϕ1, . . . , ϕi−1,
−ϕ,ϕi+1, . . . , ϕn → −ϕ (for some i ∈ {1 . . . n}). We say that a set of strict rules Rs
is closed under transposition when for each strict rule in Rs, each of its transposed
versions is also in Rs.

As an example, the strict rule a,¬b, c→ d has three transposed versions:
¬d,¬b, c→ ¬a; a,¬d, c→ b and a,¬b,¬d→ ¬c.

An example of an argumentation formalism that applies transposition to satisfy
direct consistency, closure and indirect consistency is aspic+ [Modgil and Prakken,
2014]. In aspic+ the following design choices have been made:

• the set of strict rules Rs is consistent and closed under transposition

• restricted rebut is applied

• argument strength is based on a partial pre-order on the defeasible rules, to-
gether with either the last-link or weakest link selection principle and either
the elitist or democratic set ordering principle8

• the argumentation semantics is complete-based, meaning that it selects one or
more complete extensions (examples of complete-based semantics are
grounded, preferred, complete, semi-stable, ideal and eager semantics)

It is shown that under these choices, the overall outcome of the formalism satisfies
direct consistency, closure and indirect consistency.

To understand why transposition plays an important role in satisfying the prop-
erties of direct consistency, closure and indirect consistency, it can be useful to give
a sketch of proof. We start with the property of direct consistency. Suppose, to-
wards a contradiction, that there exists a complete extension yielding conclusions
that are directly inconsistent. This means there exists an argument A for conclusion
c and an argument B for conclusion −c (see Figure 2). As the set of strict rules Rs
is consistent, at least one of these arguments must be defeasible. Assume without
loss of generality that argument A is defeasible. Then A must contain at least one
defeasible rule. Now, identify a defeasible rule r that is “as high as possible” in A
(that is, whose distance to the conclusion c is minimal). Let e be the consequent of
r and let Ai be the subargument of A that has r as its top rule (so Conc(Ai) = e).
Let A1, . . . , An be the subarguments of A that have the same “depth” as Ai (that

8More precisely, argument strength has to be based on a reasonable argument ordering [Modgil
and Prakken, 2014], which is satisfied by applying either the weakest link or the last link selection
principle, in combination with applying either the democratic or the elitist set ordering principle.
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Figure 2: Sketch of proof direct consistency (restricted rebut)

is, whose respective top-rules have the same distance to conclusion c). It turns out
to be possible to build an argument D′ that defeats Ai by deriving conclusion −e.
Recall that “above” each Ai there are only strict rules in A (after all, r was the
“highest” defeasible rule in A). In case these strict rules consist of only one layer,
there exists a single strict rule Conc(A1), . . . ,Conc(An) → c) with transposed ver-
sion Conc(A1), . . . ,Conc(Ai−1),−c,Conc(Ai+1), . . . ,Conc(An) → −Conc(Ai), so
Conc(A1), . . . ,Conc(Ai−1),Conc(B),Conc(Ai+1), . . . ,Conc(An) → −c, which im-
plies we can use A1, . . . Ai−1, B and Ai+1, . . . , An to construct an argument that
restrictively rebuts Ai. In case the strict rules above each Ai consist of more than
one layer, then one can still use transposition to construct an argument that restric-
tively rebuts Ai (basically by induction over the number of layers of strict rules).
Let D′ be the thus constructed argument that restrictively rebuts Ai. As Ai is a
subargument of A, it follows that D′ also restrictively rebuts A. From the fact that
we are considering a complete extension, it follows that the extension has to con-
tain an argument (say C) that defeats D′. However, as each defeasible rule of D′
also occurs in A or B, it follows that C also defeats A or B.9 Hence, the complete
extension is not conflict-free. Contradiction.

It is important to observe that the above sketch of proof uses the facts that (1)
Rs is consistent, (2) Rs is closed under transposition, (3) restricted rebut is being
applied, and (4) we are considering a complete extension (or at least an admissible
set).10

As for the property of closure, suppose there exists a strict rule ϕ1, . . . , ϕn → ϕ
and that the conclusions ϕ1, . . . , ϕn are yielded by our complete extension. We need
to show that conclusion ϕ is also yielded by the complete extension. From the fact

9This is straightforward to see when the strength ordering between the rules is empty, but also
holds when the strength ordering is non-empty. See the work of Modgil and Prakken [2013] for
details.

10There are also some requirements regarding argument strength. These are such that �Ewl, �Ell,
�Dwl, and �Dll (Definition 6) satisfy them. We refer to the work of Modgil and Prakken [2013; 2014]
for details.
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that conclusions ϕ1, . . . , ϕn are yielded, it follows that the complete extension con-
tains arguments A1, . . . , An with conclusions ϕ1, . . . , ϕn respectively. Now consider
the argument A : A1, . . . , An → ϕ. Let B be an arbitrary argument that defeats
A. Then from the definition of defeat, it follows that B also defeats at least one of
A1, . . . , An. From the fact that our extension is complete (and therefore also admis-
sible) it follows that it contains an argument (say C) that defeats B. This means
that A is defended by the complete extension, and must therefore also be contained
in the complete extension.11 This then implies that the complete extension also
yields conclusion Conc(A) = ϕ.

Given that we have obtained both direct consistency and closure, the property
of indirect consistency is trivially satisfied.

As was mentioned above, the property of transposition plays an important role
for satisfying direct consistency, closure and indirect consistency. However, if one
takes a closer look at the above sketch of proof, what is actually applied is a prop-
erty that is more general than transposition. Going back to Figure 2 then what is
actually needed is that if from Conc(A1), . . . ,Conc(An) one can apply strict rules to
derive c, then from Conc(A1), . . . ,Conc(Ai−1),−c,Conc(Ai+1), . . . , Conc(An) one
can also apply strict rules to derive −Conc(Ai). This property is called contraposi-
tion by Modgil and Prakken [2013; 2014], who show that direct consistency, closure
and indirect consistency are satisfied when the set of strict rules is closed under
contraposition.

One can ask the question of whether it is possible to derive even more general
conditions than transposition and contraposition, under which direct consistency,
closure and indirect consistency are still satisfied. This question is answered pos-
itively by Dung and Thang [2014] who present a semi-abstract approach that ab-
stracts away from most aspects of argument structure (making explicit only the
notions of a conclusion and that of a subargument). However, their approach does
rely on particular constraints on the defeat relation, and it can be observed that these
constraints can only be satisfied under restricted (and not unrestricted) rebut.12

3.2 Unrestricted Rebut Solutions
Although restricted rebut has become the most popular principle for defining the
overall defeat relationship (as is for instance evidenced by the various versions of the

11Notice that for this reasoning step, a complete extension is really needed; an admissible set is
not sufficient.

12More precisely, unrestricted rebut trivialises the notion of a base [Dung and Thang, 2014], which
prevents the results of Dung and Thang [2014] from being applied in the context of unrestricted
rebut.
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aspic+ formalism [Prakken, 2010; Modgil and Prakken, 2013; Modgil and Prakken,
2014]) it does have some disadvantages, especially when applied in a dialectical
context. Consider for instance the following discussion taken from [Caminada et al.,
2014b].
John: “Bob will attend both AAMAS and IJCAI this year, as he has papers accepted
at each of these conferences.“
Mary: “That won’t be possible, as his budget of £1000 only allows for one foreign
trip.”

Formally, this discussion can be modelled using the argumentation system (Rs,
Rd, n,≤) with Rd = {accA ⇒ attA; accI ⇒ attI; budget ⇒ ¬attboth} and
Rs = {→ accA; → accI; → budget; attA, attI → attboth; ¬attboth, attI →
¬attA; attA,¬attboth→ ¬attI}.13

John: ((→ accA)⇒ attA), ((→ accI)⇒ attI)→ attboth
Mary: (→ budget)⇒ ¬attboth

The problem is that when applying restricted rebut, Mary’s argument does not
defeat John’s argument. This is because the conclusion that Mary wants to attack
(attboth) is the consequent of a strict rule. If Mary wants to restrictively rebut
John’s argument, she can only do so by attacking the consequent of a defeasible
rule. That is, she would be forced to choose to defeat either attA or attI, meaning
that she essentially has to utter one of the following statements.
Mary′: Bob won’t attend AAMAS because he will already attend IJCAI, and his
budget doesn’t allow him to attend both.
Mary′′: Bob won’t attend IJCAI because he will already attend AAMAS, and his
budget doesn’t allow him to attend both.
The associated formal counterarguments are as follows.
Mary′: ((→ budget)⇒ ¬attboth), ((→ accI)⇒ attI)→ ¬attA
Mary′′: ((→ accA)⇒ attA), ((→ budget)⇒ ¬attboth)→ ¬attI

Critically, Mary does not know which of the two conferences Bob will attend,
yet the principle of restricted rebut forces her to make concrete statements on this.
From the perspective of commitment in dialogue [Walton and Krabbe, 1995], this
is unnatural. One should not be forced to commit to things one has insufficient
reasons to believe in.

It should be stressed that the problem outlined above is particularly relevant in
dialectical contexts, where different agents make commitments during the exchange
of arguments. This contrasts with a formalism like aspic+, which is more monolithic
in nature, in that from the given rules and premises, one constructs a graph of each
other defeating arguments and simply computes which arguments (and associated

13We observe that Rs is consistent and closed under transposition.
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conclusions) are justified. Concepts like different agents, communication steps or
commitment stores do not play a role in aspic+, and hence restricted rebut seems
acceptable. However, if one wants to add dialectical aspects to formal argumentation
(c.f., [Caminada and Wu, 2009; Caminada and Podlaszewski, 2012; Caminada et al.,
2014a]) then one is forced to take the limitations of restricted rebut seriously.

The obvious way to deal with problems like sketched above would be to sim-
ply replace restricted rebut by unrestricted rebut (thus replacing def rr by def ur).
Unfortunately, doing so also has far reaching consequences regarding the ability to
satisfy the postulates of indirect consistency and closure. This is illustrated by the
following example, taken from [Caminada and Wu, 2011].

Example 2. Consider the argumentation system (Rs,Rd, n,≤) with Rs = {→
jw; → mw; → sw; mt, st → ¬jt; jt, st → ¬mt; jt,mt → ¬st} and Rd = {jw ⇒
jt; mw ⇒ mt; sw ⇒ st}. This example can be interpreted as follows. John, Mary
and Suzy want to go cycling in the countryside (→ jw; → mw; → sw). They have a
tandem bicycle that each of them would like to be on (jw ⇒ jt; mw ⇒ mt; sw ⇒ st).
However, as the tandem only has two seats, if two of them are on it, the third one
cannot be on it (mt, st→ ¬jt; jt, st→ ¬mt; jt,mt→ ¬st). Using this argumenta-
tion system, we can construct the following arguments.
A1 :→ jw A4 : A1 ⇒ jt A7 : A5, A6 → ¬jt
A2 :→ mw A5 : A2 ⇒ mt A8 : A4, A6 → ¬mt
A3 :→ sw A6 : A3 ⇒ st A9 : A4, A5 → ¬st
When applying restricted rebut (and assuming the empty rule strength ordering)

argument A7 defeats A4 (as well as A8 and A9, which contain A4), argument A8
defeats A5 (as well as A7 and A9, which contain A5) and argument A9 defeats A6
(as well as A7 and A8, which contain A6). This yields the argumentation framework
at the left hand side of Figure 3, which we will refer to as AF rr.

AF rr has four complete extensions: {A1, A2, A3, A5, A6, A7} (yielding conclu-
sions {jw,mw, sw,¬jt,mt, st}), {A1, A2, A3, A4, A6, A8} (yielding conclusions {jw,
mw, sw, jt,¬mt, st}), {A1, A2, A3, A4, A5, A9} (yielding conclusions {jw,mw, sw,
jt, mt,¬st}), and {A1, A2, A3} (yielding conclusions {jw,mw, sw}). The first three
complete extensions are also preferred (as well as stable and semi-stable). The last
one is also grounded. We observe that the conclusions of each complete extension
satisfy direct consistency, closure and indirectly consistency.

Now, let us consider what happens if we were to replace restricted rebut by un-
restricted rebut. In that case, A7 would still defeat A4 (as well as A8 and A9), A8
would still defeat A5 (as well as A7 and A9) and A9 would still defeat A6 (as well
as A7 and A8). However, additionally A4 would defeat A7, A5 would defeat A8 and
A6 would defeat A9. This is because A7, A8 and A9 are defeasible arguments, as
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Figure 3: restricted rebut versus unrestricted rebut

their subarguments contain defeasible rules. So with unrestricted rebut, the argu-
ments A4, A5 and A6 are able to “strike back” against their respective defeaters.
This yields the argumentation framework at the right hand side of Figure 3, which
we will refer to as AFur. AFur has five complete extensions. The first four are
the same as those of AF rr. The fifth one is {A1, A2, A3, A4, A5, A6} yielding con-
clusions {jw,mw, sw, jt,mt, st}, hence violating closure and indirect consistency.
As this fifth complete extension is also preferred, stable and semi-stable, we have a
counterexample against applying unrestricted rebut under each of these semantics.

Example 2 illustrates a fundamental difference between restricted and unre-
stricted rebut. Whereas under restricted rebut (in combination with Rs being
consistent and closed under transposition or contraposition) any admissible set of
arguments will yield conclusions that are indirectly consistent, under unrestricted
rebut admissibility alone is not sufficient (the set {A1, A2, A3, A4, A5, A6} being the
counter example). It turns out that what is needed is a property that is stronger
than admissibility: strong admissibility [Baroni and Giacomin, 2009; Caminada,
2014].14 We observe that although the set {A1, A2, A3, A4, A5, A6} is admissible,
it is not strongly admissible. Furthermore, we observe that the set {A1, A2, A3} is
both admissible and strongly admissible and yields conclusions {jw,mw, sw} that
are closed and indirectly consistent.

As the grounded extension is the unique biggest strongly admissible set [Baroni
and Giacomin, 2009; Caminada, 2014], grounded semantics is a natural starting

14We recall that a set of arguments Args is strongly admissible iff each A ∈ Args is defended
by some Args′ ⊆ Args \ {A} which in its turn is again strongly admissible. Informally, the idea of
strong admissibility is that each argument should be defended without going around in circles.
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point for proving the properties of direct consistency, indirect consistency and clo-
sure when applying unrestricted rebut. Proving the property of direct consistency
is relatively straightforward. After all, if the grounded extension was to yield con-
clusions that are directly inconsistent, it would have to contain two arguments A
and B with opposite conclusions. As Rs is consistent, at least one of them has to
be defeasible, which means that one would defeat (unrestrictedly rebut) the other,
which would implies that the grounded extension is not conflict-free. Contradiction.

Proving the property of closure is a bit more complex, as it is done by induction
using the inductive definition of the grounded extension. We refer to the work of
Caminada and Amgoud [2007] and of Caminada et al. [2014b] for details. Indirect
consistency then follows trivially from direct consistency and closure.

As for argument strength, two possibilities have been observed when it comes
to satisfying closure and indirect consistency under unrestricted rebut. The first
approach, of Caminada and Amgoud [2007], is to essentially have the empty ordering
on the defeasible rules. A later approach, by Caminada et al. [2014b] is to have a
total (!) pre-order among the defeasible rules.

An overall overview of approaches to satisfy direct consistency, closure and indi-
rect consistency is provided in Table 1.

4 Non-Interference and Crash Resistance
One of the issues to decide when formulating an argumentation system is whether
the (strict and defeasible) rules should be domain dependent or domain indepen-
dent. An example of a domain dependent strict rule would be cow → mammal. An
example of a domain independent strict rule would be modus ponens, so cow, cow ⊃
mammal→ mammal. When the aim is to implement domain independent reason-
ing, the most obvious thing to do would be to base the strict rules on some form of
classical logic. For current purposes, we examine what happens if one were to base
the set of strict rules on propositional logic.

Definition 9. Given the language L of propositional logic, a defeasible theory is a
tuple (P,Rd, n,≤) where

• P is a consistent set of propositions (called premises)

• Rd is a set of defeasible rules of the form ϕ1, . . . , ϕn ⇒ ϕ (where ϕi, ϕ are
meta-variables ranging over L)

• n is a function such that n : Rd −→ L
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Table 1: Approaches for satisfying closure and direct/indirect consistency

Given a defeasible theory (P,Rd, n,≤), we define the associated argumentation sys-
tem as (Rs,Rd, n,≤) with Rs = {→ ϕ | ϕ ∈ P}∪{ϕ1, . . . , ϕn → ϕ | ϕ1, . . . , ϕn ` ϕ}

As P is a consistent set of formulas, Rs will be consistent. Moreover, Rs is
also closed under transposition. This is because the set {→ ϕ | ϕ ∈ P} is trivially
closed under transposition (as a rule with an empty antecedent does not have any
transposed versions) and the set {ϕ1, . . . , ϕn → ϕ | ϕ1, . . . , ϕn ` ϕ} is closed under
transposition as ϕ1, . . . , ϕn ` ϕ implies ϕ1, . . . , ϕi−1,−ϕ,ϕi+1, . . . , ϕn ` −ϕ. How-
ever, basing strict rules on classical logic also brings an additional type of problems.
Consider the following example.

Example 3. Consider the defeasible theory (P,Rd, n,≤) with P = {js,mns}, Rd =
{js ⇒ s; mns ⇒ ¬s; wfr ⇒ r} and n and ≤ being the empty ordering. This
example can be interpreted as follows. John says the cup of coffee contains sugar,

2724



Rationality Postulates

A7 A6

A4

A5

A1

A3

A2

Figure 4: Strict rules as classical logic can have side effects (simple example)

so it probably contains sugar (→ js; js⇒ s). Mary says the cup of coffee does not
contain sugar (→ mns; mns⇒ ¬s). The weather forecaster predicts rain tomorrow,
so it will rain tomorrow (→ wfr; wfr ⇒ r). Hence, although we’re not sure about
whether the cup of coffee contains sugar, at least we should believe that it will rain
tomorrow. Using this argumentation system, at least the following arguments can be
constructed.
A1 :→ js A4 : A1 ⇒ s
A2 :→ mns A5 : A2 ⇒ ¬s
A3 :→ wfr A6 : A3 ⇒ r

However, classical logic also yields the strict rule s,¬s→ ¬r, as s,¬s ` ¬r ( ex falso
quodlibet). With this rule, we can construct the following argument.
A7 : A4, A5 → ¬r
This yields the argumentation framework of Figure 4.15

If one were to apply for instance grounded semantics, the grounded extension
{A1, A2, A3} would yield conclusions {j,m,wf}. Thus, the weather forecast is not
believed because John and Mary are having a disagreement about a cup of coffee.

The first thing to observe about Example 3 is that the underlying problem cannot
be solved simply by removing rules with an inconsistent antecedent. This is because
the effects of the rule s,¬s → ¬r can be simulated by the rules s → s ∨ ¬r and
s ∨ ¬r,¬s→ ¬r, which still allow us to construct an argument for ¬r from A4 and
A5.

One approach that has been proposed in the literature [Prakken, 2010] is to
change the semantics. If one were to apply for instance not grounded but pre-
ferred semantics to the argumentation framework of Figure 4, then two exten-
sions would result: {A1, A2, A3, A4, A6} (yielding conclusions {j,m,wf, s, r}) and
{A1, A2, A3, A5, A6} (yielding conclusions {j,m,wf,¬s, r}). We observe that each
set of conclusions contains r, so r is a justified conclusion under preferred semantics.

Although changing grounded semantics to preferred semantics seems to yield the
15Notice that we are applying restricted rebut, but similar problems also occur when applying

unrestricted rebut.
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Figure 5: Strict rules as classical logic can have side effects (complex example)

desired outcome in Example 3, there exists a slightly more complex example where
preferred semantics does not yield the desired outcome.

Example 4. Consider the defeasible theory (P,Rd, n,≤) with P = {js,mns, junrel,
munrel, wfr}, Rd = {js ⇒ s; mns ⇒ ¬s; wfr ⇒ r; junrel ⇒ ¬jrel; munrel →
¬mrel}, n(js ⇒ s) = n(junrel ⇒ ¬jrel) = jrel, n(mns ⇒ ¬s) = n(munrel ⇒
¬mrel) = mrel and ≤ being the empty ordering. So now, in addition to John
saying that the cup of coffee contains sugar, he also says that he is unreliable, so
John is probably unreliable (junrel ⇒ ¬jrel). However, if John is unreliable, then
the fact that he says something is no longer a reason to believe it. Hence the rule
(js ⇒ s) is undercut, just like the rule (junrel ⇒ ¬jrel). Similarly, in addition
to Mary saying that the cup of coffee does not contain sugar, she also says that she
is unreliable, so Mary is probably unreliable (munrel ⇒ ¬mrel). However, if Mary
is unreliable, then the fact that she says something is no longer a reason to believe
it. Hence the rule (mns ⇒ ¬s) is undercut, just like the rule (munrel ⇒ ¬mrel).
Overall, we can construct at least the following arguments.
A1 :→ js A4 : A1 ⇒ s
A2 :→ mns A5 : A2 ⇒ ¬s
A3 :→ wfr A6 : A3 ⇒ r
A8 :→ junrel A10 : A8 ⇒ ¬jrel
A9 :→ munrel A11 : A9 ⇒ ¬mrel

Classical logic again yields the strict rule s,¬s→ ¬r, which allows the construction
of the following argument.
A7 : A4, A5 → ¬r
This yields the argumentation framework of Figure 5.16

In the argumentation framework of Figure 5 there exists just a single complete ex-
tension (that is also grounded, preferred, ideal and semi-stable): {A1, A2, A3, A8, A9}
yielding conclusions {js,mns,wfr, junrel,munrel}. So again, we have that the
weather forecast is not believed (under any admissibility-based semantics) because

16Notice that we are again applying restricted rebut, although similar problems also occur when
applying unrestricted rebut.
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John and Mary are having a disagreement about a cup of coffee.
Before continuing to discuss some solutions that have been proposed in the liter-

ature, it can be useful to first define what precisely is it that we are trying to satisfy.
Or, to put it in other words, what is the property that is actually being violated
in Example 3 and Example 4? For this, we follow the approach of Caminada et al.
[2012].

First of all, if DT = (P,Rd, n,≤) is a defeasible theory, then we write Atoms(DT )
for the set of all propositional atoms occurring in DT . We say that defeasible
theories DT 1 and DT 2 are syntactically disjoint iff Atoms(DT1) ∩ Atoms(DT2) = ∅.
For syntactically disjoint defeasible theories DT 1 = (P1,Rd1, n1,≤1) and DT 2 =
(P2,Rd2, n2,≤2) we define the union DT 1 ∪DT 2 as (P1 ∪ P2,Rd1 ∪Rd2, n1 ∪ n2,≤1
∪ ≤2). Also, given a defeasible theory DT , we define its consequences Cnσ(DT )
as {Concs(Args1}, . . . ,Concs(Argsn)} where Args1, . . . ,Argsn are the extensions of
arguments (under semantics σ) of the argumentation framework yielded by defeasible
theory DT . Given a set of propositions S and a set of propositional atoms A, we
define S|A as {ϕ ∈ S | each atom in ϕ is an element of A}. Similarly, given a set
S = {S1, . . . , Sn} where each Si (i ∈ {1 . . . n}) is a set of propositions, we define S|A
as {S1|A, . . . , Sn|A}.
Definition 10. An argumentation formalism (applying semantics σ) satisfies non-
interference iff for every pair of syntactically disjoint defeasible theories DT 1 and
DT 2 it holds that Cnσ(DT 1)|Atoms(DT1) = Cnσ(DT 1 ∪DT 2)|Atoms(DT1).

To see how non-interference can be violated, consider again Example 3. In
essence, the defeasible theory of this example can be seen as the union of two syntac-
tically disjoint defeasible theories DT 1 = (P1,Rd1, n1,≤1) and DT 2 = (P2,Rd2, n2,
≤2) with P1 = {wfr}, Rd1 = {wfr ⇒ r}, P2 = {js,mns}, Rd2 = {js⇒ s; mns⇒
¬s}, n1 = n2 = ∅ and ≤1=≤2= ∅. When applying grounded semantics, it holds
that Cngr(DT 1)|Atoms(DT1) = {{wfr, r}} whereas Cngr(DT 1 ∪ DT 2)|Atoms(DT1) =
{{wfr}}. So merging DT 1 with the completely unrelated defeasible theory DT 2
affects the outcome that is relevant w.r.t. DT 1. Hence, non-interference is violated.

An even stronger property is that of crash resistance.
Definition 11. A defeasible theory DT 1 = (P1,Rd1, n1,≤1) (with Atoms(DT 1) (
Atoms(L)) is called contaminating (under semantics σ) iff for each syntactically
disjoint defeasible theory DT 2 it holds that Cnσ(DT 1) = Cnσ(DT 1 ∪ DT 2). An
argumentation formalism satisfies crash resistance iff there exists no defeasible theory
that is contaminating.

To see how crash resistance can be violated, consider Example 4. Again, the
defeasible theory of this example can be seen as the union of two syntactically
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disjoint defeasible theories DT 1 = (P1,Rd1, n1,≤1) and DT 2 = (P2,Rd2, n2,≤2)
with P1 = {js,mns, junrel,munrel}, Rd1 = {js ⇒ s; mns ⇒ ¬s; junrel ⇒
¬jrel; munrel ⇒ ¬mrel}, n1(js ⇒ s) = n1(junrel ⇒ ¬jrel) = jrel, n1(mns ⇒
¬s) = n1(munrel ⇒ ¬mrel) = mrel, ≤1= ∅, P2 = {wfr}, Rd2 = {wfr ⇒ r},
n2 = ∅ and ≤2= ∅. When applying stable semantics, it holds that Cnst(DT 1) = ∅,
just like Cnst(DT 1∪DT 2) = ∅. Moreover, it can be verified that for any DT ′2 that is
syntactically disjoint with DT 1, it holds that Cnst(DT 1∪DT ′2) = ∅, hence violating
crash resistance under stable semantics.

Conceptually, the difference between non-interference and crash resistance is
as follows. A violation of non-interference means that a defeasible theory somehow
influences the entailment of a completely unrelated (syntactically disjoint) defeasible
theory when being merged to it. A violation of crash resistance is more severe, as this
means that a defeasible theory influences the entailment of a completely unrelated
(syntactically disjoint) defeasible theory to such an extent that the actual contents of
this other defeasible theory become totally irrelevant. An argumentation formalism
that satisfies non-interference also satisfies crash resistance.17

Now that the relevant properties have been identified, we proceed to examine
some of the approaches in the literature for satisfying these. The first approach to
be discussed is that of Wu and Podlaszewski [2015]. Their main idea is simply to
erase inconsistent arguments18 from the argumentation framework before applying
argumentation semantics.

Definition 12. Let (Ar , def ) be the argumentation framework constructed from de-
feasible theory DT (by applying restricted rebut). Let Arc be {A ∈ Ar | A is consis-
tent } and let def c be def ∩ (Arc × Arc). (Arc, def c) is defined as the inconsistency
cleaned argumentation framework of DT .

As an example of how Definition 12 is used, in Example 3 and Example 4 ar-
gument A7 would be removed, as well as all attacks from and to A7. The resulting
inconsistency cleaned argumentation framework is such that r is a conclusion of each
complete extension.

One of the main results proved by Wu and Podlaszewski [2015] is that removing
inconsistent arguments from the argumentation framework does not lead to any
violations of direct consistency, closure and indirect consistency.19 They also prove

17That is, as long as the argumentation formalism is non-trivial in the sense of [Caminada et al.,
2012].

18An argument A is called inconsistent iff {Conc(A′) | A′ ∈ Sub(A)} is inconsistent.
19This is unlike what for instance would happen when removing self-defeating (self-undercutting)

arguments, which can lead to violations of closure. As an example (free after [Pollock, 1995]) take
the argumentation system (Rs,Rd, n,≤) with Rs = {→ a; b→ ¬c; c→ ¬b}, Rd = {a⇒ b}, n(a⇒
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that the properties of non-interference and crash resistance are satisfied. However,
the work of Wu and Podlaszewski [2015] assumes that the strength ordering among
the defeasible rules is the empty one, and they provide an example of how their
approach of erasing inconsistent arguments violates consistency and closure when
applying non-empty rule strengths in combination with the last link principle.

The second approach to be discussed is that of Grooters and Prakken [2016].
Here, one of the basic ideas is to change the way strict rules are generated from
propositional logic. Instead of generating a strict rule ϕ1, . . . , ϕn → ϕ whenever
ϕ1, . . . , ϕn ` ϕ, they are generating such a strict rule only when from some consistent
set Φ ⊆ {ϕ1, . . . , ϕn} it holds that Φ ` ϕ. So instead of the strict rules coinciding
with all propositional entailment, the idea is to have the strict rules coinciding with
consistent propositional entailment.

However, ruling out inconsistent inferences alone is not sufficient, as the problem
of ex falso quodlibet can also occur when successively applying several strict inference
steps, as was for instance observed earlier, using the rules s→ s∨r and s∨r,¬s→ ¬r.
The solution proposed by Grooters and Prakken [2016] is simple: when constructing
arguments, disallow the application of a strict rule after the application of another
strict rule.

It has to be mentioned that the approach of Grooters and Prakken [2016] has not
been proven to satisfy any of the properties of direct consistency, closure, indirect
consistency, non-interference and crash-resistance. Weaker properties have been
proven instead. We refer to [Grooters and Prakken, 2016] for details.

5 Discussion
It is important to observe that the properties examined in the current paper (some-
times called “rationality postulates” in the literature) are not specific to argumenta-
tion theory. In fact, they are general properties that can be applied to each formalism
for non-monotonic reasoning that aims to encapsulate some form of strict reasoning.
This is why the notion of an argument is not mentioned in the postulates of di-
rect consistency, closure, indirect consistency, non-interference and crash-resistance.

b) = c and ≤= ∅. Here, we can construct arguments A1 :→ a, A2 : A1 ⇒ b and A3 : A2 → ¬c. It
holds that A3 defeats (undercuts) both itself and A2. This yields a unique complete extension {A1}
whose set of conclusions {a} satisfies direct consistency, closure and indirect consistency. However,
if one were to remove the self-defeating argument A3, then this would yield a unique complete
extension {A1, A2}, whose set of conclusions {a, b} violates closure, as it contains b but not ¬c. The
key point is that whenever one removes a particular class of arguments from the argumentation
framework (be it inconsistent or self-attacking arguments) one has to examine whether this results
in any violations of direct consistency, indirect consistency and closure.
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Instead, these postulates are defined purely based on the outcome (in terms of con-
clusions) of the argumentation formalism. That is, the postulates abstract from the
notion of an argument.

This is not to say that no postulates have been formulated specifically about the
arguments yielded (instead of about the conclusions yielded). An example of such
a postulate would be subargument closure [Caminada and Amgoud, 2007]. This
postulate says that if a particular extension contains argument A, then it should
also contain all subarguments of A (so each A′ ∈ Sub(A)). Satisfying subargument
closure is not difficult. From the definition of defeat (under either restricted or
unrestricted rebut) it follows that each argument that attacks A′ also attacks A. So
from A being in, say, a complete extension it follows that A is defended against these
attackers, so A′ is also being defended. Therefore, A′ is also part of the complete
extension (which contains everything it defends).

In the current paper, we have mainly focused on rule-based argumentation for-
malisms, like aspic+. However, similar issues also play a role in classical logic
based argumentation [Gorogiannis and Hunter, 2011]. Here, the idea is, given a
set of propositions ∆ (called the knowledge base), to construct arguments as pairs
〈Φ, ϕ〉 where ϕ is a proposition (called the conclusion) and Φ is a set of propositions
(called the assumptions) such that Φ ` ϕ, Φ 6` ⊥ and ¬∃φ ∈ Φ: Φ \ {φ} ` ϕ. Given
this argument form, various ways of defining the notion of defeat (or attack, as no
strength order is taken into account) are examined, especially for their ability to
yield a consistent outcome. We refer to the work of Gorogiannis and Hunter [2011]
for details. While Gorogiannis and Hunter [2011] do not consider use of preferences,
a recent alternative formalisation of classical logic argumentation of D’Agostino and
Modgil [2016] satisfies the consistency and non-contamination postulates while sup-
porting the use of preferences. Moreover, this is done without the requirement that
an argument’s premises need to be checked for consistency and subset minimality,
and with the resulting argumentation frameworks only including finite subsets of the
arguments defined by a set of classical well-formed formulas. As such, their theory
provides a rational account that is suitable for resource bounded agents.

One key point that we want to emphasise is that the satisfaction of rationality
postulates is not just a matter of theoretical elegance. If we were to apply argu-
mentation theory for practical purposes, to determine what should be the actions
to take, and our formalism tells us to put three people on a tandem bicycle, then
this advice will be of little use, as the actions to implement it will fail. If we believe
the world to be such that there exist some hard (inviolable) constraints, then it
makes sense to model these using nondefeasible (strict) rules and expect the argu-
mentation formalism to deal with them in a proper way. Similarly, if one were for
instance to build a robot that uses argumentation theory for its internal reasoning,
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what we would like to avoid is the situation where after being fed some specific
snippets of input (like John whispering in its ear “The cup of coffee contains sugar,
and I’m unreliable”, and Mary whispering in its ear “The cup of coffee contains
no sugar, and I’m unreliable”) all inference will come to a grinding halt, and the
robot essentially stops functioning. Hence, satisfaction of the rationality postulates
is important not just for theoretical elegance, but also to make the theory suitable
for actual applications.

Given the important role of rationality postulates when it comes to applications
of argumentation theory, we observe that the current state of affairs (at the time
of writing) is somewhat unsatisfying. As for the postulates of direct consistency,
closure and indirect consistency, there seems to be a dilemma. If, on one hand, one
chooses to implement restricted rebut then these postulates can be satisfied under
any complete-based semantics. The disadvantage, however, is that restricted rebut
can be seen as unintuitive, especially in a dialectical context. If, on the other hand,
one chooses to implement unrestricted rebut, then the notion of defeat becomes more
in line with natural discussion. The disadvantage, however, is that one can only
apply grounded semantics, which tends to yield a very sceptical result. Moreover,
satisfaction of the rationality postulates is only guaranteed if the strength order on
the defeasible rules is either empty or total (hence ruling out a proper partial oder).

As for the postulates of non-inferference and crash resistance, the situation is
even more troublesome. First of all, all the approaches that we are aware of [Wu,
2012; Wu and Podlaszewski, 2015; Podlaszewski, 2015; Grooters and Prakken, 2016]
work only with restricted rebut. Moreover, the approach of Wu and Podlaszewski
[2015] requires the empty ordering regarding rule strength, whereas in many appli-
cation domains different rules can have different strengths. The work of Grooters
and Prakken [2016], does allow for a non-empty rule strength ordering, but fails to
prove any of the forementioned postulates, opting to prove much weaker properties
instead.

Overall, when it comes to the development of formal argumentation theory, one
can observe that the topic of pure abstract argumentation tends to receive quite
some more research attention than the topic of instantiated argumentation. Much
work has for instance been done on how to select nodes from a graph. However,
the real challenge is how to select nodes from a graph in a meaningful way, that
is, such that the overall outcome makes sense from a logical perspective so the
conclusions could be relied upon regarding what to do or what to believe. If formal
argumentation is to be applied in situations that matter, some proper solutions to
the issue of rationality postulates would be highly desirable.
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Afterword

At the time the current paper was submitted, a paper of Heyninck and Straßer [2017]
has just been accepted to be presented at IJCAI 2017. The authors’ main idea is
to allow for arguments to be attacked on several of its (sub)conclusions (that is, on
the conclusions of one or more of its subarguments). This is done by an attacker
with a disjunctive conclusion, such that each disjunct is the contrary (negation)
of one of the (sub)conclusions of the attacked argument. As far as we know, this
yields the first ever instantiation of Dung’s argumentation theory that (1) works
with a combination of classical logic and defeasible inference rules, (2) satisfies all
the rationality postulates and (3) implements argument preferences.
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Abstract
The principle-based or axiomatic approach is a methodology to choose an

argumentation semantics for a particular application, and to guide the search
for new argumentation semantics. This article gives a complete classification
of the fifteen main alternatives for argumentation semantics using the twenty-
seven main principles discussed in the literature on abstract argumentation,
extending Baroni and Giacomin’s original classification with other semantics
and principles proposed in the literature. It also lays the foundations for a
study of representation and (im)possibility results for abstract argumentation,
and for a principle-based approach for extended argumentation such as bipo-
lar frameworks, preference-based frameworks, abstract dialectical frameworks,
weighted frameworks, and input/output frameworks.

1 The principle-based approach
A considerable number of semantics exists in the argumentation literature. Whereas
examining the behaviour of semantics on examples can certainly be insightful, a
need for more systematic study and comparison of semantics has arisen. Baroni
and Giacomin [2007] present a classification of argumentation semantics based on a
set of principles. In this article, we extend their analysis with other principles and
semantics proposed in the literature over the past decade.

The principle-based approach is a methodology that is also successfully applied in
many other scientific disciplines. It can be used once a unique universal method is re-
placed by a variety of alternative methods, for example, once a variety of modal logics
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is used to represent knowledge instead of unique first order logic. The principle-based
approach is also called the axiomatic approach, or the postulate based approach (for
example in AGM theory change by Alchourrón et al. [1985]).

Maybe the best known example of the principle-based approach is concerned
with the variety of voting rules, a core challenge in democratic societies, see, e.g.,
Tennenholtz and Zohar [2016]. It is difficult to find two countries that elect their
governments in the same way, or two committees that decide using exactly the same
procedure. Over the past two centuries many voting rules have been proposed, and
researchers were wondering how we can know that the currently considered set of
voting rules is sufficient or complete, and whether there is no better voting rule that
has not been discovered yet. Voting theory addresses what we call the choice and
search problems inherent to diversity:

Choice problem: If there are many voting rules, then how to choose one voting
rule from this set of alternatives in a particular situation?

Search problem: How to guide the search for new and hopefully better voting
rules?

In voting theory, the principle-based approach was introduced by Nobel prize
winner Kenneth Arrow. The principle-based approach classifies existing approaches
based on axiomatic principles, such that we can select a voting rule based on the set
of requirements in an area. Moreover, there may be sets of principles for which no
voting rule exist yet. Beyond voting theory, the principle-based approach has been
applied in a large variety of domains, including abstract argumentation.

Formal argumentation theory, following the methodology in non-monotonic logic,
logic programming and belief revision, defines a diversity of semantics. This imme-
diately raises the same questions that were raised before for voting rules, and in
many other areas. How do we know that the currently considered set of semantics
is sufficient or complete? May there be a better semantics that has not been discov-
ered yet? Moreover, the same choice and search problems of voting theory can be
identified for argumentation theory as well:

Choice problem: If there are many semantics, then how to choose one semantics
from this set of alternatives in a particular application?

Search problem: How to guide the search for new and hopefully better argumen-
tation semantics?

The principle-based approach again addresses both problems. For example, if one
needs to exclude the possibility of multiple extensions, one may choose the grounded

2736



The Principle-Based Approach to Abstract Argumentation Semantics

or ideal semantics. If it is important that at least some extension is available, then
stable semantics should not be used. As another common example, consider the
admissibility principle that if an argument in an extension is attacked, then it is
defended against this attack by another argument in the extension. If one needs a
semantics that is admissible, then for example CF2 or stage2 cannot be chosen.

Principles have also been used to guide the search for new semantics. For ex-
ample, the principle of resolution was defined by Baroni and Giacomin [2007], well
before resolution based semantics were defined and studied by Baroni et al. [2011b].
Likewise it may be expected that the existing and new principles will guide the
further search for suitable argumentation semantics. For example, consider the
conflict-freeness principle that says that an extension does not contain arguments
attacking each other. All semantics studied in this article satisfy this property. If one
needs to define new argumentation semantics that are para-consistent in the sense
that its extensions are not necessarily conflict free [Arieli, 2015], then one can still
adopt other principles such as admissibility in the search for such para-consistent
semantics.

The principle-based approach consists of three steps.
The first step in the principle-based approach is to define a general function,

which will be the object of study. Kenneth Arrow defined social welfare functions
from preference profiles to aggregated preference orders. For abstract argumenta-
tion, the obvious candidate is a function from graphs to sets of sets of nodes of the
graph. Following Dung’s terminology, we call the nodes of the graph arguments,
we call sets of nodes extensions, we call the edges attacks, and we call the graphs
themselves argumentation frameworks. Moreover, we call the function an argumen-
tation semantics. Obviously nothing hinges on this terminology, and in principle the
developed theory could be used for other applications of graph theory as well.

We call this function from argumentation frameworks to sets of extensions a two
valued function, as a node is either in the extension, or not. Also multi valued
functions are commonly used, in particular three valued functions conventionally
called labelings. For three valued labelings, the values are usually called in, out
and undecided. Other more general functions have been considered in abstract
argumentation, for example in value based argumentation, bipolar argumentation,
abstract dialectical frameworks, input/output frameworks, ranked semantics, and
more. The principle-based approach can be applied to all of them, but in this article
we will not consider such generalisations.

The second step of the principle-based approach is to define the principles. The
central relation of the principle-based approach is the relation between semantics
and principles. In abstract argumentation a two valued relation is used, such that
every semantics either satisfies a given property or not. In this case, principles can
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be defined also as sets of semantics, and they can be represented by a constraint on
the function from argumentation frameworks to sets of extensions. An alternative
approach used in some other areas gives a numerical value to represent to which
degree a semantics satisfies a principle.

The third step of the principle-based approach is to classify and study sets of
principles. For example, a set of principles may imply another one, or a set of
principles may be satisfiable in the sense that there is a semantics that satisfies all
of them. A particular useful challenge is to find a set of principles that characterises
a semantics, in the sense that the semantics is the only one that satisfies all the
principles. Such characterisations are sometimes called representation theorems.

The principles used in a search problem are typically desirable, and desirable
properties are sometimes called postulates. For the mathematical development of
a principle-based theory, it may be less relevant whether principles are desirable
or not.

Before we continue, we address two common misunderstandings about the
principle-based approach, which are sometimes put forward as objections against it.

The first point is that not every function from argumentation frameworks to
sets of extensions is an argumentation semantics. In other words, the objection is
sometimes raised against the axiomatic approach that it allows for counterintuitive
or even absurd argumentation semantics, just like the objection may be raised that
not every function from preference profile to candidates is a voting rule. However,
in the principle-based approach, such counterintuitive alternatives are excluded by
the principles, they are not excluded a priori.

It may be observed that in formal argumentation, this objection is not restricted
to principle-based abstract argumentation. A general framework for structured ar-
gumentation like ASPIC+ also allows for many counterintuitive or even absurd argu-
mentation theories. However, from the perspective of the principle-based approach,
the generality of the ASPIC+ approach can be used to study which combinations of
definitions lead to argumentation theories satisfying desired principles [Caminada,
forthcoming].

The second point is that a semantics is fundamentally different from a princi-
ple. In general a semantics is a function from argumentation frameworks to sets of
extensions, and principles can be defined as sets of such functions and represented
by a constraint on such functions. This misunderstanding arises because there are
examples where a property can be represented as a semantics. For example, the com-
pleteness principle may be defined to state that each extension is complete, and the
complete semantics may be defined such that the set of extensions of an argumenta-
tion framework are all its complete extensions. Likewise, some authors transform the
admissibility principle into a “semantics” that associates with a framework all the
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admissible extensions. In this article we do not consider an admissibility semantics
defined in this sense, only the admissibility principle.

Finally, we end this introduction with two methodological observations. First,
we note that both argumentation semantics and argumentation principles can be
organised and clustered in various ways. For example, sometimes a distinction is
made between the set of admissibility based semantics and the set of naive based se-
mantics, which are semantics satisfying the admissibility principle and the maximal
conflict free principle respectively. In this article we have organised the semantics
and principles in a way that seemed reasonable to us, but we did not use a system-
atic approach and we expect that some readers might have preferred an alternative
organisation.

Second, while writing the article, several readers and reviewers have suggested
additional semantics and principles to us. For example, we did not systematically
study all resolution based semantics. The reason is pragmatic: this article has
been growing while we were writing, and at some moment we needed to finish it.
Moreover, we excluded several semantics proposed in the literature, such as AD1,
AD2, CF1 introduced by Baroni et al. [2005], because they have not been further
discussed or applied in the formal argumentation literature. However, if some of
them will become more popular in the future, then the principle-based study in this
article has to be extended to them as well. Finally, dynamic principles are studied
by Baroni et al. [2014], Rienstra et al. [2015] and Baumann [forthcoming].

The layout of this article is as follows. Section 2 introduces the setting and
notation, Section 3 introduces the argumentation semantics we study in the rest of
the article, and Section 4 introduces the principles and presents the table detailing
which principles are satisfied by each semantics.

2 Setting and notations
The current section introduces the setting and notations.

Definition 2.1 (Argumentation framework, [Dung, 1995]). An argumentation
framework is a couple F = (A,R) where A is a finite set and R ⊆ A × A. The
elements of A are called arguments and R is called attack relation. We say that a
attacks b if (a, b) ∈ R; in that case we also write aRb. For a set S ⊆ A and an
argument a ∈ A, we say that S attacks a if there exists b ∈ S such that bRa; we say
that a attacks S if there exists b ∈ S such that aRb. We say that S attacks a set P
if there exist a ∈ S, b ∈ P such that a attacks b.

We define S+ = {a ∈ A | S attacks a} and S− = {a ∈ A | a attacks S}. More-
over, for an argument a, we define a+ = {b ∈ A | a attacks b} and
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a− = {b ∈ A | b attacks a}. We define S−out = {a ∈ A | a /∈ S and a attacks S}. The
set of all argumentation frameworks is denoted by AF .

We can observe that an argumentation framework is just a finite graph. In the
rest of the article, F = (A,R) stands for an argumentation framework.

Definition 2.2 (Projection, union, subset). For an argumentation framework
F = (A,R) and a set S ⊆ A, we define F ↓S= (S,R∩ (S × S)). Let F1 = (A1,R1)
and F2 = (A2,R2) be two argumentation frameworks. We define their union by
F1 ∪ F2 = (A1 ∪ A2,R1 ∪ R2). We write F1 ⊆ F2 if and only if A1 ⊆ A2 and
R1 ⊆ R2.

For a set S, we denote its powerset by 2S . Now we define the notion of semantics.
It is a function that, given an argumentation framework (A,R), returns a set of
subsets of A.

Definition 2.3 (Semantics). An extension-based semantics is a function σ such that
for every argumentation framework F = (A,R), we have σ(F) ∈ 22A. The elements
of σ(F) are called extensions.

Our definition requires a semantics to satisfy universal domain, i.e. to be defined
for every argumentation framework. We could give a more general definition, thus
allowing a semantics to be defined only for some argumentation frameworks. We do
not do that in order to simplify the setting, since all the semantics of interest for
our study are defined for all argumentation frameworks.

3 Semantics
This section introduces different argumentation semantics we study in the rest of
the article. Note that most of the properties from the literature, which we study in
Section 4, can appear in two variants: extension-based and labelling-based. In this
article, we present their versions for extension-based approach.

We start by introducing the notions of conflict-freeness and admissibility.

Definition 3.1 (Conflict-freeness, admissibility, strong admissibility). Let F =
(A,R) and S ⊆ A. Set S is conflict-free in F if and only if for every a, b ∈ S,
(a, b) /∈ R.

Argument a ∈ A is defended by set S if and only if for every b ∈ A such that
bRa there exists c ∈ S such that cRb. Argument a ∈ A is strongly defended by set
Sif and only if for every b ∈ A such that bRa there exists c ∈ S \ {a} such that
cRb and c is strongly defended by S \ {a}. S is admissible in F if and only if it is
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conflict-free and it defends all its arguments. S is strongly admissible in F if and
only if it is conflict-free and it strongly defends all its arguments.

Stable, complete, preferred and grounded semantics were introduced by Dung [1995]:

Definition 3.2 (Complete, stable, grounded, preferred semantics). Let F = (A,R)
and S ⊆ A.

• Set S is a complete extension of F if and only if it is conflict-free, it defends
all its arguments and it contains all the arguments it defends.

• Set S is a stable extension of F if and only if it is conflict-free and it attacks
all the arguments of A \ S.

• S is the grounded extension of F if and only if it is a minimal with respect to
set inclusion complete extension of F .

• S is a preferred extension of F if and only if it is a maximal with respect to
set inclusion admissible set of F .

Dung [1995] shows that each argumentation framework has a unique grounded
extension. Stable extensions do not always exist, i.e. there exist argumentation
frameworks whose set of stable extensions is empty. Semi-stable semantics [Verheij,
1996; Caminada, 2006b] guarantees that every argumentation framework has an
extension. Furthermore, semi-stable semantics coincides with stable semantics on
argumentation frameworks that have at least one stable extension.

Definition 3.3 (Semi-stable semantics). Let F = (A,R) and S ⊆ A. Set S is a
semi-stable extension of F if and only if it is a complete extension and S ∪ S+ is
maximal with respect to set inclusion among complete extensions, i.e. there exists
no complete extension S1 such that S ∪ S+ ⊂ S1 ∪ S+

1 .

Ideal semantics [Dung et al., 2007] is an alternative to grounded semantics. Like
grounded semantics, ideal semantics always returns a unique extension, which is also
a complete extension [Dung et al., 2007]. From the definition of the grounded seman-
tics, we conclude that the ideal extension is a superset of the grounded extension.
Ideal semantics is thus less sceptical than grounded semantics.

Definition 3.4 (Ideal semantics). Let F = (A,R) and S ⊆ A. Set S is the ideal
extension of F if and only if it is a maximal with respect to set inclusion admissible
subset of every preferred extension.

We now introduce eager semantics [Caminada, 2007].
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Definition 3.5 (Eager semantics). Let F = (A,R) and S ⊆ A. Set S is the eager
extension of F if and only if it is the maximal with respect to set inclusion admissible
subset of every semi-stable extension.

Caminada [2007] shows that each argumentation framework has a unique eager
extension and that the eager extension is also a complete extension. Note that eager
semantics is similar to ideal semantics: the ideal extension is the unique biggest
admissible subset of every preferred extension; the eager extension is the unique
biggest admissible subset of each semi-stable extension. Since each semi-stable ex-
tension is a preferred extension [Caminada, 2006], the eager extension is a superset
of the ideal extension.

In our article, we want to conduct an exhaustive investigation of properties of
extension-based semantics. Thus, for the sake of completeness, we introduce even
the semantics that are not very commonly used or studied in the literature, like
stage semantics, naive semantics and prudent variants of grounded, complete, stable
and preferred semantics.

Stage semantics [Verheij, 1996] was defined in a slightly different setting than
ours; we provide an alternative but equivalent definition [Verheij, 1996; Baroni et
al., 2011a].

Definition 3.6 (Stage semantics). Let F = (A,R) and S ⊆ A. Set S is a stage
extension of F if and only if S is a conflict-free set and S ∪ S+ is maximal with
respect to set inclusion, i.e. S is conflict-free, and there exists no conflict-free set S1
such that S ∪ S+ ⊂ S1 ∪ S+

1 .

Note the difference between semi-stable and stage semantics: semi-stable ex-
tension is a complete extension whereas stage extension is a conflict-free set; stage
extension is not necessarily an admissible set.

Definition 3.7 (Naive semantics). Let F = (A,R) and S ⊆ A. Set S is a naive
extension of F if and only if S is a maximal conflict-free set.

Prudent semantics [Coste-Marquis et al., 2005] is based on the idea that an
extension should not contain arguments a and b if a indirectly attacks b. An indirect
attack is an odd length attack chain.

Definition 3.8 (Indirect conflict). Let F = (A,R), S ⊆ A and a, b ∈ A. We say
that a indirectly attacks b if and only if there is an odd-length path from a to b with
respect to the attack relation. We say that S is without indirect conflicts and we
write wic(S) if and only if there exist no x, y ∈ S such that x indirectly attacks y.
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The semantics introduced by Dung (grounded, complete, stable, preferred) is
based on admissibility; prudent semantics is based on p-admissibility. Prudent se-
mantics is called grounded prudent, complete prudent, stable prudent and preferred
prudent by Coste-Marquis et al. [2005]. In order to make the names shorter, we call
them p-grounded, p-complete, p-stable and p-preferred.

Definition 3.9 (p-admissible sets). Let F = (A,R) and S ⊆ A. Set S is a p-
admissible set in F if and only if every a ∈ A is defended by S and S is without
indirect conflicts.

Definition 3.10 (p-complete semantics). Let F = (A,R) and S ⊆ A. Set S is a p-
complete extension in F if and only if S is a p-admissible set and for every argument
a ∈ A we have: if a defended by S and S ∪ {a} is without indirect conflicts, then
a ∈ S.

We now introduce p-characteristic function, which is needed to define p-grounded
semantics. Note that grounded semantics can be defined using characteristic func-
tion, but we preferred to provide an alternative equivalent definition.

Definition 3.11 (p-characteristic function). The p-characteristic function of an
argumentation framework F = (A,R) is defined as follows:

• CFpF : 2A → 2A

• CFpF (S) = {a ∈ A | S defends a and wic(S ∪ {a})}
Definition 3.12 (p-grounded semantics). Let F = (A,R). Let j be the lowest
integer such that

CFpF (CFpF (. . . CFpF︸ ︷︷ ︸
j times

(∅) . . .) = CFpF (CFpF (. . . CFpF︸ ︷︷ ︸
j+1 times

(∅) . . .) = S.

The p-grounded extension is the set S.

The p-grounded extension is a p-complete extension [Coste-Marquis et al., 2005].
Note that it is not the case in general that the p-grounded extension is included into
every p-preferred extension [Coste-Marquis et al., 2005].

Definition 3.13 (p-stable semantics). Let F = (A,R) and S ⊆ A. Set S is a
p-stable extension in F if and only if S is without indirect conflicts and S attacks
(in a direct way) each argument in A \ S.
Definition 3.14 (p-preferred semantics). Let F = (A,R) and S ⊆ A. Set S is a
p-preferred extension if and only if S is a maximal for set inclusion p-admissible set.
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Evert p-stable extension is a p-preferred extension [Coste-Marquis et al., 2005].
We now introduce CF2 semantics [Baroni et al., 2005]. For more explanations

and examples, the reader is referred to the original paper. The definition of this
semantics is complicated; we must introduce several auxiliary definitions in order to
present it.

Let us first introduce the notion of strongly connected component (SCC) intro-
duced by Baroni et al. [2005].

Definition 3.15 (Strongly Connected Component). Let F = (A,R). The binary
relation of path-equivalence between nodes, denoted as PEF ⊆ A×A, is defined as
follows:

• for every a ∈ A, (a, a) ∈ PEF

• given two distinct arguments a, b ∈ A, we say that (a, b) ∈ PEF if and only if
and only if there is a path from a to b and a path from b to a.

The strongly connected components of F are the equivalence classes of arguments
under the relation of path-equivalence. The set of strongly connected components is
denoted by SCCSF . Given an argument a ∈ A, notation SCCF (a) stands for the
strongly connected component that contains a.

In the particular case when the argumentation framework is empty, i.e.
F = (∅, ∅), we assume that SCCSF = {∅}. The choices in the antecedent strongly
connected components determine a partition of the nodes of S into three subsets:
defeated, provisionally defeated and undefeated. D stands for defeated, P for pro-
visionally defeated and U for undefeated.

Definition 3.16 (D,P,U [Baroni et al., 2005]). Given an argumentation
framework F = (A,R), a set E ⊆ A and a strongly connected component
S ∈ SCCSF , we define:

• DF (S, E) = {a ∈ S | (E ∩ S−out) attacks a}

• PF (S, E) = {a ∈ S | (E ∩ S−out) does not attack a and ∃b ∈ (S−out ∩ a−) such
that E does not attack b}

• UF (S, E) = S \ (DF (S, E) ∪DF (S, E))

We define UPF (S, E) = UF (S, E) ∪ PF (S, E).

Definition 3.17 (CF2 semantics). Let F = (A,R) and E ⊆ A. Set E is an exten-
sion of CF2 semantics if and only if
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• E is a naive extension of F if |SCCSF | = 1

• for every S ∈ SCCSF , (E ∩ S) is a CF2 extension of F ↓UPF (S,E) otherwise

Observe that F ↓UPF (S,E)= {a ∈ S | there exists no b ∈ E \ S s.t. (b, a) ∈ R}.

We now introduce stage2 semantics [Dvorák and Gaggl, 2016].

Definition 3.18. Let F = (A,R) and E ⊆ A. Set E is a stage2 extension if and
only if

• E is a stage extension of F if |SCCSF | = 1

• for every S ∈ SCCSF , (E ∩ S) is a stage2 extension of F ↓UPF (S,E) otherwise

Dvorák and Gaggl [2016] showed that every stage2 extension is a CF2 extension
and that every stable extension is a stage2 extension.

This ends the discussion on extension based semantics of abstract argumentaton.
There exist additional proposals for argumentation semantics in the literature, such
as for example resolution based semantics of Baroni et al. [2011b], but we do not
consider them in this article.

In this article, we focus on the extension-based approach, which means that each
semantics is defined by specifying the extensions it returns for a given argumentation
framework. There exists an alternative, labelling-based approach. Instead of calcu-
lating extensions, it provides labellings, one labelling being a function that attaches
to every argument a label in, out or undec (which stands for “undecided”).

Definition 3.19 (Labelling-based semantics). Let Λ = {in, out, undec}.
Let F = (A,R) be an argumentation framework. A labelling on F is a total function
Lab : A → Λ. A labelling-based semantics is a function λ defined for every element
of AF such that for every argumentation framework F , we have that λ(F) is a set
of labellings on F .

To illustrate, let us provide a labelling-based definition of complete semantics.

Definition 3.20 (Complete labelling). Let F = (A,R) and Lab a labelling on F .
We say that Lab is a complete labelling if and only if for every a ∈ A:

• if a is labelled in then all its attackers are labelled out

• if a is labelled out then none of its attackers is labelled in

• if a is labelled undec then not all its attackers are labelled out and none of its
attackers is labelled in.
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We denote by in(Lab) (resp. out(Lab), und(Lab)) the set of arguments labelled in
(resp. out, und).

For every F = (A,R), the set of complete extensions under σ is exactly the set
{in(Lab) | Lab is a complete labelling}.

Moreover, there exists a general way that allows to obtain a labelling-based
definition of a semantics given its extension-based definition, under the condition
that the semantics returns conflict-free sets.

Definition 3.21 (Extension to labelling). Given an extension E, labelling LabE is
defined as follows: LabE(a) = in if a ∈ E, LabE(a) = out if a ∈ E+, LabE(a) = und
otherwise. Then, given a semantics σ, we say that Lab is a σ labelling of F if and
only if there exists E ∈ σ(F) such that Lab = LabE .

Other ways to obtain a labelling from an extension are possible, for example we
could say that an argument is out if it is attacked by an argument in the extension,
or it attacks an argument in the extension. This would make the definition of out
more symmetric and more in line with naive based semantics. However, it seems
such alternatives have not been explored systematically in the literature. Moreover,
even if extension and labelling based semantics are inter-translatable, it may affect
other definitions such as equivalence of frameworks. Finally, using Definition 3.21,
every principle defined in terms of extension based semantics can be translated into
labelings and vice versa, though one of the definitions may be more compact or
intuitive than the other.

We saw an intuitive way to define complete labellings in Definition 3.20. Intu-
itive labelling-based definitions of other semantics also exist in the literature. For
example: a grounded labelling is a complete labelling such that the set of arguments
labelled in is minimal with respect to set inclusion among all complete labellings; a
stable labelling is a complete labelling such that the set of undecided arguments is
empty; a preferred labelling is a complete labelling such that the set of arguments
labelled in is maximal with respect to set inclusion among all complete labellings.
The reader interested in more details about the labelling-based approach is referred
to the paper by Baroni et al. [2011a].

4 List of Principles
This section presents the properties from the literature and reviews all the semantics
with respect to the properties.

Definition 4.1 (Isomorphic argumentation frameworks). Two argumentation
frameworks F1 = (A1,R1) and F2 = (A2,R2) are isomorphic if and only if there
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Defence Admiss. Strong
adm. Naivety Ind.

CF Reinst. Weak
reinst.

CF-
-reinst.

complete X X × × × X X X
grounded X X X × × X X X
preferred X X × × × X X X
stable X X × X × X X X
semi-stable X X × × × X X X
ideal X X × × × X X X
eager X X × × × X X X
p-complete X X × × X × × ×
p-grounded X X X × X × × ×
p-preferred X X × × X × × ×
p-stable X X × X X X X X
naive × × × X × × × X
CF2 × × × X × × X X
stage × × × X × × × X
stage2 × × × X × × X X

Table 1: Properties of semantics: basic properties, admissibility and reinstatement

exists a bijective function m : A1 → A2, such that (a, b) ∈ R1 if and only if
(m(a),m(b)) ∈ R2. This is denoted by F1

.=m F2.

The first property, called “language independence” by Baroni and Giacomin
[2007] is an obvious requirement for argumentation semantics. It is sometimes called
abstraction [Amgoud and Besnard, 2013; Bonzon et al., 2016a] or anonymity [Am-
goud et al., 2016].

Principle 1 (Language independence). A semantics σ satisfies the language inde-
pendence principle if and only if for every two argumentation frameworks F1 and
F2, if F1

.=m F2 then σ(F2) = {m(E) | E ∈ σ(F1)}.

It is immediate to see that all the semantics satisfy language independence, since
the definitions of semantics take into account only the topology of the graph, and
not the arguments’ names.

Conflict-freeness is one of the basic principles. Introduced by Dung [1995] and
stated as a principle by Baroni and Giacomin [2007], it is satisfied by all argumen-
tation semantics studied in this article. Note that one can define a non conflict-free
semantics [Arieli, 2015]. As another example of relaxing conflict-freeness consider
the work by Dunne et al. [2011], who introduce a framework where each attack is
associated a weight; given an inconsistency budget β, they accept to disregard the
set of attacks up to total weight of β.
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Principle 2 (Conflict-freeness). A semantics σ satisfies the conflict-freeness prin-
ciple if and only if for every argumentation framework F , for every E ∈ σ(F), E is
conflict-free set in F .

Defence is a well-known property introduced by Dung [1995].

Principle 3 (Defence). A semantics σ satisfies the defence principle if and only
if for every argumentation framework F , for every E ∈ σ(F), for every a ∈ E, E
defends a.

Baroni and Giacomin [2007] show that complete, grounded, preferred, stable,
semi-stable, ideal, p-complete, p-grounded, p-preferred, p-stable satisfy defence and
that CF2 does not satisfy defence. Let us consider the four remaining semantics:
stage, stage2, eager and naive. The argumentation framework from Figure 1 shows
that stage, stage2 and naive semantics violate defence since they all return three
extensions: {a}, {b} and {c}. Eager semantics satisfies defence (this follows directly
from its definition).

a b

c

Figure 1: Stage, stage2, naive and CF2 semantics violate admissibility, defence and
reinstatement, since they return three extensions: {a}, {b} and {c}.

Baroni and Giacomin [2007] suppose that every extension is conflict-free. Thus
an extension defends all it arguments if and only if it is admissible. However, if
conflict-freeness is seen as an optional criterion, we can distinguish between the
principles of admissibility and defence.

Principle 4 (Admissibility). A semantics σ satisfies the admissibility principle if
and only if for every argumentation framework F , every E ∈ σ(F) is admissible
in F .

Observation 1. If a semantics σ satisfies admissibility it also satisfies conflict-
freeness and defence.
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We now study the notion of strong admissibility [Baroni and Giacomin, 2007].

Principle 5 (Strong admissibility). A semantics σ satisfies the strong admissibility
principle if and only if for every argumentation framework F , for every E ∈ σ(F) it
holds that a ∈ E implies that E strongly defends a.

Observation 2. If a semantics σ satisfies strong admissibility then it satisfies ad-
missibility.

To understand the notion of strong admissibility, consider the example from
Figure 2. Set {a, d} is admissible but is not strongly admissible. Informally speaking,
this is because a is defended by d whereas d is defended by a. The intuition behind
strong admissibility is that this kind of defence is not strong enough because it is
cyclic, i.e. arguments defend each other. However, argument e is not attacked, thus
{e} is strongly admissible. Furthermore, {e} strongly defends a, so {a, e} is strongly
admissible. Also, {a, e} strongly defends d. Thus {a, d, e} is strongly admissible.

a b e

cd

Figure 2: Set {a, d} is admissible but is not strongly admissible. Set {a, d, e} is
admissible and strongly admissible.

Baroni and Giacomin [2007] show that grounded and p-grounded semantics sat-
isfy strong admissibility and that complete, preferred, stable, semi-stable, ideal, p-
complete, p-preferred, p-stable and CF2 do not satisfy this principle. Let us consider
stage, stage2, eager and naive semantics. Since stage, stage2 and naive semantics
violate admissibility, they also violate strong admissibility. To see that eager seman-
tics violates strong admissibility too, consider the example from Figure 3, suggested
by Caminada [2007]. The eager extension is {b, d}; this set is not strongly admissible
since it does not strongly defend b.

Another principle, which we call naivety, says that every extension under seman-
tics σ is a naive extension.

Principle 6 (Naivety). A semantics σ satisfies the naivety principle if and only if
for every argumentation framework F , for every E ∈ σ(F), E is maximal for set
inclusion conflict-free set in F .
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a b c

d

e

Figure 3: Eager semantics violates strong admissibility because eager extension
{b, d} does not strongly defend b. The same example shows that eager semantics
violates directionality. Observe that U = {a, b} is an unattacked set. Denote the
whole framework by F = (A,R). The eager extension of F is the set {b, d} whereas
the eager extension of F ↓U is the empty set.

We see directly from the definitions of stable, stage, naive, p-stable and CF2
semantics that they satisfy naivety. Since every stage2 extension is also a CF2
extension [Dvorák and Gaggl, 2016], naivety is also satisfied by stage2 semantics. It
is easy to see that the other semantics violate this principle.

Coste-Marquis et al. [2005] introduced prudent semantics, which are based on
the notion of indirect conflict-freeness.

Principle 7 (Indirect conflict-freeness). A semantics σ satisfies the indirect conflict-
freeness principle if and only if for every argumentation framework F , for every
E ∈ σ(F), E is without indirect conflicts in F .

Observation 3. If a semantics σ satisfies indirect conflict-freeness then it satisfies
conflict-freeness.

By examining the definitions of prudent semantics, we see that they all sat-
isfy indirect conflict-freeness, since this concept is built in through the use of p-
admissibility and p-characteristic function.

The other semantics do not satisfy indirect conflict-freeness. To show this,
consider the argumentation framework depicted in Figure 4, suggested by [Coste-
Marquis et al., 2005]. All the semantics except prudent ones have an extension
containing both a and e. Hence, they violate indirect conflict-freeness since e indi-
rectly attacks a.

Defence says that an extension must defend all the arguments it contains. Re-
instatement can be seen as its counterpart, since it says that an extension must
contain all the arguments it defends. This principle was first studied in a systematic
way by Baroni and Giacomin [2007].
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a

b c

d

e

f

Figure 4: All semantics except prudent semantics violate indirect conflict-freeness.
They all yield an extension containing both a and e, even if e indirectly attacks a.

Principle 8 (Reinstatement). A semantics σ satisfies the reinstatement principle
if and only if for every argumentation framework F , for every E ∈ σ(F), for every
a ∈ A it holds that if E defends a then a ∈ E.

The results in Table 1 concerning complete, grounded, preferred, stable, semi-
stable, ideal, p-complete, p-grounded, p-preferred, p-stable and CF2 semantics were
proved by Baroni and Giacomin [2007]. To summarise, all the semantics they study
satisfy reinstatement except p-grounded, p-complete, p-preferred and CF2. Let us
consider eager, stage, stage2 and naive semantics.

Regarding eager semantics, suppose that E is an eager extension and that a is
defended by E . The eager extension is a complete extension [Caminada, 2007], and
complete semantics satisfies reinstatement. Thus, a ∈ E , which means that eager
semantics satisfies reinstatement.

Stage, stage2 and naive semantics violate reinstatement, as proved by [Dvorák
and Gaggl, 2016]. Another way to see this is to consider the counter-example from
Figure 1.

Baroni and Giacomin [2007] study another property called weak reinstatement.

Principle 9 (Weak reinstatement). A semantics σ satisfies the weak reinstatement
principle if and only if for every argumentation framework F , for every E ∈ σ(F) it
holds that

E strongly defends a implies a ∈ E .
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Observation 4. If a semantics σ satisfies reinstatement then it satisfies weak re-
instatement.

The results in Table 1 concerning complete, grounded, preferred, stable, semi-
stable, ideal, p-complete, p-grounded, p-preferred, p-stable and CF2 semantics were
proved by Baroni and Giacomin [2007]. From Observation 4 we conclude that eager
semantics satisfies weak reinstatement.

Stage and naive semantics violate weak reinstatement as can be seen from Figure
5. This was also shown by Dvorák and Gaggl [2016]. Namely, {b} is a stage and a
naive extension that strongly defends a but does not contain it. Stage2 semantics
does satisfy weak reinstatement [Dvorák and Gaggl, 2016].

a b c

Figure 5: Stage and naive semantics violate weak reinstatement, since E = {b} is an
extension that strongly defends a, but E does not contain a.

The reinstatement principle makes sure that as soon as an argument a is defended
by an extension E , a should belong to E—without specifying that a is not in conflict
with arguments of E . To take this into account, another principle was defined by
Baroni and Giacomin [2007].

Principle 10 (CF-reinstatement). A semantics σ satisfies the CF-reinstate-
ment principle if and only if for every argumentation framework F , for every E ∈
σ(F), for every a ∈ A it holds that if E defends a and E ∪ {a} is conflict-free then
a ∈ E.

Observation 5. If a semantics σ satisfies reinstatement then it satisfies CF-rein-
statement.

The results in Table 1 concerning complete, grounded, preferred, stable, semi-
stable, ideal, p-complete, p-grounded, p-preferred, p-stable and CF2 semantics were
proved by Baroni and Giacomin [2007].

If E is a naive extension and a an argument such that E defends a and E ∪ {a}
is conflict-free, then a ∈ E since E is a maximal conflict-free set. This means that
naive semantics satisfies CF-reinstatement.

Observation 5 implies that eager semantics satisfies CF-reinstatement.

2752



The Principle-Based Approach to Abstract Argumentation Semantics

I-max. Allowing
abstention

Crash
resistance

Non-
-interference Direct. Weak-

-direct.
Semi-
-direct.

complete × X X X X X X
grounded X X X X X X X
preferred X × X X X X X
stable X × × × × X ×
semi-stable X × X X × × ×
ideal X X X X X X X
eager X X X X X X X
p-complete × X X X × × X
p-grounded X X X X X X X
p-preferred X × X X × × X
p-stable X × × × × X ×
naive X × X X × × X
CF2 X × X X X X X
stage X × X X × × ×
stage2 X × X X X X X

Table 2: Properties of semantics, part 2

Stage and stage2 semantics satisfy CF-reinstatement, as shown by Dvorák and
Gaggl [2016].

The next principle was first considered by Baroni and Giacomin [2007]. It says
that an extension cannot contain another extension.

Principle 11 (I-maximality). A semantics σ satisfies the I-maximality principle if
and only if for every argumentation framework F , for every E1, E2 ∈ σ(F), if E1 ⊆ E2
then E1 = E2.

I-maximality is trivially satisfied by single extension semantics. It is thus satisfied
by eager semantics. We see directly from the definitions of naive and stage semantics
that they satisfy I-maximality. Dvorák and Gaggl [2016] show that stage2 seman-
tics satisfies I-maximality. Baroni and Giacomin [2007] show that I-maximality is
satisfied by all other semantics except complete and p-complete semantics.

Baroni et al. [2011a] define a principle called rejection, which says that if an
argument a is labelled in and a attacks b, then b should be labelled out. If we use
the translation from extension to a labelling we mentioned in Definition 3.21, we see
that all the labellings satisfy this property. However, it would be possible to be more
general by defining a labelling-based semantics that does not satisfy this property.
Let us define a semantics σ that always returns a unique labelling such that an
argument is labelled in if it is not attacked, it is labelled undec if it is attacked by
exactly one argument and it is labelled out otherwise. Consider the example from
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Figure 5: argument a will be labelled in, argument b undec and argument c out,
which violates the rejection principle.

We next consider the allowing abstention principle [Baroni et al., 2011a].

Principle 12 (Allowing abstention). A semantics σ satisfies the allowing abstention
principle if and only if for every argumentation framework F , for every a ∈ A, if
there exist two extensions E1, E2 ∈ σ(F) such that a ∈ E1 and a ∈ E+

2 then there
exists an extension E3 ∈ σ(F) such that a /∈ (E3 ∪ E+

3 ).

Baroni et al. [2011a] show that complete semantics satisfies the previous principle
and that preferred, stable, semi-stable, stage and CF2 semantics falsify it. Observe
that unique status semantics trivially satisfy this principle. Allowing abstention is
thus satisfied by grounded, ideal, eager and p-grounded semantics.1

Let us now consider the remaining semantics, namely: naive, p-stable, p-
preferred, p-complete and stage2 semantics.

We first prove that p-complete semantics satisfies allowing abstention. We start
with a lemma.

Lemma 4.2. Let F = (A,R) be an argumentation framework, GEp its p-grounded
extension and E ⊆ A be a set that defends all its arguments. Then, E does not attack
GEp.

Proof. Let CFp be the p-characteristic function. Denote GEp0 = ∅, GEp1 = CFp(∅),
GEp2 = CFp(CFp(∅)), . . . and denote by GEp the p-grounded extension of F . Let E
be a set that defends all its arguments. By means of contradiction, suppose that
there exist x ∈ E , y ∈ GEp such that xRy. Let k ∈ N be the minimal number such
that y ∈ GEpk. From the definition of function CFp, there exists l < k such that
there exists y1 ∈ GEpl such that y1Rx. Since E defends all its arguments, there
exists x1 ∈ E such that x1Ry1. Again, there exists m < l such that there exists
y2 ∈ GEpm such that y2Rx1. By continuing this process, we conclude that there
exists ys ∈ GEp1 such that there exists xs ∈ E such that xSRys. This is impossible,
since the arguments of GEp1 are not attacked. Contradiction.

Proposition 4.3. p-complete semantics satisfies allowing abstention.

Proof. Let F = (A,R), let a, b ∈ A, let bRa and let E1 and E2 be p-complete
extensions such that a ∈ E1 and b ∈ E2. Denote by GEp the p-grounded extension
of F . Let us prove that a /∈ GEp and that GEp does not attack a. First, since bRa

1Note that Table 2 by Baroni et al. [2011a] specifies that grounded semantics does not satisfy
dilemma abstaining. The reason is that Baroni et al. consider the property as being “non-applicable”
to unique status semantics (personal communication, 2016).
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and b belongs to a p-complete extension (and every p-complete extension defends
all its arguments), Lemma 4.2 implies that a /∈ GEp. Let us now show that GEp
does not attack a. By means of contradiction, suppose the contrary. Let b ∈ GEp
be an argument such that bRa. Since a ∈ E1, and E1 defends all its arguments,
then there exists c ∈ E1 such that cRb. Contradiction with Lemma 4.2. Thus, it
must be that GEp does not attack a. It is known that the p-grounded extension is
a p-complete extension [Coste-Marquis et al., 2005]. Thus, we showed that there
exists a p-complete extension that neither contains nor attacks argument a.

To see why naive, p-stable, p-preferred and stage2 semantics violate allowing ab-
stention, consider the argumentation framework depicted in Figure 6. The principle
is violated since all those semantics return two extensions, {a} and {b}.

a b

Figure 6: Several semantics violate allowing abstention principle.

To define crash resistance [Caminada et al., 2012], we first need to introduce the
following two definitions.
Definition 4.4 (Disjoint argumentation frameworks). Two argumentation frame-
works F1 = (A1,R1) and F2 = (A2,R2) are disjoint if and only if A1 ∩ A2 = ∅.

A framework F? is contaminating if joining F? with an arbitrary disjoint frame-
work F results in a framework F ∪ F? having the same extensions as F?. The
intuition behind this definition is that F? contaminates every framework.
Definition 4.5 (Contaminating). An argumentation framework F? is contaminat-
ing for a semantics σ if and only if for every argumentation framework F disjoint
from F? it holds that σ(F? ∪ F) = σ(F?).

A semantics is crash resistant if and only if there are no contaminating frame-
works. The intuition behind this name is that a contaminating framework causes
the system to crash.
Principle 13 (Crash resistance). A semantics σ satisfies the crash resistance prin-
ciple if and only if there are no contaminating argumentation frameworks for σ.

Crash resistance forbids only the most extreme form of interferences between
disjoint subgraphs. A stronger property, non-interference, was defined by Caminada
et al. [2012]. We first need to define a notion of isolated set, i.e. a set that neither
attacks outside arguments nor is attacked by them.

2755



van der Torre and Vesic

Definition 4.6 (Isolated set of arguments). Let F = (A,R) be an argumentation
framework. A set S ⊆ A is isolated in F if and only if

((S × (A \ S)) ∪ ((A \ S)× S)) ∩R = ∅.

A semantics satisfies non-interference principle if for every isolated set S, the in-
tersections of the extensions with set S coincide with the extensions of the restriction
of the framework on S.

Principle 14 (Non-interference). A semantics σ satisfies the non-interference prin-
ciple if and only if for every argumentation framework F , for every set of arguments
S isolated in F it holds that σ(F ↓S) = {E ∩ S | E ∈ σ(F)}.

The previous principle can be made even stronger by considering the case when
the set S is not attacked by the rest of the framework, but can attack the rest of
the framework. Let us formalize the notion of an unattacked set.

Definition 4.7 (Unattacked arguments). Given an argumentation framework F =
(A,R), a set U is unattacked if and only if there exists no a ∈ A \ U such that a
attacks U . The set of unattacked sets in F is denoted US(F).

We can now define the principle of directionality, introduced by Baroni and
Giacomin [2007].

Principle 15 (Directionality). A semantics σ satisfies the directionality principle
if and only if for every argumentation framework F , for every U ∈ US(F), it holds
that σ(F ↓U ) = {E ∩ U | E ∈ σ(F)}.

Baroni et al. [2011a] show the following dependencies between directionality,
interference and crash resistance.

Observation 6. Directionality implies non interference, and non interference im-
plies crash resistance.

Let us see which semantics satisfy directionality. Baroni and Giacomin [2007]
proved that complete, grounded, preferred, ideal, p-grounded and CF2 semantics
satisfy directionality. They also showed that stable, semi-stable, p-complete, p-stable
and p-preferred semantics violate this principle. Baroni et al. [2011a] show that stage
semantics does not satisfy directionality; however, Dvorák and Gaggl [2016] show
that stage2 semantics does satisfy directionality.

The only remaining semantics are eager and naive. The argumentation frame-
work from Figure 7 shows that naive semantics does not satisfy directionality. The
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a b

c

Figure 7: Naive semantics violates directionality and weak directionality. Denote
the whole framework by F = (A,R). Let U = {a, b}. Observe that {a, c} is a naive
extension of F but that {a} is not a naive extension of F ↓U .

argumentation framework from Figure 3 shows that eager semantics does not satisfy
directionality.

Let us now consider non-interference. Baroni et al. [2011a] showed that non-
interference is satisfied by complete, grounded, preferred, semi-stable, ideal, stage
and CF2 semantics. Eager semantics satisfies non-interference since it satisfies di-
rectionality. From the definition of non-interference we see that this principle is
satisfied by naive semantics. Since p-grounded semantics satisfies directionality, it
also satisfies non-interference.

Proposition 4.8. p-complete, p-preferred semantics satisfy non-interference.

Proof. We present the proof for p-complete semantics, the one for p-preferred se-
mantics is similar. Let F = (A,R) and A′ ⊆ A be an isolated set in F . Denote by
F ′ = (A′,R′) the restriction of F on A′. Let us first suppose that E is a complete
prudent extension of F . Denote E ′ = E ∩A′. We have icf(E ′). It is easy to see that
every α ∈ E ′ is defended by E ′ from all attacks from A′. Also, for an α ∈ A′ \ E ′, we
can easily see that either E ′∪{α} is not without indirect conflicts or α is attacked by
some argument and not defended by E ′. Suppose now that E ′ is a complete prudent
extension of F ′. Then E ′ is p-admissible in F , so there must be a complete prudent
extension E ′′ of F such that E ′ ⊆ E ′′.

Stage2 semantics satisfies non-interference since it satisfies directionality. Finally,
p-stable semantics violates non-interference. Indeed, as we will soon see, p-stable
semantics violates crash resistance. Since non-interference implies crash resistance,
we conclude that p-stable semantics violates non-interference.

Let us now consider crash resistance. Baroni et al. [2011a] showed that non-
interference is satisfied by complete, grounded, preferred, semi-stable, ideal, stage
and CF2 semantics. Eager, naive, p-grounded, p-complete, p-preferred and stage2
semantics satisfy crash resistance since they satisfy non-interference. To see that
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stable semantics and p-stable semantics violate crash resistance, consider the frame-
work F∗ = ({a}, {(a, a)}). We see that F∗ is contaminating for stable and p-stable
semantics. Thus, they both violate crash resistance.

Let us now consider two variants of directionality, called weak directionality and
semi-directionality suggested by M. Giacomin (personal communication, 2016).

Principle 16 (Weak directionality). A semantics σ satisfies the weak directionality
principle if and only if for every argumentation framework F , for every U ∈ US(F),
it holds that σ(F ↓U ) ⊇ {E ∩ U | E ∈ σ(F)}.

Principle 17 (Semi-directionality). A semantics σ satisfies the semi-
directionality principle if and only if for every argumentation framework F , for
every U ∈ US(F), it holds that σ(F ↓U ) ⊆ {E ∩ U | E ∈ σ(F)}.

Observation 7. A semantics σ satisfies directionality if and only if σ satisfies both
weak directionality and semi-directionality.

Thus, grounded, complete, preferred, ideal, eager, p-grounded, stage2 and CF2
semantics satisfy both weak directionality and semi-directionality. It is immediate
from the definition that stable semantics satisfies weak directionality. Since stable
semantics does not satisfy directionality, it does not satisfy semi-directionality.

a b c

d e f

Figure 8: Semi-stable and stage semantics violate weak directionality. Let U =
{d, e, f}. Set {b, d} is an extension of this argumentation framework, but {b} is not
an extension of the restriction of this framework on U .

Example from Figure 8 shows that semi-stable semantics does not satisfy weak
directionality. To see that semi-stable semantics does not satisfy semi-directionality,
consider the example from Figure 9, suggested by M. Giacomin. Stage semantics
violates weak directionality, the same counter-example as for semi-stable semantics

2758



The Principle-Based Approach to Abstract Argumentation Semantics

a b c

Figure 9: Semi-stable and stage semantics violate semi-directionality. Let U =
{a, b}. Set {a} is an extension of the restriction of the framework on U , but there
is no extension E of the whole framework such that E ∩ U = {a}.

(Figure 8) can be used. Stage semantics also violates semi-directionality, and we
can again use the same counter-example as for semi-stable semantics (Figure 9).

Directly from the definition of naive semantics we see that it satisfies semi-
directionality. Since it does not satisfy directionality, we conclude from Observation
7 that it does not satisfy weak directionality.

Proposition 4.9. p-complete and p-preferred semantics satisfy semi-
directionality.

Proof. We present the proof for p-complete semantics, the proof for p-preferred
semantics is similar. Let F = (A,R) be an argumentation framework, U ⊆ A an
unattacked set and F ′ = F ↓U the restriction of F on U . Let E ′ be a p-complete
extension of F ′. Then E ′ is without indirect conflicts and is p-admissible in F ′. It
is immediate to see that E ′ is also p-admissible in F . It is clear that there exists no
x ∈ U \ E ′ such that x is defended by E ′ and E ′ ∪ {x} is without indirect conflicts.
Thus, there exists a (possibly empty) set E ⊂ (A\U) such that E∪E ′ is a p-complete
extension.

Since both p-complete and p-preferred semantics violate directionality, the previ-
ous proposition and Observation 7 imply that they both violate weak directionality.

Directly from the definition of p-stable semantics, we see that this semantics
satisfies weak directionality. From Observation 7 we conclude that it does not satisfy
semi-directionality.

We now consider the six properties related to skepticism and resolution adequacy
[Baroni and Giacomin, 2007].

The first definition says that a set of extensions Ext1 is more skeptical than Ext2
if the set of skeptically accepted arguments with respect to Ext1 is a subset of the
set of skeptically accepted arguments with respect to Ext2.
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Definition 4.10 (�E∩ ). Let Ext1 and Ext2 be two sets of sets of arguments. We say
that Ext1 �E∩ Ext2 if and only if

⋂

E1∈Ext1

E1 ⊆
⋂

E2∈Ext2

E2.

The previous definition compares only the intersections of extensions. A finer
criterion was introduced by Baroni et al. [2004].

Definition 4.11 (�EW ). Let Ext1 and Ext2 be two sets of sets of arguments. We
say that Ext1 �EW Ext2 if and only if

for every E2 ∈ Ext2, there exists E1 ∈ Ext1 such that E1 ⊆ E2.

Baroni and Giacomin [2007] refine the previous relation by introducing the fol-
lowing definition.

Definition 4.12 (�ES ). Let Ext1 and Ext2 be two sets of sets of arguments. We say
that Ext1 �ES Ext2 if and only if Ext1 �EW Ext2 and

for every E1 ∈ Ext1, there exists E2 ∈ Ext2 such that E1 ⊆ E2.

Letters W and S in the previous definitions stand for weak and strong. Baroni
and Giacomin [2007] showed that the three relations are reflexive and transitive and
that they are also in strict order of implication. Namely, given two sets of sets of
arguments Ext1 and Ext2, we have

Observation 8.
Ext1 �ES Ext2 implies Ext1 �EW Ext2

Ext1 �EW Ext2 implies Ext1 �E∩ Ext2

We now define a skepticism relation �A between argumentation frameworks. It
says that F1 �A F2 if F1 may have some symmetric attacks where F2 has a directed
attack.

Definition 4.13 (�A). Given an argumentation framework F = (A,R), the conflict
set is defined as CONF(F) = {(a, b) ∈ A × A | (a, b) ∈ R or (b, a) ∈ R}. Given two
argumentation frameworks F1 = (A1,R1) and F2 = (A2,R2), we say that F1 �A F2
if and only if CONF(F1) = CONF(F2) and R2 ⊆ R1.
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Observe that �A is a partial order, as it consists of an equality and a set inclusion
relation [Baroni and Giacomin, 2007]. Note that within the set of argumentation
frameworks comparable with a given argumentation framework F , there might be
several maximal elements with respect to �A, since there might be several ways to
replace all symmetric attacks by asymmetric ones.

We can now introduce the skepticism adequacy principle. Its idea is that if F is
more skeptical than F ′ then the set of extensions of F is more skeptical than that
of F ′.

Principle 18 (Skepticism adequacy). Given a skepticism relation ≺E between sets
of sets of arguments, a semantics σ satisfies the �E-skepticism adequacy principle
if and only if for every two argumentation frameworks F and F ′ such that F �A F ′
it holds that σ(F) �E σ(F ′).

For example if F consists of two arguments a and b attacking each other and F ′
has only an attack from a to b, then the intersection of the extensions of F (∅ for
all semantics) is a subset of extensions of F ′, typically {a}. Roughly speaking: the
more symmetric attacks we replace, the more we know, but we do not loose any
accepted arguments.

Observation 9.

• If σ satisfies �ES -sk. adequacy then it satisfies �EW -sk. adequacy

• If σ satisfies �EW -sk. adequacy then it satisfies �E∩ -sk. adequacy

Let us see which semantics satisfy skepticism adequacy. Baroni and Giacomin
[2007] proved all the results for grounded, complete, stable, preferred, semi-stable,
ideal, all four prudent and CF2 semantics.

Eager semantics does not satisfy �E∩ -skepticism adequacy, as illustrated by the
example depicted in Figure 10. From Observation 9, we conclude that eager seman-
tics violates �EW -skepticism adequacy and �ES -skepticism adequacy.

Naive semantics satisfies all three variants of skepticism adequacy since
CONF(F1) = CONF(F2) implies σ(F1) = σ(F2).

Stage semantics does not satisfy �E∩ -skepticism adequacy, as illustrated by the
example from Figure 11. From Observation 9, we conclude that stage semantics
violates �EW -skepticism adequacy and �ES -skepticism adequacy.

Finally, stage2 semantics does not satisfy �E∩ -skepticism adequacy, as illustrated
by the example from Figure 12. From Observation 9, we conclude that stage2
semantics violates �EW -skepticism adequacy and �ES -skepticism adequacy.

Let us now consider resolution adequacy [Baroni and Giacomin, 2007].
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�E∩ -sk. ad. �EW -sk. ad. �ES -sk. ad. �E∩ -res. ad. �EW -res. ad. �ES -res. ad.
complete X X × × × ×
grounded X X X × × ×
preferred × × × X X X
stable X X × X X X
semi-stable × × × X X ×
ideal × × × × × ×
eager × × × × × ×
p-complete × × × × × ×
p-grounded × × × X × ×
p-preferred × × × × × ×
p-stable × × × X X ×
naive X X X X X X
CF2 X X × × × ×
stage × × × X X ×
stage2 × × × × × ×

Table 3: Properties of semantics, skepticism and resolution adequacy

a

b

c

d e

F1

a

b

c

d e

F2

Figure 10: Eager semantics does not satisfy �E∩ -skepticism adequacy. We have
F1 �A F2. The eager extension of F1 is {e} and the eager extension of F2 is ∅.
Thus the set of skeptically accepted arguments of F1 equals {e} is not a subset of
the set of skeptically accepted arguments of F2.

Definition 4.14 (RES). We denote by RES(F) the set of all argumentation frame-
works comparable with F and maximal with respect to �A.
Definition 4.15 (UR). Given an argumentation framework F and a semantics σ,
we define UR(F , σ) = ⋃

F ′∈RES(F) σ(F ′).

Principle 19 (Resolution adequacy, [Baroni and Giacomin, 2007]).
Given a skepticism relation �E between sets of sets of arguments, a semantics σ
satisfies the �E-resolution adequacy principle if and only if for every argumentation
framework F we have UR(F , σ) �E σ(F).
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a b c

F1

a b c

F2

Figure 11: Stage semantics does not satisfy �E∩ -skepticism adequacy. We have
F1 �A F2. Framework F1 has a unique stage extension {a} and framework F2 has
two stage extensions {a} and {b}. Thus the set of skeptically accepted arguments
of F1 equals {a} is not a subset of the set of skeptically accepted arguments of F2,
which is the empty set.

a

b

c

F1

a

b

c

F2

Figure 12: Stage2 semantics does not satisfy �E∩ -skepticism adequacy. We have
F1 �A F2. Framework F1 has a unique stage2 extension {a} and framework F2 has
three stage2 extensions {a}, {b} and {c}. Thus the set of skeptically accepted argu-
ments of F1 equals {a} is not a subset of the set of skeptically accepted arguments
of F2, which is the empty set.

We consider three variants of the resolution adequacy principle: �E∩ -resolution
adequacy, �EW -resolution adequacy and �ES -resolution adequacy.

Observation 10.

• If σ satisfies �ES -res. adequacy then it satisfies �EW -res. adequacy

• If σ satisfies �EW -res. adequacy then it satisfies �E∩ -res. adequacy

The results regarding grounded, complete, stable, preferred, semi-stable, ideal,
all four prudent and CF2 semantics were shown by Baroni and Giacomin [2007].
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Eager semantics violates �E∩ -resolution adequacy, as illustrated by the example
from Figure 13. Consequently, it does not satisfy the other two forms of resolution
adequacy. Consider naive semantics; from its definition we see that for every argu-

c

a

b

d

F

c

a

b

d

c

a

b

d

F1

F2

Figure 13: Eager semantics does not satisfy �E∩ -resolution adequacy. We have
RES(F) = {F1,F2}. Namely, the eager extension of F1 is {b, d} and the eager
extension of F2 is {a, d}. Since the eager extension of F is the empty set, and
{a, d} ∩ {b, d} = {d} 6⊆ ∅, the criterion is not satisfied.

mentation framework F , for every F ′ ∈ RES(F), we have σ(F) = σ(F ′). Thus,
naive semantics satisfies all three forms of resolution adequacy.

Proposition 4.16. Stage semantics satisfies �EW -resolution adequacy.

Proof. To show this, it is sufficient to show the following claim: for every argu-
mentation framework F = (A,R), for every stage extension E of F , there exists
F ′ ∈ RES(F) such that E is a stage extension of F ′. Let E be a stage extension
of F . Let F ′ = (A,R′) ∈ RES(F) be such that for every a, b ∈ A if a ∈ E then
(a, b) ∈ R′. (In other words, all attacks from E are preserved.) E is conflict-free
in F ′, and all the attacks from E are preserved. Observe that the set of conflict-free
sets of F and the set of conflict-free sets of F ′ coincide. Also, no conflict-free set
attacks more arguments in F ′ than it attacks in F . Thus, since E is a stage extension
in F , it is also a stage extension in F ′.

From the fact that for every argumentation framework F = (A,R), for every
stage extension E of F , there exists F ′ ∈ RES(F) such that E is a stage extension
of F ′, we conclude that stage semantics satisfies �EW -resolution adequacy.
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Since stage semantics satisfies �EW -resolution adequacy, then it satisfies
�E∩ -resolution adequacy. The example from Figure 14 shows that stage semantics
does not satisfy �ES -resolution adequacy.

a b c

d

e

F

a b c

d

e

F ′

Figure 14: Stage semantics does not satisfy �ES -resolution adequacy. We have
F ′ ∈ RES(F), set E ′ = {a, c} is a stage extension of F ′, but there exists no stage
extension E of F such that E ′ ⊆ E .

Stage2 semantics violates �E∩ -resolution adequacy, as illustrated by the example
from Figure 15. Consequently, it does not satisfy the other two forms of resolution
adequacy.

Succinctness Tightness Conflict-
-sensitiveness

Com-
-closure

SCC-
-recursiveness Cardinality

complete × × × X X 1+
grounded × X X X X 1
preferred × × X X X 1+
stable × X X X X 0+
semi-stable × × X X × 1+
ideal × X X X × 1
eager × X X X × 1+
p-complete × × × × × 1+
p-grounded × X X X × 1
p-preferred × X X X × 1+
p-stable × X X X × 0+
naive × X X X × 1+
CF2 X X X X X 1+
stage × X X X × 1+
stage2 X X X X X 1+

Table 4: Properties of semantics, part 4
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Figure 15: (Example provided by Wolfgang Dvorak, personal communication)
Stage2 semantics does not satisfy �E∩ -resolution adequacy. We have RES(F) =
{F1,F2}. Namely, the stage2 extensions of F are {a, e} and {b, e}, and the stage2
extension of F1 and F2 is {a, e}. Since {a, e} 6⊆ {a, e} ∩ {b, e} = {e}, the criterion
is not satisfied. The intuitive reason for the different behaviour from stage is that
resolutions can break up a SCC into several SCCS and arguments that are not in
the same SCC are not considered for range maximality.

Baroni et al. [2011b] introduce resolution-based family of semantics, which are
developed to satisfy the resolution properties.

Let us now consider the last group of properties listed in Table 4. We first
need to define the notion of strong equivalence [Oikarinen and Woltran, 2010]. Two
frameworks F1 and F2 are strongly equivalent if for every argumentation framework
F3, we have that F1 ∪ F3 has the same extensions as F2 ∪ F3.

Definition 4.17 (Strong equivalence). Two argumentation frameworks F1 and F2
are strongly equivalent with respect to semantics σ, in symbols F1 ≡σs F2 if and only
if for each argumentation framework F3, σ(F1 ∪ F3) = σ(F2 ∪ F3).

An attack is redundant in F if removing it does not change the extensions of
any F ′ that contains F .
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Definition 4.18 (Redundant attack). Let F = (A,R) be an argumentation frame-
work and σ and semantics. Attack (a, b) ∈ R is said to be redundant in F with
respect to σ if and only if for all argumentation frameworks F ′ such that F ⊆ F ′ we
have σ(F ′) = σ(F ′ \ (a, b)).

We can now define the succinctness principle [Gaggl and Woltran, 2013].

Principle 20 (Succinctness). A semantics σ satisfies the succinctness principle if
and only if no argumentation framework contains a redundant attack with respect
to σ.

Gaggl and Woltran [2013] show that a semantics σ satisfies succinctness if and
only if for every two argumentation frameworks F1 and F2 strong equivalence un-
der σ coincides with F1 = F2.

Only CF2 and stage2 semantics satisfy succinctness. Namely, Oikarinen and
Woltran [2010] showed that the notions of strong equivalence and syntactic equiva-
lence do not coincide under complete, grounded, preferred, stable, semi-stable and
ideal semantics. Gaggl and Woltran [2013] show that strong equivalence and syn-
tactic equivalence do not coincide under stage and naive semantics. They also show
that strong equivalence coincides with syntactic equivalence under CF2 semantics.
Dvorák and Gaggl [2016] show that the same is true under stage2 semantics, which
means that it also satisfies succinctness.

a b

c d

F1

a b

c d

F2

Figure 16: Several semantics violate succinctness

Consider eager semantics. Using Theorem 2 by Oikarinen and Woltran [2010],
we can see that F1 and F2 from Figure 16 are strongly equivalent under semi-stable
semantics. Since the eager semantics is uniquely determined by the set of semi-
stable extensions, this means that F1 and F2 are strongly equivalent under eager
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semantics. Hence, eager semantics does not satisfy succinctness. Let us now show
that all four prudent semantics violate succinctness.

Let F1 = (A,R1) and F2 = (A,R2) be the two argumentation frameworks from
Figure 16. Let F = (A′,R′) be an arbitrary argumentation framework. Denote
F ′1 = F1 ∪F and F ′2 = F2 ∪F . Let us prove that the sets without indirect conflicts
of F ′1 and F ′2 coincide. It is immediate that if E ⊆ A ∪A′ is not without indirect
conflicts in F ′2, it is also not without indirect conflicts in F ′1, since R2 ⊆ R1. Let
E ⊆ A∪A′ and let us prove that if E is not without indirect conflicts in F ′1 then it is
not without indirect conflicts in F ′2. Let {(x1, x2), (x2, x3), . . . , (xn−1, xn)} ⊆ R1∪R′
with n being even and x1, xn ∈ E . If {(x1, x2), (x2, x3), . . . , (xn−1, xn)} ⊆ R2 ∪ R′
then E clearly has an indirect conflict in F ′2. Otherwise, it must be that for some
i ∈ {1, . . . , n − 1} we have xi = a and xi+1 = b. Then {(x1, x2), . . . , (xi, c), (c, d),
(d, xi+1), . . . , (xn−1, xn)} ⊆ R2 ∪ R′, thus E is not without indirect conflicts in F ′2.
Hence, the sets without indirect conflicts of F ′1 and F ′2 coincide. It is immediate
to see that E ⊆ A ∪ A′ defends all it arguments in F ′1 if and only if it defends
all its arguments in F ′2. Thus, the sets of p-complete extensions of F ′1 and F ′2
coincide. Also, the p-grounded extension of F ′1 is exactly the p-grounded extension
of F ′2. Since every E without indirect conflicts attacks an argument x in F ′1 if and
only if E attacks x in F ′2, p-stable extensions of F ′1 and F ′2 coincide. Since the
sets without indirect conflicts coincide, then maximal sets without indirect conflict
coincide. Thus, p-preferred extensions of F ′1 and F ′2 coincide. We conclude that all
variants of prudent semantics violate succinctness.

The next principle we consider is tightness. Let us first define the notion of pairs.
A couple (a, b) is in Pairs if there is an extension containing both a and b.

Definition 4.19 (Pairs). Given a set of extensions S = {E1, . . . , En}, we define

Pairs(S) = {(a, b) | there exists Ei ∈ S such that {a, b} ⊆ Ei}.

Tightness was introduced by Dunne et al. [2015]. Roughly speaking, it says that
if argument a does not belong to extension E , then there must be argument b ∈ E
which is somehow incompatible with a.

Principle 21 (Tightness). A set of extensions S = {E1, . . . , En} is tight if and only
if for every extension Ei and for every a ∈ A that appears in at least one extension
from S it holds that if Ei∪{a} /∈ S then there exists b ∈ Ei such that (a, b) /∈ Pairs(S).

A semantics σ satisfies the tightness principle if and only if for every argumen-
tation framework F , σ(F) is tight.

Dunne et al. [2015] show that stable, stage and naive semantics satisfy tight-
ness. Example 4 from their paper shows an argumentation framework F such that
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σ(F) = {E1, E2, E3} with E1 = {a, b}, E2 = {a, d, e}, E3 = {b, c, e}, under preferred
and semi-stable semantics. This example shows that those two semantics violate
tightness since {a, b, e} is not an extension.

Directly from the definition of tightness, we conclude that unique status seman-
tics satisfy this principle.

Observation 11. If σ is a semantics that returns exactly one extension for every
argumentation framework then σ satisfies tightness.

Hence, grounded, p-grounded, ideal and eager semantics satisfy tightness. The
example from Figure 17 shows that complete and p-complete semantics violate tight-
ness.

a c e

b x f d

y

Figure 17: Complete and p-complete semantics violate tightness. There are two
extensions E1 = {a, b}, E2 = {a, b, c, d}. Tightness is not satisfied since set E1 ∪ {c}
is not an extension.

From Proposition 1 by Dunne et al. [2015], we have that the set of naive ex-
tensions is tight for every argumentation framework. Note that when σ is naive
semantics and F an argumentation framework, all the elements of σ(F) are pairwise
incomparable with respect to ⊆ (i.e. for each S, S′, S ⊆ S′ implies S = S′). Hence,
we can apply Lemma 2 by Dunne et al. [2015] and obtain

Observation 12. If every extension under σ is a maximal conflict-free set, σ sat-
isfies tightness.

As an immediate consequence, p-stable, CF2 and stage2 semantics satisfy tight-
ness. We now show that p-preferred semantics also satisfies this principle.

Proposition 4.20. p-preferred semantics satisfies tightness.
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Proof. We use the proof by reductio ad absurdum. Let E be a p-preferred extension
and let a be a credulously accepted argument such that

for every b ∈ E there is a preferred p-extension E ′′ s.t. {a, b} ⊆ E ′′ (1)

By means of contradiction, let us suppose that E ′ = E ∪ {a} is not a p-preferred
extension. From (1), we conclude that E ′ is without indirect conflicts. Set E ′ is not
p-admissible, since that would mean that E is not a maximal p-admissible set. Since
E ′ is without indirect conflicts and E is p-admissible, there exists an argument b1
such that b1Ra and there is no b′ ∈ E ′ such that b′Rb1. Denote B1 = {b | bRa}.

Note that E 6= ∅, since E = ∅ would imply that there are no other p-preferred
extensions and, consequently, a would not be credulously accepted. Thus, E 6= ∅.
Let b ∈ E . From (1), there exists a p-preferred extension E1 such that b ∈ E1 and
a ∈ E1. Since a ∈ E1 then for every bi1 ∈ B1 there exists bi2 ∈ E1 such that bi2R.
Let B2 = {b′ ∈ E1 | there exists b′′ ∈ B1 s.t. b′Rb′′}. In words, B2 is the set of
arguments from E1 that attack B1 (they defend a from B1).

Let us show that E ∪B2 is without indirect conflicts. By means of contradiction,
suppose E indirectly attacks B2. Then E indirectly attacks a, contradiction. Suppose
now that B2 indirectly attacks E . Since E is p-admissible, then E attacks B2, and
thus (like in the previous case) E indirectly attacks a. Contradiction. So it must be
that E ∪ B2 is without indirect conflicts. Note also that since B2 ⊆ E1 and a ∈ E1,
we have that E2 = E ∪ {a} ∪B2 is without indirect conflicts.

Note that E2 is not p-admissible, since it is a strict superset of a p-preferred ex-
tension. Set E is p-admissible and B2 defends a so it must be that some argument(s)
of B2 are not defended by E2.

Let B3 = {b | bRB2}. It must be that B3 \ B2 6= ∅. Since B2 ⊆ E1, and E1 is
p-admissible, there exists B4 ⊆ E1 such that B4 defends B2. Let B4 = {b′ ∈ E1 |
there exists b′′ ∈ B3 such that b′Rb′′}.

Note that E4 = E ∪ {a} ∪ B2 ∪ B4 is without indirect conflicts. By using the
similar reasoning as in the case of E2, we conclude that E4 is not p-admissible. Let
B5 = {b | bRB4}. We have B5 \ (B1 ∪ B3) 6= ∅. By continuing this process, we
construct an infinite sequence of different arguments (b1, b3, . . . , bi+1, . . .) such that
b1 ∈ B1, b3 ∈ B3 \ B1, . . ., bi+1 ∈ Bi+1 \ (B1 ∪ . . . ∪ Bi−1), . . ., which is impossible,
since the set of arguments is finite.

We now study the notion of conflict-sensitiveness [Dunne et al., 2015]. Note that
an equivalent principle was called adm-closure in some papers.
Principle 22 (Conflict-sensitiveness). A set of extensions S = {E1, . . . , En} is
conflict-sensitive if and only if for every two extensions Ei, Ej such that Ei ∪ Ej /∈ S
it holds that there exist a, b ∈ Ei ∪ Ej such that (a, b) /∈ PairsS .
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A semantics σ satisfies the conflict-sensitiveness principle if and only if for every
argumentation framework F , σ(F) is conflict-sensitive.

This principle checks whether the fact that Ei ∪ Ej is not an extension is jus-
tified by existence of a ∈ Ei and b ∈ Ej that cannot be taken together. Dunne et
al. [2015] show that every tight set is also conflict-sensitive. Thus, grounded, stable,
ideal, stage, eager, naive, p-grounded, p-stable, p-preferred, stage2 and CF2 seman-
tics satisfy conflict-sensitiveness. Proposition 2 by Dunne et al. [2015] shows that
preferred and semi-stable semantics satisfy conflict-sensitiveness. Our example from
Figure 18 shows that complete and p-complete semantics violate this principle. As
for tightness, it does not seem that violating this principle is a necessarily a bad
thing. It can be rational to ask for both a and b in order to defend e. There is no
conflict between a and e, it is just that e needs to be defended from both c and d.

a c

x

e

b d

y

Figure 18: Complete and p-complete semantics violate conflict-sensitiveness. There
are four extensions E1 = ∅, E2 = {a}, E3 = {b}, E4 = {a, b, e}. Conflict-sensitiveness
is not satisfied since set {a, b} is not an extension.

Let us now turn to com-closure [Dunne et al., 2015]. To define this principle,
we first need to introduce the notion of completion set. Completion sets are the
smallest extensions that contain a given set.

Definition 4.21 (Completion set). Given a set of extensions S = {E1, . . . , En} and
a set of arguments E, set E ′ is a completion set of E in S if and only if E ′ is a
minimal for ⊆ set such that E ′ ∈ S and E ⊆ E ′.
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Roughly speaking, com-closure says that, given a set of extensions S, if for every
T ⊆ S each two arguments from sets of T appear in some extension of S, then T
can be extended to an extension in a unique way.

Principle 23 (Com-closure). A set of extensions S = {E1, . . . , En} is com-closed
if and only if for every T ⊆ S the following holds: if (a, b) ∈ PairsS for each
a, b ∈ ∪Ei∈T Ei, then ∪Ei∈T Ei has a unique completion set in S.

A semantics σ satisfies the com-closure principle if and only if for every argu-
mentation framework F , σ(F) is com-closed.

Dunne et al. [2015] show that each conflict-sensitive set of extensions is com-
closed. Thus, all the semantics that satisfy conflict-sensitiveness also satisfy com-
closure. Their Proposition 4 shows that complete semantics is com-closed. To see
that p-complete semantics does not satisfy com-closure, consider the graph from
Figure 19.

We now study the notion of SCC-recursiveness, which was introduced by Baroni
et al. [2005].

Principle 24 (SCC-recursiveness). A semantics σ satisfies the
SCC-recursiveness principle if and only if for every argumentation framework F =
(A,R) we have σ(F) = GF(F ,A), where for every F = (A,R) and for every set
C ⊆ A, the function GF(F , C) ⊆ 2A is defined as follows: for every E ⊆ A,
E ∈ GF(F , C) if and only if

• in case |SCCSF | = 1, E ∈ BFS(F , C),

• otherwise, ∀S ∈ SCCSF , (E ∩ S) ∈ GF(F ↓UPF (S,E), UF (S, E) ∩ C),

where BFS(F , C) is a function, called base function, that, given an argumentation
framework F = (A,R), such that |SCCS(F)| = 1 and a set C ⊆ A, gives a subset
of 2A.

Baroni et al. [2005] proved that grounded, complete, stable and preferred seman-
tics satisfy SCC-recursiveness. CF2 and stage2 semantics also satisfy this principle,
since they are defined by using SCC recursive schema. None of the remaining se-
mantics satisfies SCC-recursiveness. To show that ideal, semi-stable, stage and eager
semantics does not satisfy SCC-recursiveness, consider the examples from Figures 20
and 21, which are both due to M. Giacomin (personal communication, 2016).
Naive semantics does not satisfy SCC-recursiveness since it ignores the direction of
attacks. Consider the example from Figure 22. All four prudent semantics violate
SCC-recursiveness. Consider the argumentation framework from Figure 4. Let σ be
any of the four prudent semantics. In this example, every argument forms an SCC.
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Figure 19: p-complete semantics is not com-closed. There are eight p-complete
extensions: E1 = ∅, E2 = {b}, E3 = {c}, E4 = {d}, E5 = {b, d}, E6 = {c, d},
E7 = {b, c, d}, E8 = {b, c, a}. Let T = {E2, E3}. Com-closure is not satisfied since set
{b, c} has two competition sets, namely E7 and E8.

Thus, each extension must contain both e and f . Furthermore, no extension can
contain neither of b, c, d, since they are all attacked by e of f . Finally, if σ satisfied
SCC-recursiveness, each extension would contain a, which is not the case.

The results considering cardinality are easy to obtain.
We do not include several properties that are not satisfied by any of the studied

semantics. Let us mention three such properties. Downward closure [Dunne et al.,
2015] basically says that each subset of each extension is an extension. Non-triviality
[Dunne et al., 2012] says that it is not the case that σ(F) = {∅}; in words, the empty
set is not the only extension. Decisiveness [Dunne et al., 2012] is a stronger principle
that asks that every framework has exactly one extension E and that E is not empty.
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Figure 20: Ideal semantics is not SCC-recursive. Both in F1 and in F2, there
are two SCCs: S1 = {a, b, c} and S2 = {d, e}. Suppose ideal semantics is SCC-
recursive. Then, we can calculate the ideal extension of an argumentation framework
by starting from S1 and then continuing to S2. Denote by F1

1 the restriction of F1
on S1 and by F1

2 the restriction of F2 on S1. The ideal extension of F1
1 is the

empty set. The ideal extension of F1
2 is also the empty set. So the exact same

information is transferred to the next SCC, S2. The second SCC, S2 is the same for
both frameworks, so given the same information from S1, both frameworks should
have the same ideal extension. However, σ(F1) = ∅ whereas σ(F2) = {e}. Thus,
ideal semantics does not satisfy SCC-recursiveness.

a b c

d

Figure 21: Semi-stable, stage and eager semantics violate SCC-recursiveness. Let σ
be stage, semi-stable or eager semantics. Consider the first SCC, S1 = {a, b, c}. If
we restrict the argumentation framework to S1, the only extension under σ is {b}.
If σ satisfied SCC-recursiveness, each extension of this framework would contain b,
which is not the case, since {a} is an extension of this framework under σ.

5 Summary and outlook

The principle-based approach has developed over the past ten years into a cor-
nerstone of formal argumentation theory, because it allows for a more systematic
study and comparison of argumentation semantics. In this article we give a com-
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a b

Figure 22: Naive semantics does not satisfy SCC-recursiveness. Note that the first
SCC is S1 = {a}. If naive semantics satisfied SCC-recursiveness, every naive exten-
sion of the whole framework would contain a, which is not the case since {b} is a
naive extension of this framework too.

plete analysis of the fifteen main alternatives for argumentation semantics using the
twenty-seven main principles discussed in the literature on abstract argumentation.
Moreover, Caminada [forthcoming] discusses the principles used in structured argu-
mentation, which he calls rationality postulates, and Dung [2016] analyses prioritised
argumentation using a principle-based or axiomatic approach.

The principle-based approach has also been used to provide a more systematic
study and analysis of the semantics of extended argumentation frameworks, of the
aggregation of argumentation frameworks, and of the dynamics of argumentation
frameworks. For example, principles of ranking-based semantics have been proposed
[Amgoud and Ben-Naim, 2016; Amgoud et al., 2017; Bonzon et al., 2016b], where
the output is not a set of extensions but a ranking on the set of arguments, and prin-
ciples have been developed for bipolar argumentation [Cayrol and Lagasquie-Schiex,
2015]. Likewise we expect a further systematic study of weighted argumentation
frameworks, preference-based argumentation frameworks, input/output frameworks,
abstract dialectical frameworks, and so on.

It may be expected that the principle-based approach will play an even more
prominent role in the future of formal argumentation, as the number of alternatives
for argumentation semantics increases, new argumentation principles are introduced,
and more requirements of actual applications are expressed in terms of such prin-
ciples. Moreover, in the future applications and principles concerned with infinite
frameworks may become more prominent. For example, when the set of arguments
becomes infinite, it may be that there are no semi-stable extensions. However, Bau-
mann [forthcoming] illustrates how a meaningful version of eager semantics can be
defined, which no longer has the property that it always returns exactly one exten-
sion.

Finally, the principle-based approach to formal argumentation may lead to the
study of impossibility and possibility results, as well as the development of repre-
sentation theorems characterising sets of argumentation semantics. The use of the
principle-based approach in other areas of reasoning, such as voting theory or AGM
theory change, may inspire such further formal investigations.
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Abstract
This article is devoted to argumentation semantics which play the flagship

role in Dung’s abstract argumentation theory. Almost all of them are motivated
by an easily understandable intuition of what should be acceptable in the light
of conflicts. However, although these intuitions equip us with short and com-
prehensible formal definitions it turned out that their intrinsic properties such
as existence and uniqueness, expressibility, and replaceability are not that easily
accessible. The article reviews the mentioned properties for almost all seman-
tics available in the literature. In doing so we include two main axes: namely
first, the distinction between extension-based and labelling-based versions and
secondly, the distinction of different kind of argumentation frameworks such as
finite or unrestricted ones.

1 Introduction
Given the large variety of existing logical formalisms it is of utmost importance to se-
lect the most adequate one for a specific purpose, e.g. for representing the knowledge
relevant for a particular application or for using the formalism as a modeling tool
for problem solving. Awareness of the nature of a logical formalism, in other words,
of its fundamental intrinsic properties, is indispensable and provides the basis of an
informed choice. Apart from the deeper understanding of the considered formalism,
the study of such intrinsic properties can help to identify interesting fragments or
to develop useful extensions of a formalism. Moreover, the obtained insights can be
used to refine existing algorithms, or even give rise to new ones.

Presumably, the best-known intrinsic property of logics is monotonicity. Mono-
tonic logics like first order logic are perfectly suitable for the formalization of uni-
versal truths since in these logics, whenever a formula φ is a logical consequence of
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a set of axioms Σ, it remains true forever and without exception even if we add new
axioms to Σ. Formalisms which do not satisfy monotonicity, commonly referred to
as nonmonotonic logics, allow for defeasible reasoning, i.e. it is possible to withdraw
former conclusions (cf. [Brewka, 1992; Gabbay et al., 1994] for excellent overviews).
Both kinds of logics have their traditional application domains and apart from this
fundamental choice there are many other comparison criteria influencing the decision
which logic or which specific semantics of a logic to use in a certain context.

One of the first intrinsic properties which comes to mind is computational com-
plexity, i.e. how expensive is it to solve typical decision problems in the candidate
formalism. A further related issue is modularity which is, among other things, en-
gaged with the question whether it is possible to divide a given theory in subtheories,
s.t. the formal semantics of the entire theory can be obtained by constructing the
semantics of the subtheories. Both topics were studied in-depth for mainstream
nonmonotonic formalisms like default logic [Gottlob, 1992; Turner, 1996], logic pro-
gramming under certain semantics [Lifschitz and Turner, 1994; Dantsin et al., 1997]
as well as abstract argumentation frameworks under various argumentation seman-
tics [Baroni et al., 2005; Baumann, 2011; Liao et al., 2011; Dvořák, 2012].

In this article we give an overview of three further intrinsic properties of abstract
argumentation semantics.

1. existence and uniqueness Is it possible, and if so how, to guarantee the existence
of at least one or exactly one extension/labelling by considering the structure
of a given AF F only? (cf. Section 2)

2. expressibility Is it possible, and if so how, to realize a given candidate set of
extensions/labellings within a single AF F? (cf. Section 3)

3. replaceability Is it possible, and if so how, to simplify parts of a given AF F ,
s.t. the modified version F ′ and F cannot be semantically distinguished by
further information which might be added later to both simultaneously?

(cf. Section 4)

The question whether a certain formalism always provides one with a formal
meaning or even with a uniquely determined semantical answer is a crucial factor
for its suitability for the application in mind. For instance, in contrast to problem
solving where a plurality of solutions may possibly be desired, in decision making one
might be interested in guaranteeing a single answer provided by a logical formalism.
It is well-known that a given theory in propositional logic neither has to possess a
model nor, in case of existence, has there to be exactly one. The same applies to
logic programs under stable model semantics. In contrast, a propositional theory
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of positive formulae is always satisfiable and definite logic programs constitute a
subclass of logic programs where even uniqueness is guaranteed. In Section 2 we
will see that Dung’s abstract argumentation semantics behave in a similar way, i.e.
the existence or uniqueness of extensions/labellings depend on structural restrictions
of argumentation frameworks.

Expressibility is concerned with the expressive power of logical formalisms. The
question here is which kinds of model sets are realizable, that is, can be the set
of models of a single knowledge base of the formalism. This is a decisive property
from an application angle since potential necessary or sufficient properties of model
sets may rule out a logic or make it perfectly appropriate for representing certain
solutions. For instance, it is well-known that in case of propositional logic any finite
set of two-valued interpretations is realizable. This means, given such a finite set I,
we always find a set of formulae T , s.t. Mod(T ) = I. In case of normal logic programs
it is obvious that not all model sets can be expressed, since any set of stable models
forms a ⊆-antichain. Remarkably, being such an antichain is not only necessary
but even sufficient for realizability w.r.t. stable model semantics [Eiter et al., 2013;
Strass, 2015]. In case of abstract argumentation we are equipped with a high number
of semantics and in Section 3 we will see that characterizing properties are not that
easy. Moreover, as expected, representational limits highly depend on the chosen
semantics.

In case of propositional logic we have that – in contrast to all non-monotonic log-
ics available in the literature – standard equivalence, i.e. sharing the same models,
even guarantees intersubstitutability in any logical context without loss of infor-
mation. As an aside, it is not the monotonicity of a certain logic but rather the
so-called intersection property which guarantees this behavior (cf. [Baumann and
Strass, 2016]). scenarios since it allows to simplify parts of a theory without looking
at the rest. For this reason, much effort has been devoted to characterizing strong
equivalence for nonmonotonic formalisms, such as logic programs [Lifschitz et al.,
2001], causal theories [Turner, 2004], default logic [Turner, 2001] and nonmonotonic
logics in general [Truszczynski, 2006; Baumann and Strass, 2016]. In Section 4 we
will see that characterization theorems in case of abstract argumentation are quite
different from those for the aforementioned formalisms since being strongly equiva-
lent can be decided by looking at the syntax only.

2 Existence and Uniqueness

Given a certain logical formalism L together with its semantics σL. One central
question is whether the semantics provides any L-theory T with a formal meaning,
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i.e. |σL(T )| ≥ 1. A more demanding property than existence is uniqueness, i.e.
|σL(T )| = 1 for any L-theory T . Clearly, these properties are interesting from
several perspectives. For instance, in case of uniqueness, we observe a coincidence
of sceptical and credulous reasoning modes. More precisely, if σL(T ) = {E}, then⋂
σL(T ) = ⋃

σL(T ) = E. Furthermore, if a theory T is interpreted as meaningful
if and only if σL(T ) 6= ∅, then existence might be a desired property. If the latter
has to be neglected in the general case, then one further challenge is to identify
sufficient properties of L-theories guaranteeing their meaningfulness.

Let us turn to abstract argumentation frameworks [Dung, 1995]. Due to the
practical nature of argumentation most work in the literature restricts itself to the
case of finite AFs, i.e. any considered AF consists of finitely many arguments and
attacks only. For this class of AFs a proof or disproof of existence or uniqueness is
mostly straightforward. In the general infinite case however conducting such proofs
is more intricate. It usually involves the proper use of set theoretic axioms, like
the axiom of choice or equivalent statements. Dung already proposed the existence
of preferred extensions in the case of infinite argumentation frameworks. It has
later on (e.g. [Caminada and Verheij, 2010]) been pointed out that Dung has not
been precise with respect to the use of principles. The existence of semi-stable
extensions for finitary1 argumentation frameworks was first shown by Weydert with
the use of model-theoretic techniques [Weydert, 2011]. Later on, Baumann and
Spanring presented a first comprehensive overview of results regarding existence and
uniqueness for a whole bunch of semantics considered in the literature [Baumann
and Spanring, 2015]. They provided complete or alternative proofs of already known
results and contributed missing results for the infinite or finitary case. We mention
two interesting results: Firstly, eager semantics is exceptional among the universally
defined semantics since either there is exactly one or there are infinitely many eager
extensions. Secondly, stage semantics behaves similarly to semi-stable in the sense
that extensions are guaranteed as long as finitary AFs are considered. A further
step forward in the systematic analysis of argumentation semantics in the infinite
case was presented in [Spanring, 2015]. Spanring studied the relation between non-
existence of extensions and the number of non-finitary arguments. It was shown
that there are AFs where one single non-finitary argument causes a collapse2 of
semi-stable semantics. Interestingly, all known AFs which do not provide any stage
extension possesses infinitely many non-finitary arguments. It is an open question
whether this observation applies in general [Spanring, 2015, Conjecture 14].

1An argument is called finitary if it receives finitely many attacks only. Moreover, an AF is said
to be finitary if and only if it consists of finitary arguments only (cf. Definition 2.1).

2The term collapse was firstly introduced in [Spanring, 2015] and it refers to a semantics not
providing any extension/labelling for a given AF.
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2.1 Basic Definitions in Dung’s Abstract Argumentation Theory
For the sake of self-containedness we review all relevant definitions (for more in-
troductory comments we refer the reader to [Baroni et al., 2011]). The standard
way of defining argumentation frameworks is to introduce a certain reference set U ,
so-called universe of arguments and to require, that all arguments used in AFs are
elements of this set. More formally, for any AF F = (A,R) we have A ⊆ U and
R ⊆ A×A. In order to be able to consider AFs possessing an arbitrary finite number
of arguments or even infinitely many we have to request that |U| ≥ ℵ0 = |N|. No
further conditions are imposed. In the following we use F as an abbreviation for the
set of all AFs (induced by U). An AF F is called finite if it possesses finitely many
arguments only. Furthermore, we say that F is finitary if every argument has only
finitely many attackers.

Definition 2.1. An AF F = (A,R) is called

1. finite if |A| ∈ N,

2. finitary if for any a ∈ A, |{b ∈ A | (b, a) ∈ R}| ∈ N and

3. arbitrary or unrestricted if F ∈ F .

In order to formalize the notions of existence and uniqueness in the context
of abstract argumentation theory we have to clarify what we precisely mean by a
semantics. In the literature two main approaches to argumentation semantics can
be found, namely so-called extension-based and labelling-based versions. The main
difference is that extension-based versions return a set of sets of arguments (so-
called extensions) for any given AF in contrast to a set of sets of n-tupels (so-called
labellings) as in case of labelling-based approaches. However, from a mathematical
point of view both kinds of semantics are instances of Definition 2.2. More precisely,
extension-based versions are covered by n = 1 and labelling-based approaches can
be obtained by setting n ≥ 2. We use

(
2U
)n

to denote the n-ary cartesian power of
2U , i.e.

(
2U
)n

= 2U × · · · × 2U︸ ︷︷ ︸
n−times

.

Definition 2.2. A semantics is a function σ : F → 2(2U)n for some n ∈ N, s.t.
F = (A,R) 7→ σ(F) ⊆

(
2A
)n

.

We now introduce the two different definedness statuses of argumentation se-
mantics which capture the notions of existence and uniqueness, namely so-called
universal and unique definedness. Both versions are relativized to a certain set of
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AFs. If clear from context, unimportant or if C = F we will not mention explicitly
the considered set of AFs.

Definition 2.3. Given a semantics σ and a set C of AFs. We say that σ is

1. universally defined w.r.t. C if ∀F ∈ C, |σ(F)| ≥ 1 and

2. uniquely defined w.r.t. C if ∀F ∈ C, |σ(F)| = 1.

In this section we are interested in definedness statuses w.r.t. finite, finitary and
arbitrary frameworks. Besides conflict-free and admissible sets (abbreviated by cf
and ad) we consider a large number of mature semantics, namely naive, stage, stable,
semi-stable, complete, preferred, grounded, ideal, eager semantics as well as the more
exotic cf2 and stage2 semantics (abbreviated by na, stg, stb, ss, co, pr , gr , il, eg, cf2
and stg2 respectively). In the following we introduce the extension-based versions
of these semantics (indicated by Eσ). Any considered semantics possesses a 3-valued
labelling-based version (denoted as Lσ). It is important to note that for all consid-
ered semantics we do not observe any differences between the definedness statuses
of their labelling-based and extension-based versions. For the mature semantics this
is due the fact that there is a one-to-one correspondence between σ-extensions and
σ-labellings implying that |Eσ(F)| = |Lσ(F)| for any AF F (for more details confer
Paragraph Basic Properties and a Fundamental Relation in Section 4).

Before presenting the definitions we have to introduce some notational conven-
tions. Given an AF F = (A,R) and a set E ⊆ A. We use E+

F or simply, E+ for
{b | (a, b) ∈ R, a ∈ E}. Moreover, E⊕F or simply, E⊕ is called the range of E and
stands for E+ ∪ E. We say a attacks b (in F) if (a, b) ∈ R. An argument a is
defended by E (in F) if for each b ∈ A with (b, a) ∈ R, b is attacked by some c ∈ E.
Finally, ΓF : 2A → 2A with I 7→ {a ∈ A | a is defended by I} denotes the so-called
characteristic function (of F) [Dung, 1995].

Definition 2.4. Let F = (A,R) be an AF and E ⊆ A.

1.E ∈ Ecf (F) iff for no a, b ∈ E, (a, b) ∈ R,

2.E ∈ Ena(F) iff E ∈ Ecf (F) and for no I ∈ Ecf (F), E ⊂ I ,

3.E ∈ Estg(F) iff E ∈ Ecf (F) and there is no I ∈ Ecf (F), s.t. E⊕ ⊂ I⊕,

4.E ∈ Estb(F) iff E ∈ Ecf (F) and E⊕ = A,

5.E ∈ Ead(F) iff E ∈ Ecf (F) and E defends all its elements,

6.E ∈ Ess(F) iff E ∈ Ead(F) and there is no I ∈ Ead(F), s.t. E⊕ ⊂ I⊕,
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7.E ∈ Eco(F) iff E ∈ Ead(F) and for any a ∈ A defended by E in F , a ∈ E,

8.E ∈ Epr(F) iff E ∈ Ead(F) and for no I ∈ Eco(F), E ⊂ I ,

9.E ∈ Egr(F) iff E is the ⊆-least fixpoint of ΓF ,

10.E ∈ Eil(F) iff E ∈ Ead(F), E ⊆ ⋂ Epr(F) and there is no I ∈ Eco(F) satisfying
E ⊂ I ⊆ ⋂ Epr(F),

11.E ∈ Eeg(F) iff E ∈ Ead(F), E ⊆ ⋂ Ess(F) and there is no I ∈ Eco(F) satisfying
E ⊂ I ⊆ ⋂ Ess(F).

Finally, we introduce the recursively defined cf2 and stage2 semantics [Baroni et
al., 2005; Dvořák and Gaggl, 2012].

Definition 2.5. Let F = (A,R) be an AF and E ⊆ A.

1. E ∈ Ecf 2(F) iff

• E ∈ Ena(F) if |SCCsF = 1| and
• ∀S ∈ SCCsF (E ∩ S) ∈ Ecf 2

(
F |UPF(S,E)

)
,

2. E ∈ Estg2(F) iff

• E ∈ Estg(F) if |SCCsF = 1| and

• ∀S ∈ SCCsF (E ∩ S) ∈ Estg2
(
F |UPF(S,E)

)
.

Here SCCsF denotes the set of all strongly connected components of F , and for any
E,S ⊆ A, UPF (S,E) = {a ∈ S | @b ∈ E \ S : (b, a) ∈ R}.

The following proposition summarizes well-known subset relations between the
considered semantics. For two semantics σ, τ and a certain set of AFs C we use
σ ⊆C τ as a shorthand for σ(F) ⊆ τ(F) for any AF F ∈ C. The presented relations
hold for both extension-based as well as labelling-based versions of the considered
semantics. In the interest of readability we present the relations graphically.

Proposition 2.6. For semantics σ and τ , σ ⊆F τ iff there is a path of solid arrows
from σ to τ in Figure 1. A dotted arrow indicates that the corresponding subset
relation is guaranteed for finite frameworks only.
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fstb2

fss2

fstg2

fstg22

fpr2

fna2

fcf22

fco2 fad2

fcf 2

fgr2 f il2 feg2

Figure 1: Subset Relations between Semantics

Detailed proofs can be found in [Baumann, 2014b, Proposition 2.7] as well as
[Gaggl and Dvořák, 2016, Section 3.1]. Note that the shorthand σ ⊆C τ requires
that both semantics are total functions on C since a framework to which one of these
semantics is undefined renders the subset shorthand undefined itself. The following
simple example shows that Definition 2.5 does not always provide a definite answer
on whether a certain candidate set is an cf2 -extension or stg2 -extension, respectively.
This is due to the fact that the defined recursion does not terminate necessarily in
case of non-finite AFs.3 Consequently, stg2 and cf2 are not total functions regarding
arbitrary frameworks.
Example 2.7 (Infinite Recursion [Baumann and Spanring, 2017]).
Consider the following AF F = (A ∪B,R) where
• A = {ai | i ∈ N}, B = {bi | i ∈ N} and
• R = {(bi, ai), (ai+1, ai), (ai, bi+1) | i ∈ N}

a1F :

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

. . .

. . .

Let σ ∈ {cf2 , stg2}. We want to check whether the candidate set E = {bi | i ∈ N}
is a σ-extension. Observe that the AF F possesses two SCCs, namely one con-
sisting of the single argument b1 and the other containing the remaining argu-
ments, i.e. S1 = {b1} and S2 = (A ∪B) \ {b1}. For S1 we end up with the

3We mention that the inventors of both semantics considered finite AFs only [Baroni et al., 2005;
Dvořák and Gaggl, 2012]. In case of finite AFs any recursion will terminate no matter which
candidate set is considered.
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base case returning a positive answer. For S2 we have to consider the AF F ′ =
F |UPF(S2,E) = F |(A∪B)\{a1,b1} (since a1 is attacked by b1 ∈ E \ S2) and the set
S′ = E ∩ S2 = {bi | i ∈ N, i ≥ 2}. Obviously, determining whether S′ is an σ-
extension w.r.t. F ′ is equivalent to decide whether S is an σ-extension w.r.t. F .
This means, the consideration of the candidate set E leads to infinite recursion.

2.2 Finite AFs
As a matter of fact, in order to show that a certain semantics σ is not universally
defined w.r.t. a certain set C it suffices to present an AF F ∈ C, s.t. σ(F) = ∅.
Contrastingly, an affirmative answer w.r.t. universal definedness requires a proof in-
volving all AFs in C. Let us consider finite AFs first. It is well-known that stable
semantics does not warrant the existence of extensions/labellings even in the case
of finite AFs. Witnessing examples are given by odd-cycles (cf. Example 2.8). In-
terestingly, in case of finite AFs we have that being odd-cycle free is sufficient for
warranting at least one stable extension/labelling.4

Example 2.8. The following minimalistic AFs cause a collapse of stable semantics,
i.e. stb(F1) = stb(F3) = ∅.

a1F1 : a1F3 : a2

a3

Observe that both frameworks do possess semi-stable, stage2 as well as stage
extensions/labellings. The extensions are as follows: For any σ ∈ {ss, stg2 , stg},
τ ∈ {stg2 , stg}, Eσ(F1) = {∅} = Ess(F3) and Eτ (F3) = {{a1}, {a2}, {a3}}.

Let us consider now semi-stable semantics. Example 2.8 shows that AFs may
possess semi-stable extensions even in the absence of stable extensions. Are semi-
stable extensions possibly guaranteed in case of finite AFs? Consider the following
explanations about the existence of semi-stable extensions taken from [Caminada,
2006]:

For every argumentation framework there exists at least one semi-stable
extension. This is because there exists at least one complete extension,
and a semi-stable extension is simply a complete extension in which some
property (the union of itself and the arguments it defeats) is maximal.

4This is due to the fact that firstly, in case of finite AFs, being odd-cycle free coincides with
being limited controversial [Dung, 1995, Definition 32] and secondly, any limited controversial AFs
warrants the existence of at least one stable extensions [Dung, 1995, Corollary 36].
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We would like to point out two issues. Firstly, the presented explanation should
not be understood as: Since any semi-stable extension is a complete one and com-
plete semantics is universally defined we conclude that semi-stable semantics is uni-
versally defined. Accepting this kind of (false) argumentation would imply the uni-
versal definedness of stable semantics since also any stable extension is a complete
one. The second issue is that the presented explanation is not precise about why it
is guaranteed that the non-empty set of complete extensions possesses at least one
range-maximal member. The following statement gives a more precise explanation
[Caminada et al., 2012]:

For every (finite) argumentation framework, there exists at least one
semi-stable extension. This is because there exists at least one complete
extension (the grounded) and the fact that the argumentation framework
is finite implies that there exist at most a finite number of complete
extensions. The semi-stable extensions are then simply those complete
extensions in which some property (its range) is maximal.

This means, the additional argument that we have to compare finitely many
complete extensions only justifies the universal definedness of semi-stable extensions
in case of finite AFs. Obviously, in case of infinite AFs we cannot expect to have
finitely many complete extensions implying that this kind of argumentation is no
longer valid for finitary as well as infinite AFs in general.

In the rest of this subsection we want to argue why all considered semantics
except the stable one are universally defined in case of finite AFs.5 Remember that
many semantics are looking for certain ⊆-maximal elements. The main advantage
in case of finiteness is that it is simply impossible to have infinite ⊆-chains which
guarantees the existence of ⊆-maximal elements. Consider the following more de-
tailed explanations. Given a finite AF F = (A,R), i.e. |A| = n ∈ N. Consequently,
1 ≤

∣∣∣2A
∣∣∣ = 2n ∈ N. By definition of any extension-based semantics σ we derive

0 ≤ |Eσ(F)| ≤ 2n since Eσ(F) ⊆ 2A (cf. Definition 2.2). This means, for any finite
F and any semantics σ we have at least one candidate set for being a σ-extension
(namely, the empty set) and at most finitely many σ-extensions. In any case, the
empty set is conflict-free as well as admissible, i.e. |Ecf (F)| , |Ead(F)| ≥ 1. Fur-
thermore, naive and preferred semantics are looking for ⊆-maximal conflict-free or
admissible sets, respectively. Since we have finitely many conflict-free as well as
admissible sets only we derive the universal definedness of naive and preferred se-
mantics in case of finite AFs. Combining Epr ⊆ Eco and |Epr(F)| ≥ 1 yields the

5We mention that grounded, ideal and eager semantics are even uniquely defined w.r.t. finite
AFs. This will be a by-product of Theorem 2.23, Corollary 2.22 as well as Theorem 2.25.
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universal definedness of complete semantics in case of finite AFs. Moreover, since
1 ≤ |Ecf (F)| , |Ead(F)| ≤ 2n is given we obtain the universal definedness of stage and
semi-stable semantics in case of finite AFs because the existence of ⊆-range-maximal
is guaranteed. Let us consider ideal and eager semantics. Candidate sets of both
semantics are admissible sets being in the intersection of all preferred or semi-stable
extensions, respectively. Note that there is at least one admissible set satisfying
this property, namely the empty one since definitely ∅ ⊆ ⋂ Epr(F) ⊆ U as well as
∅ ⊆ ⋂ Ess(F) ⊆ U . This means, the sets of candidates are non-empty and finite
which guarantees the existence of ⊆-maximal elements implying the universal de-
finedness of ideal and eager semantics in case of finite AFs. The grounded extension,
i.e. the ⊆-least fixpoint of the characteristic function ΓF , is guaranteed due to the
monotonicity of ΓF and the famous Knaster-Tarski theorem [Tarski, 1955]. Finally,
even the more exotic stage2 as well as cf2 semantics are universally defined w.r.t.
finite AFs. This can be seen as follows: Obviously, finitely many as well as initial
SCCs are guaranteed due to finiteness. Consequently, one may start with computing
stage/naive extension on these initial components and “propagate” the resulting ex-
tensions to the subsequent SCCs and so on. This procedure will definitely terminate
and ends up with stage2/cf2 extensions. Apart from stable semantics we have argued
that the extension-based versions of all considered semantics are universally defined
w.r.t. finite AFs. In case of mature semantics, the result carry over to their labelling-
based versions since any of these semantics possesses a one-to-one-correspondence
between extensions and labellings. This property does not hold in case of admissible
as well as conflict-free sets. However, since any admissible/conflict-free set induce
at least one admissible/conflict-free labelling the result applies to their labelling
versions too.

2.3 Arbitrary AFs
2.3.1 Non-well-defined Semantics

In contrast to all other semantics available in the literature, cf2 as well as stage2
semantics were originally defined recursively. The recursive schema is based on the
decomposition of AFs along their strongly connected components (SCCs). Roughly
speaking, the schema takes a base semantics σ and proceeds along the induced
partial ordering and evaluates the SCCs according to σ while propagating relevant
results to subsequent SCCs. This procedure defines a σ2 semantics.6 Given so-
called SCC-recursiveness (cf. [Baroni et al., 2005]) we have to face some difficulties

6Following this terminology we have to rename cf2 semantics to na2 semantics since its base
semantics is the naive semantics and not conflict-free sets.
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in drawing conclusions with respect to infinite AFs. Firstly, arbitrary AFs need not
to possess initial SCCs which is granted for finite AFs. This makes checking whether
a certain set is an σ2 -extension more complicated and in particular, especially due
to the recursive definitions not that easy to handle. Secondly, even worse, even if
an AF as well as subsequent subframeworks of it possess initial SCCs there is no
guarantee that any recursion will stop in finitely many steps. More precisely, as
shown in Example 2.7 there might be candidate sets which lead to infinite recursion,
i.e. the base case will never be considered. In [Gaggl and Dvořák, 2016, Propositions
2.12 and 3.2] the authors considered alternative non-recursive definitions of cf2 as
well as stage2 semantics in case of finite AFs. It is an open question whether these
definitions overcome the problem of undefinedness for arbitrary frameworks.

2.3.2 Collapsing Semantics

Dealing with finite AFs is a common as well as attractive and reasonable restric-
tion, due to their computational nature. In the subsection before we have argued
that apart from stable semantics all considered semantics are universally defined
w.r.t. finite AFs. It is an important observation that warranting the existence of
σ-extensions/labellings in case of finite AFs does not necessarily carry over to the
infinite case, i.e. the semantics σ does not need to be universally defined w.r.t. ar-
bitrary AFs. Take for instance semi-stable and stage semantics. To the best of our
knowledge the first example showing that semi-stable as well as stage semantics does
not guarantee extensions/labellings in case of non-finite AFs was given in [Verheij,
2003, Example 5.8.] and is picked up in the following example.

Example 2.9 (Collapse of Stage and Semi-stable Semantics). Consider the follow-
ing AF F = (A ∪B ∪ C,R) where

• A = {ai | i ∈ N}, B = {bi | i ∈ N}, C = {ci | i ∈ N} and

• R = {(ai, bi), (bi, ai), (bi, ci), (ci, ci) | i ∈ N} ∪ {(bi, bj), (bi, cj) | i, j ∈ N, j < i}

b1F :

a1

c1

b2

a2

c2

b3

a3

c3

b4

a4

c4

b5

a5

c5

. . .
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The set of preferred and naive extensions coincide, in particular Epr(F) =
Ena(F) = {A} ∪ {Ei | i ∈ N} where Ei = (A \ {ai}) ∪ {bi}. Furthermore, none
of these extensions is ⊆-range-maximal since A⊕ ( E⊕i ( E⊕i+1 for any i ∈ N. In
consideration of ss ⊆ pr and stg ⊆ na (cf. Figure 1) we conclude that this framework
possesses neither semi-stable nor stage extensions/labellings.

In Example 2.7 we have seen that cf2 as well as stage2 semantics are not well-
defined in general. This means, there are infinite AFs and candidate sets leading
to an infinite recursion implying that there is no definite answer on whether such
a set is an extension. However, the following example shows that even if for any
candidate set a definitive decision is possible there need not to be an extension in
contrast to finite AFs.

Example 2.10 (Collapse of Cf2 and Stage2 Semantics). Taking into account the
AF F = (A ∪ B ∪ C,R) from Example 2.9. Consider the AF G = F |B, i.e. the
restriction of F to B.

b1G : b2 b3 b4 b5 b6 . . .

Let σ ∈ {cf2 , stg2}. Obviously, any argument bi constitutes a SCC {bi} which
is evaluated as {bi} by the base semantics of σ. Consequently, ∅ cannot be a σ-
extension. Furthermore, a singleton {bj} cannot be a σ-extension either. The bi’s
for i > j are not affected by {bj} and thus, the evaluation of G|UPG({bi},{bj}) =
G|{bi} = ({bi}, ∅) do not return ∅ as required. Finally, any set containing more than
two arguments would rule out at least one of them and thus, cannot be a σ-extension.
Hence, |Eσ(G)| = |Lσ(G)| = 0.

In Example 2.9 we have seen an AF F without any semi-stable and stage exten-
sions/labellings. In [Baumann and Spanring, 2015] the authors studied the question
of existence-dependency between both semantics in case of infinite AFs. More pre-
cisely, they studied whether it is possible that some AF does have semi-stable but
no stage extensions or vice versa, there are stage but no semi-stable extensions. The
following Example 2.11 shows that stage extensions might exist even if semi-stable
semantics collapses.7

7The AF G = F |B depicted in Example 2.10 witnesses the reverse case. It can be checked
that Ess(G) = {∅} and Estg(G) = ∅ (cf. [Baumann and Spanring, 2015, Example 2] for further
explanations).
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Example 2.11 (No Semi-Stable but Stage Extensions/Labellings).
Consider again the AF F depicted in Example 2.9. Using the components of F we
define G = (A ∪B ∪ C ∪D ∪ E,R ∪R′) where

• D = {di | i ∈ N} and E = {ei | i ∈ N} and

• R′ = {(ai, di), (di, ai), (bi, di), (di, bi), (di, ci), (ei, di), (ei, ei) | i ∈ N}

b1G :

d1

e1

a1

c1

b2

d2

e2

a2

c2

b3

d3

e3

a3

c3

b4

d4

e4

a4

c4

b5

d5

e5

a5

c5

. . .

In comparison to Example 2.9 we do not observe any changes as far as preferred
and semi-stable semantics are concerned. In particular, Epr(G) = {A}∪{Ei | i ∈ N}
where Ei = (A\{ai})∪{bi} and again, none of these extensions is ⊆-range-maximal.
Hence, Ess(G) = ∅. Observe that we do have additional conflict-free as well as naive
sets, especially the set D. Since any e ∈ E is self-defeating and unattacked and
furthermore, D⊕ = A ∪ B ∪ C ∪ D we conclude, Estg(G) = {D}. Due to the one-
to-one correspondence the collapse or non-collapse transfer to their labelling-based
versions.

2.3.3 Universally Defined Semantics

We now turn to semantics which are universally defined w.r.t. the whole class of
AFs. The first non-trivial result in this line was already proven by Dung himself,
namely the universal definedness of the extension-based version of preferred seman-
tics [Dung, 1995, Corollary 12]. He argued that the Fundamental Lemma (cf. [Dung,
1995, Lemma 10]) immediately implies that the set of all admissible sets is a complete
partial order which means that any ⊆-chain possesses a least upper bound. Then
(and this was not explicitly stated in [Dung, 1995]), due to the famous Zorn’s lemma
[Zorn, 1935] the existence of ⊆-maximal admissible sets, i.e. preferred extensions, is
guaranteed.
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In order to get an idea how things work in the general case we illustrate some
proofs in more detail. We will see that a proof of universal definedness w.r.t. ar-
bitrary AFs is completely different to the argumentation in case of finite ones. In
order to keep this section self-contained we start with Zorn’s lemma and an equiva-
lent version of it.

Lemma 2.12 ([Zorn, 1935]). Given a partially ordered set (P,≤). If any ≤-chain
possesses an upper bound, then (P,≤) has a maximal element.

Lemma 2.13. Given a partially ordered set (P,≤). If any ≤-chain possesses an
upper bound, then for any p ∈ P there exists a maximal element m ∈ P , s.t. p ≤ m.

Having Lemma 2.13 at hand we may easily argue that any conflict-free/admis-
sible set is bounded by a naive/preferred extension.

Lemma 2.14. Given F = (A,R) and E ⊆ A,

1. if E ∈ Ecf (F), then there exists E′ ∈ Ena(F) s.t. E ⊆ E′ and

2. if E ∈ Ead(F), then there exists E′ ∈ Epr(F) s.t. E ⊆ E′.

Proof. For F = (A,R) we have the associated power set lattice (2A,⊆). Consider
now the partially ordered fragments C = (Ecf (F),⊆) as well as A = (Ead(F),⊆).
In accordance with Lemma 2.13 the existence of naive and preferred supersets is
guaranteed if any ⊆-chain possesses an upper bound in C or A, respectively. Given a
⊆-chain E ⊆ Ecf (F) or E ⊆ Ead(F), respectively. Consider now Ē = ⋃ E . Obviously,
Ē is an upper bound of E , i.e. for any E ∈ E , E ⊆ Ē. It remains to show that Ē is
conflict-free or admissible, respectively. Conflict-freeness is a finite condition. This
means, if there were conflicting arguments a, b ∈ Ē there would have to be some
conflict-free sets Ea, Eb ∈ Ē, s.t. a ∈ Ea and b ∈ Eb. Since E is a ⊆-chain we have
Ea ⊆ Eb or Eb ⊆ Ea which contradicts the conflict-freeness of at least one of them.
Assume now Ē is not admissible. Consequently, there is some a ∈ Ē that is not
defended by Ē. Furthermore, there has to be an Ea ∈ E , s.t. a ∈ Ea contradicting
the admissibility of Ea ∈ Ead(F).

According to the last lemma, we may deduce the universal definedness of the
extension-based versions of preferred as well as naive semantics as long as, for any
AF F , the existence of at least one conflict-free or admissible set is guaranteed. This
is an easy task since the empty set is conflict-free as well as admissible even in the
case of arbitrary AFs. Consequently, universal definedness of both extension-based
semantics is given and the same applies to their labelling-based versions due to their
one-to-one correspondence.
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Theorem 2.15. Let σ ∈ {pr ,na}. The semantics σ is universally defined.

Remember that no matter which cardinality a considered AF possesses, we have
that any preferred extension/labelling is a complete extension/labelling (Proposi-
tion 2.6). Thus, having the universal definedness of preferred semantics at hand we
deduce that even complete semantics is universally defined w.r.t. the whole class of
AFs .

Theorem 2.16. The semantics co is universally defined.

Let us consider now eager and ideal semantics. An eager extension is defined as
the ⊆-maximal admissible set that is a subset of each semi-stable extension. This
is very similar to the definition of an ideal extension where the role of semi-stable
extensions is taken over by preferred ones. On a more abstract level, both semantics
are instantiations of the following schema.

Definition 2.17. Let σ be a semantics (so-called base semantics). We define the
σ-parametrized semantics adσ as follows. For any AF F ,

Eadσ = max
⊆



E ∈ Ead(F)

∣∣∣∣∣∣
E ⊆

⋂

S∈Eσ(F)
S



 .

These kind of semantics were firstly introduced in [Dvorák et al., 2011]. The
authors studied general properties of these semantics in case of finite AFs with the
additional restriction that the base semantics σ has to be universally defined. The
following general theorem requires neither finiteness of AFs, nor any assumption on
the base semantics.

Theorem 2.18. Any σ-parametrized semantics is universally defined.

Proof. Given an AF F = (A,R) and a σ-parametrized semantics adσ. Consider
the set Σ =

{
E ∈ Ead(F) | E ⊆ ⋂S∈Eσ(F) S

}
. Note that in the collapsing case, i.e.

Eσ(F) = ∅, we have: ⋂S∈Eσ(F) S = {x ∈ U | ∀S ∈ Eσ(F) : x ∈ S} = U . However, in
any case Σ 6= ∅ since for any F , ∅ ∈ Ead(F) and obviously, ∅ ⊆ ⋂S∈Eσ(F) S ⊆ U . In
order to show that Eadσ(F) 6= ∅ it suffices to prove that (Σ,⊆) possesses maximal
elements. We will use Zorn’s lemma. Given a ⊆-chain E ∈ 2Σ. Consider now
Ē = ⋃ E . Analogously to the proof of Lemma 2.14 we may easily show that Ē is
conflict-free and even admissible. Moreover, since for any E ∈ E , E ⊆ ⋂

S∈σ(F) S

we deduce Ē ⊆ ⋂
S∈σ(F) S guaranteeing Ē ∈ Σ. Now, applying Lemma 2.12, we

deduce the existence of ⊆-maximal elements in Σ, i.e. |Eadσ(F)| ≥ 1 concluding the
proof.
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In particular, we obtain the result for the extension-based versions of eager and
ideal semantics and thus, due to the one-to-one correspondence for both labelling-
based versions too.

Corollary 2.19. Let σ ∈ {eg, il}. The semantics σ is universally defined.

One obvious question is whether the statement above can be strengthened in the
sense that both semantics are even uniquely defined w.r.t. the whole class of AFs.
The following proposition, in particular the second item, shows that the unique
definedness of eager semantics w.r.t. finite frameworks does not carry over to the
general unrestricted case.

Proposition 2.20. For any F we have:

1. ss(F) = ∅ ⇒ eg(F) = pr(F) and

2. ss(F) = ∅ ⇒ |eg(F)| ≥ ℵ0 = |N|.

Proof. We show both assertions for the extension-based versions.
1.) Given F = (A,R) and let Ess(F) = ∅. Hence, ⋂S∈Ess(F) S = U . Consequently,
Ess(F) = max⊆ {E ∈ Ead(F) |E ⊆ U } . This means, Ess(F) = Epr(F).
2.) We show the contrapositive. Assume |Eeg(F)| = n for some finite cardinal
n ∈ N. Due to the first statement we derive, |Epr(F)| = n. Since ss ⊆ pr
(cf. Proposition 2.6) we have finitely many candidates only. Furthermore, among
these preferred extensions has to be at least one ⊆-range-maximal set implying
Ess(F) 6= ∅.

In a nutshell, if we observe a collapse of semi-stable semantics, then eager and
preferred semantics coincide and moreover, we necessarily have infinitely many eager
extensions/labellings. An AF witnessing such a behaviour can be found in Exam-
ple 2.9.

2.3.4 Uniquely Defined Semantics

Although eager and ideal semantics are instances of σ-parametrized semantics we
have shown the non-unique definedness (Proposition 2.20) for eager semantics only.
This is no coincidence since preferred semantics, the base semantics of ideal seman-
tics is universally defined in contrast to semi-stable semantics, the base semantics of
the eager semantics. Moreover, the following theorem shows that any σ-parametrized
semantics warrants the existence of exactly one extension if σ-extensions are conflict-
free as well as guaranteed ([Dvorák et al., 2011, Proposition 1]).
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Theorem 2.21. Given a σ-parametrized semantics adσ, s.t. σ ⊆ cf and σ is uni-
versally defined w.r.t. a class C, then adσ is uniquely defined w.r.t. C.

Proof. Given an AF F = (A,R). We already know |Eadσ(F)| ≥ 1 (Theorem 2.18).
Hence, it suffices to show |Eadσ(F)| ≤ 1. Suppose, to derive a contradiction, that
for some I1 6= I2 we have I1, I2 ∈ Eadσ(F). Consequently, by Definition 2.17,
I1, I2 ∈ Ead(F) and I1, I2 ⊆

⋂
S∈Eσ(F) S as well as neither I1 ⊆ I2, nor I2 ⊆ I1.

Obviously, I1 ∪ I2 ⊆
⋂
S∈Eσ(F) S. Since Eσ(F) 6= ∅ and I1 as well as I2 has to

be subsets of any σ-extension (which are conflict-free by assumption) we deduce
I1, I2 ∈ Ecf (F) and thus, I1 ∪ I2 ∈ Ecf (F). Furthermore, since both sets are admis-
sible in F we derive I1 ∪ I2 ∈ Ead(F) contradicting the ⊆-maximality of at least one
of the sets I1 and I2.

Corollary 2.22. The semantics il is uniquely defined.

A further prominent representative of uniquely defined semantics w.r.t. the whole
class of AFs is the grounded semantics. Its unique definedness was already implic-
itly given in [Dung, 1995]. Unfortunately, this result was not explicitly stated in the
paper. Nevertheless, in [Dung, 1995, Theorem 25] it was shown that firstly, the set
of all complete extensions form a complete semi-lattice w.r.t. subset relation, i.e.
the existence of a ⊆-greatest lower bound for any non-empty subset S is implied.
Secondly, it was proven that the grounded extension is the ⊆-least complete exten-
sion. Consequently, the existence of such a ⊆-least extension is justified via setting
S = Eco(F) for any given F . Alternatively, one may stick to the original definition
of the grounded extension, namely as ⊆-least fixpoint of the characteristic function
ΓF and argue that the monotonicity of ΓF as well as the Knaster-Tarski theorem
[Tarski, 1955] imply its existence.

Theorem 2.23. The semantics gr is uniquely defined.

2.4 Finitary AFs

Let us consider now finitary AFs, i.e. AFs where each argument receives finitely many
attacks only. It was already observed by Dung itself that finitary AFs possess useful
properties. More precisely, if an AF is finitary, then the characteristic function Γ
is not only monotonic, but even ω-continuous [Dung, 1995, Lemma 28] (which does
not hold in case of arbitrary AFs [Baumann and Spanring, 2017, Example 1]). This
implies that the least fixed point of Γ, i.e. the unique grounded extension, can be
“computed” in at most ω steps by iterating Γ on the empty set (cf. [Rudin, 1976] for
more details). A further advantage of finitary AFs is that for some semantics σ, the
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existence or even uniqueness of σ-extension is guaranteed which cannot be shown in
general.

Consider again the AF F depicted in Example 2.9. In contrast to finite AFs
where the existence of semi-stable as well stage extensions is guaranteed we observed
a collapse of both semantics. Not that F is not finitary since, for example, the
argument b1 receives infinitely many attacks. A positive answer in case of semi-
stable semantics, i.e. universal definedness w.r.t. finitary AFs was conjectured in
[Caminada and Verheij, 2010, Conjecture 1] and firstly proven by Emil Weydert in
[Weydert, 2011, Theorem 5.1]. Weydert proved his result in a first order logic setup
using generalized argumentation frameworks. Later on, Baumann and Spanring
provided an alternative proof using transfinite induction. Moreover, they showed
that even stage semantics warrants the existence of at least one extension in case
of finitary AFs [Baumann and Spanring, 2015, Theorem 14]. For detailed proofs we
refer the reader to the mentioned scientific papers.

Theorem 2.24. Let σ ∈ {ss, stg}. The semantics σ is universally defined w.r.t.
finitary AFs.

Applying Theorem 2.21 we derive that exactly one eager extension/labelling is
guaranteed as long as the AF in question is finitary.

Theorem 2.25. The semantics eg is uniquely defined w.r.t. finitary AFs.

2.5 Summary of Results and Conclusion
In this section we gave an overview on the question whether certain semantics guar-
antee the existence or even unique determination of extensions/labellings. We have
seen that these properties may vary from subclass to subclass. The following table
gives a comprehensive overview over results presented in this section. The entry
′′∃′′ (′′∃!′′) in row certain and column σ indicates that the semantics σ is universally
(uniquely) defined w.r.t. the class of certain frameworks. No entry reflects the situa-
tion that a certain AF can be found which do not provide any σ-extension/labelling,
i.e. σ collapses. The two question marks represent open problems. Note that we
already observed that cf2 as well as stage2 semantics are not well-defined in case of
finitary as well arbitrary AFs. This means, there are infinite AFs and candidate sets
leading to an infinite recursion implying that there is no definite answer on whether
such a set is an extension (Example 2.7). Nevertheless, even if for any candidate set
a definitive decision is possible there are infinite (but non-finitary) AFs where both
semantics collapse (Example 2.10). In [Baumann and Spanring, 2015, Conjecture 1]
it is conjectured that this is impossible in case of finitary frameworks.
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fstb2fss2fstg2fcf22fstg22fpr2fad2fco2fgr2 f il2 feg2fna2fcf 2

∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃! ∃! ∃! ∃ ∃

∃ ∃ ? ? ∃ ∃ ∃ ∃! ∃! ∃! ∃ ∃

∃ ∃ ∃ ∃! ∃! ∃ ∃ ∃

finite

finitary

arbitrary

Table 1: Definedness Statuses of Semantics

For a detailed complexity analysis of the associated decision problems, i.e. Given
an AF F . Is |σ(F)| ≥ 1 or even, |σ(F)| = 1? we refer the reader to [Dvořák, 2012].
The mentioned decisions problems are considered for finite AFs only since the input-
length, i.e. the length of the formal encoding of an AF has to be finite (for finite
representations of infinite AFs we refer the reader to [Baroni et al., 2013]). Due to
the table above some complexity results are immediately clear. For instance, the
existence problem is trivial for all considered semantics except the stable one. An
upper bound for the complexity of the uniqueness problem can be obtained via the
complexity of the corresponding verification problem, i.e. Given an AF F and a
set E. Is E ∈ Eσ(F)?. More precisely, an algorithm which decides the uniqueness
problem is the following two-step procedure: first, guessing a certain set E non-
deterministically and second, verifying whether this set is an σ-extension.

As already mentioned, most of the literature concentrate on finite AFs for sev-
eral reasons, especially due to their computational nature. However, allowing an
infinite number of arguments is essential in applications where upper bounds on the
number of available arguments cannot be established a priori, such as for exam-
ple in dialogues [Belardinelli et al., 2015] or modeling approaches including time or
action sequences [Baumann and Strass, 2012]. Moreover, even actual infinite AFs
frequently occur in the instantiation-based context. More precisely, the semantics
of so-called rule-based argumentation formalisms (cf. [Besnard and Hunter, 2008;
Prakken, 2010]) is given via the evaluation of induced Dung-style AFs. In this con-
text, even a finite set of rules may lead to an infinite set of arguments as observed
in (cf. [Caminada and Oren, 2014; Strass, 2015]).

In 2011, Baroni et al. wrote “As a matter of fact, we are not aware of any system-
atic literature analysis of argumentation semantics properties in the infinite case.”
[Baroni et al., 2011, Section 4.4]. Since then only few works have contributed to a
better understanding of infinite AFs. In [Baroni et al., 2013] the authors studied to
which extent infinite AFs can be finitely represented via formal languages and con-
sidered several decision problems within this context. In [Baumann and Spanring,
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2015] a detailed study of the central properties of existence and uniqueness as pre-
sented in this section was given. Recently, the same authors addressed several central
issues like expressibility, intertranslatability or replaceability (cf. Sections 3 and 4)
in the general unrestricted case [Baumann and Spanring, 2017].

3 Expressibility

Given a certain logical formalism L used as knowledge representation language or
modelling tool in general. Depending on the application in mind, it might be in-
teresting to know which kinds of model sets are actually expressible in L? More
formally, if σL denotes the semantics of L, we are interested in determining the set
RL = {σL (T ) | T is an L-theory}. This task, also known as realizability or define-
ability, highly depends on the considered formalism L. Clearly, potential necessary
or sufficient properties for being in RL, i.e. being σL-realizable, may rule out a logic
or make it perfectly appropriate for a certain application. For instance, it is well-
known that in case of propositional logic any finite set of two-valued interpretations
is realizable. This means, given such a finite set I, we always find a set of formulae
T , s.t. Mod(T ) = I. Differently, in case of normal logic programs under stable model
semantics we have that any finite candidate set is realizable if and only if it forms a⊆-
antichain, i.e. any two sets of the candidate set have to be incomparable with respect
to the subset relation. Remarkably, being such an ⊆-antichain is not only necessary
but even sufficient for realizability w.r.t. stable model semantics [Eiter et al., 2013;
Strass, 2015]. One major application of realizability issues are dynamic evolvements
of L-theories like in case of belief revision (cf. [Alchourrón et al., 1985; Williams and
Antoniou, 1998; Qi an dYang, 2008; Delgrande and Peppas, 2015; Delgrande et al.,
2008; Delgrande et al., 2013, Baumann and Brewka, 2015; Diller et al., 2015] for sev-
eral knowledge representation formalisms). Roughly speaking, belief revision deals
with the problem of integrating new pieces of information to a current knowledge
base which is represented by a certain L-theory T . To this end, you are typically
faced with the problem of modifying the given theory T in such a way that the
revised version S satisfies σL (S) = M for some model set M . Now, before trying
to do this revision in a certain minimal way it is essential to know whether M is
realizable at all, i.e. M ∈ RL.

The first formal treatment of realizability issues w.r.t. extension-based argumen-
tation semantics was recently given by Dunne et al. [2013; 2015]. They coined the
term signature for the set of all realizable sets of extensions. The authors provided
simple criteria for several mature semantics deciding whether a set of extensions
is contained in the corresponding signature. For instance, two obvious necessary
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conditions in case of preferred semantics (as well as many other semantics) is that
a candidate set S has to be non-empty, due to universal definedness of preferred se-
mantics and second, S has to be a ⊆-antichain, also known as I-maximality criterion
[Baroni and Giacomin, 2007]. However, these conditions are not sufficient implying
that further requirements has to hold. In case of preferred semantics it turned out
that adding the requirement of so-called conflict-sensitivity indeed yield a set of char-
acterizing properties. A ⊆-antichain S is conflict-sensitive if for each pair of distinct
sets A and B from S there are at least one a ∈ A and one b ∈ B, s.t. a and b do not
occur together in any set of S. This implies that there exists an AF F in which the set
of its preferred extension coincides with S = {{a, b}, {a, c}, {b, d}, {c, d}}. Further-
more, since {a, b} and {b, d} are already contained in S it is impossible to realize the
set T = S∪{{a, d}} under preferred semantics. From a practical point of view, such
realizability insights can be used to limit the search space when enumerating pre-
ferred extensions. More precisely, applying the mentioned characterization result we
obtain that not only {a, d}, but also any other set A ⊆ {a, b, c, d} can not be a further
preferred extension of a certain AF given that we already computed all sets contained
in S. As a matter of fact, knowing that a certain set is realizable does not provide
one automatically with a witnessing AF. Fortunately, there exist canonical frame-
works showing realizability in a constructive fashion as shown in [Dunne et al., 2013;
Dunne et al., 2015].

Later on, restricted versions of realizability were considered, namely compact as
well as analytic realizability in case of extension-based semantics [Baumann et al.,
2014a; Baumann et al., 2014b; Linsbichler et al., 2015; Baumann et al., 2016a].
Both versions are motivated by typical phenomena that can be observed for several
semantics. First, there potentially exist arguments in a given AF that do not appear
in any extension, so-called rejected arguments. Second, most of the argumentation
semantics possess the feature of allowing implicit conflicts. An implicit conflict
arises when two arguments are never jointly accepted although they do not attack
each other. In order to understand in which way rejected arguments and implicit
conflicts contribute to the expressive power of a certain semantics the notions of
compact AFs as well as analytic AFs were introduced. The former kind disallows
rejected arguments whereas the latter is free of implicit conflicts. It turned out that
for many universally defined semantics the full range of expressiveness indeed relies
on the use rejected arguments and implicit conflicts. This means, there are plenty of
AFs which do not possess an equivalent AF which is in addition compact or analytic,
respectively.

Recently, a first study of extension-based realizability w.r.t. arbitrary frameworks
was presented in [Baumann and Spanring, 2017]. The authors compared the expres-
sive power of several mature semantics in the unrestricted setting. Interestingly, the
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results reveal an intimate connection between arbitrary and finitely compact AFs
in terms of expressiveness. Nevertheless, an in-depth analysis of realizability in the
unrestricted setting is still missing. For instance, necessary and sufficient properties
for being realizable are not considered so far.

There are only few works which have dealt with labelling-based realizability in
the context of Dung-style argumentation frameworks. Dyrkolbotn showed that, as
long as additional arguments are allowed any finite set of labellings is realizable under
projection in case of preferred or semi-stable semantics [Dyrkolbotn, 2014]. In order
to realize a set of labellings S under projection it suffices to come up with an AF F ,
s.t. its set of labellings modulo additional arguments coincide with S. The second
work by Linsbichler et al. deals with the standard notion of realizability adapted
to labelling-based semantics [Linsbichler et al., 2016]. The authors presented an
algorithm which returns either “No” in case of non-realizability or a witnessing AF
F in the positive case. Remarkably, the algorithm is not restricted to the formalism
of abstract argumentation frameworks only. In fact, it can also be used to decide
realizability in case of the more general abstract dialectical frameworks as well as
various of its sub-classes [Brewka and Woltran, 2010; Brewka et al., 2013].

3.1 Realizability and Signatures
Let us start with the two central concepts of this section, namely realizability as
well as signature. In a nutshell, we say that a certain set S is realizable under
the semantics σ, if there is an AF F such that its set of σ-labellings/σ-extensions
coincides with S. Collecting all realizable sets defines the concept of a signature.
In accordance with the existing literature the main part of this section is devoted
to finite realizability for extension-based semantics, i.e. signatures which contain set
of σ-extensions of finite AFs only. Realizability w.r.t. labelling-based semantics as
well as the consideration of infinite AFs will be briefly outlined only. Consider the
following general definition of realizability in the context of abstract argumentation.

Definition 3.1. Given a semantics σ : F → 2(2U)n and a set C ⊆ F . A set
S ⊆

(
2U
)n

is σ-realizable w.r.t. C if there is an AF F ∈ C, s.t. σ(F) = S.

Definition 3.2. Given a semantics σ and a set C ⊆ F . The σ-signature w.r.t. C is
defined as ΣCσ = {σ(F) | F ∈ C}.

If clear from context or unimportant we simply speak of signatures and write Σ
without mentioning a semantics σ or set of AFs C. Similarly, we say that a certain
set is realizable instead of σ-realizable w.r.t. C. Please observe that both concepts are
intimately connected via the following relation: for any set S we have, S is realizable
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if and only if S ∈ Σ. Consequently, if S is not contained in Σ, then there is no
framework whose extensions/labellings are exactly S. Hence, instead of searching
for witnessing AFs (which might not exist) it is very attractive to find necessary
as well as sufficient properties for the containment of a set S to a certain signature
locally, i.e. by properties of S itself.

3.2 Signatures w.r.t. Finite AFs
We start with finite realizability. Instantiating Definitions 3.1 and 3.2 with C =
{F ∈ F | F finite} formally capture the notions of realizability as well as signatures
relativised to finite AFs. Consider the following definitions.

Definition 3.3. Given a semantics σ : F → 2(2U)n. A set S ⊆
(
2U
)n

is finitely
σ-realizable if there is an AF F ∈ {F ∈ F | F finite}, s.t. σ(F) = S.

Definition 3.4. Given a semantics σ. The finite σ-signature is defined as {σ(F) |
F ∈ F ,F finite} abbreviated by Σf

σ.

We proceed with further notational shorthands (adjusted to the extension-based
approach) which will be used throughout the whole section.

Definition 3.5 ([Dunne et al., 2015]). Given S ⊆ 2U , we use

• ArgsS to denote ⋃S∈S S and ‖S‖ for |ArgsS|,

• PairsS to denote {(a, b) | ∃S ∈ S : {a, b} ⊆ S} and

• dcl(S) to denote (the so-called downward-closure) {S′ ⊆ S | S ∈ S}

Furthermore, we say that S is an extension-set if ‖S‖ is a finite cardinal.

In order to familiarize the reader with the introduced definitions we give the
following example.

Example 3.6. Let S = {{a}, {a, c}, {a, b, d}}. Then

• ArgsS = {a, b, c, d} and ‖S‖ = 4. This means, S is an extension-set.

• PairsS = {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d), (b, d)}∪
{(b, a), (c, a), (d, a), (d, b)}

• dcl(S) = {∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, d}, {a, b, d}}
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Furthermore, since naive extensions are defined as ⊆-maximal sets and obviously,
{a} ⊂ {a, c} we deduce that S is not na-realizable, i.e. S /∈ Σf

Ena
. Regarding complete

semantics we obtain S ∈ Σf
Eco

witnessed by the following AF F .

aF : cb d

In the following we consider the signatures of the extension-based versions of
stable, semi-stable, stage, naive, preferred, complete as well as grounded semantics
[Dunne et al., 2013; Dunne et al., 2015]. We provide a bunch of properties where
certain subsets of them exactly matches the containment conditions for certain sig-
natures. All properties can be decided by looking on the set in question only.

3.2.1 Semantics based on Conflict-freeness

Our starting point are semantics based on conflict-free sets. Conflict-free sets by
themselves inherited their conflict-freeness to any subset of them. More formally, the
downward-closure does not vary the set of conflict-free sets for a given AF. A set pos-
sessing this property is called downward-closed. Clearly, downward-closedness does
not hold in case of admissible sets as well as any other reasonable semantics σ where
conflict-freeness is just one requirement among others for being a σ-extension. Take
for instance naive semantics. Naive extension are defined as ⊆-maximal conflict-free
sets. Consequently, the set of all naive extensions is a ⊆-antichain, i.e. any two
naive extensions are incomparable w.r.t. subset relation. This property also applies
to many other semantics, such as stable and stage semantics as well as any uniquely
defined semantics. However, although incomparability is a necessary condition for
many considered semantics it is certainly not sufficient. Consider therefore the fol-
lowing example taken from [Dunne et al., 2015, Example 1].

Example 3.7. Consider the ⊆-antichain S = {{a, b}, {a, c}, {b, c}} and a semantics
σ which selects its reasonable positions among the conflict-free sets, i.e. Eσ(F) ⊆
Ecf (F) for any AF F . Now suppose there exists an AF F with Eσ(F) = S. Then F
must not contain attacks between a and b, a and c, and respectively b and c. This
means, {a, b, c} ∈ Ecf (F). But then Eσ(F) typically contains {a, b, c}.

There are several ways to define the required property which excludes sets like S
from above. It turned out that in order to characterize conflict-free based semantics
like stable, stage and naive semantics a rather strong condition is required, so-called
tightness. Roughly speaking, if an incomparable set is not tight, then there is a set
S ∈ S and an argument a not belonging to S, s.t. for any s ∈ S we find an other
S′ ∈ S with a and s being members of it. The idea behind the notion of being
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tight is simply that if an argument a does not occur in some extension S there must
be a reason for that. The most simple reason one can think of is that there is a
conflict between a and some s ∈ S, i.e. a and s do not occur jointly in any extension-
set of S or, in other words, (a, s) /∈ PairsS. In a way, this limits the multitude of
incomparable elements of an extension-set.

We proceed with the formal definitions.

Definition 3.8 ([Dunne et al., 2013]). Given S ⊆ 2U . We call S

• downward-closed if S = dcl(S),

• incomparable if S is a ⊆-antichain and

• tight if for all S ∈ S and a ∈ ArgsS it holds that if S∪{a} /∈ S then there exists
an s ∈ S such that (a, s) /∈ PairsS.

Please observe that for incomparable S, the premise of the tightness condition,
i.e. S∪{a} /∈ S, is always fulfilled. However, tightness and incomparability are inde-
pendent of each other, i.e. neither tightness implies incomparability or comparability,
nor incomparability implies tightness or non-tightness.

Example 3.9. Consider again the extension-set S = {{a, b}, {a, c}, {b, c}} from
Example 3.7. The set S is incomparable but not tight which can be seen as follows.
If setting S = {a, b} we observe S ∪ {c} /∈ S. Moreover, for any s ∈ S we find an
S′ ∈ S, s.t. {s, c} = S′ implying that (s, c) ∈ PairsS. More precisely, if s = a, then
we have S′ = {a, c} and similarly, if s = b we find S′ = {b, c}.

Furthermore, it can be checked that S′ = {{a, b}, {a, c}, {b, d}, {c, d}} or S′′ =
S∪{{a, b, c}} are witnessing examples for incomparability and tightness or tightness
and comparability, respectively.

Clearly, subsets of incomparable sets are incomparable. Such a kind of inheri-
tance does not hold in case of tight sets (cf. S and S′′ as defined in Example 3.9).
Nevertheless, there are non-trivial tight subsets of any tight set. For instance, in
any case the set of all ⊆-maximal elements is tight. Furthermore, if a tight set is
even incomparable, then any subset of it is tight too.

In the following we present the main statements only. However, in many cases
we provide some short comments indicating how to prove the statement in question.
For full proofs we refer the reader to the referenced papers.
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Lemma 3.10 ([Dunne et al., 2015]). For a tight extension-set S ⊆ 2U we have:

1. the ⊆-maximal elements in S form a tight set, and

2. if S is incomparable then each S′ ⊆ S is tight.

Note that the second statement of Lemma 3.10 implies that if the downward-
closure of an incomparable extension-set S is tight, then S itself has to be tight
too.

We proceed with a specific AF and check which properties apply to its different
sets of extensions.

Example 3.11. Consider the following AF F .

c1

a3
b3

a2

b2

a1
b1F :

Since c1 is self-defeating as well as unattacked we obtain Estb(F) = ∅. Fur-
thermore, Estg(F) = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}} and Ena(F) = Estg(F) ∪
{{b1, b2, b3}}. We observe,

1. Estb(F), Estg(F) as well as Ena(F) are incomparable,

2. Estb(F), Estg(F) as well as Ena(F) are tight and additionally,

3. dcl (Ena(F)) and dcl (Estb(F)) are tight and obviously,

4. Estg(F) and Ena(F) are non-empty.

The first and the last items are not surprising since firstly, all considered seman-
tics satisfy the I-maximality criterion which is just another name for incomparability
and secondly, in Section 2 we have already seen that stage extensions are guaranteed
for finitary (hence, for finite) frameworks and naive semantics is even universally
defined w.r.t. the whole class of AFs. This means, incomparability or non-emptiness
of the mentioned sets of σ-extensions do not depend on the specific AF F , but rather
apply to any finite AF. Consequently, these properties represent necessary properties
regarding realizability. The tightness statements of the second and third items can
be checked in a straightforward manner. We now examine that dcl (Estg(F)) is non-
tight. This can be seen as follows: Firstly, {b2, b3} ∈ dcl (Estg(F)). Now, for b1 the
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premise of Definition 3.8 is satisfied, i.e. {b1, b2, b3} /∈ dcl (Estg(F)). Consequently,
since {b1, b2}, {b1, b3} ∈ dcl (Estg(F)) and therefore, (b1, b2), (b1, b3) ∈ Pairsdcl(Estg(F))
we deduce the non-tightness of dcl (Estg(F)). This means, tightness of the downward-
closure of a given set can not be a necessary criterion for belonging to the stage
signature.

We now present the characterization theorems for conflict-free, naive, stable as
well as stage signatures. It is somehow surprising that only a few simple properties
are sufficient to characterize these different signatures.
Theorem 3.12 ([Dunne et al., 2015]). Given a set S ⊆ 2U , then

1. S ∈ Σf
Ecf
⇔ S is a non-empty, downward-closed, and tight extension-set,

2. S ∈ Σf
Ena
⇔ S is a non-empty, incomparable extension-set and dcl(S) is tight,

3. S ∈ Σf
Estb
⇔ S is a incomparable and tight extension-set,

4. S ∈ Σf
Estg
⇔ S is a non-empty, incomparable and tight extension-set.

We mention that a proof of the characterization theorem above requires two
directions. Let us fix a certain semantics σ ∈ {cf ,na, stb, stg}. The first part is to
show that for any finite AF F , Eσ(F) satisfies the mentioned properties. Now, for
the second part, if a certain extension-set S satisfies the properties in question, then
we have to find a finite AF F , s.t. Eσ(F) = S.

Let us start with the first part. It suffices to consider tightness only since
downward-closedness, non-emptiness and incomparability are clear (cf. some ex-
planations given in Example 3.11). It is easy to see that Ecf (F) is tight because
if augmenting a conflict-free set S with a non-conflicting argument a yields a con-
flicting set, then obviously there has to be at least one element in s ∈ S, s.t. {a, s}
is conflicting. In order to prove that dcl (Ena(F)) is tight, it suffice to see that
dcl (Ena(F)) = Ecf (F). Consequently, applying Lemma 3.10 we obtain the tightness
of Ena(F). Furthermore, with the same lemma, we get that every S ⊆ Ena(F) is
tight. In consideration of stb ⊆ stg ⊆ na (Proposition 2.6) it follows that Estb(F) as
well as Estg(F) are tight.

In order to show that the mentioned properties are not only necessary but even
sufficient we have to come up with witnessing AFs. Consider therefore the following
prototype.
Definition 3.13 ([Dunne et al., 2015]). Given an extension-set S, we define the
canonical argumentation framework for S as

Fcf
S =

(
ArgsS, (ArgsS ×ArgsS) \ PairsS

)
.
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The idea behind the framework is simple: we draw a relation between two ar-
guments iff they do not occur jointly in any set S ∈ S. Consequently, for any S,
F cf
S is symmetric. Moreover, in any case, it is self-loop-free since a ∈ ArgsS implies

(a, a) ∈ PairsS. Let us consider the following example.

Example 3.14. Let S = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}, {b1, b2, b3}} and con-
sider the corresponding canonical framework Fcf

S .

a3
b3

a2

b2

a1
b1Fcf

S

Please note that S is non-empty, incomparable as well as possesses a tight down-
ward-closure (cf. Example 3.11). Furthermore, Fcf

S realizes S under the naive se-
mantics, i.e. Ena

(
Fcf
S

)
= S.

The following proposition shows that this is no coincidence.

Proposition 3.15 ([Dunne et al., 2015]). For each non-empty, incomparable exten-
sion-set S, where dcl(S) is tight, Ena

(
Fcf
S

)
= S.

Moreover, the canonical framework can also be used as witnessing framework in
case of conflict-free sets as stated in the following proposition.

Proposition 3.16 ([Dunne et al., 2015]). For each non-empty, downward-closed
and tight extension-set S, Ecf

(
Fcf
S

)
= S.

We proceed with stable and stage semantics. In Theorem 3.12 the only differ-
ence between the characterizations of stable and stage signatures is the non-empty
requirement for stage semantics. Remember that we are dealing with finite AFs and
indeed in case of this restriction stable semantics is the only semantics which does
not warrant the existence of extensions (cf. Table 1).8 This means, stable semantics
is the only semantics which may realize the empty extension-set (which is incom-
parable and tight too). The final step towards concluding Theorem 3.12 is to find
witnessing frameworks for any non-empty, incomparable and tight extension-sets.
At first we will show that the canonical framework does not do the job in case of

8For instance, F = ({a}, {(a, a)}) yields Estb(F) = ∅.
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these semantics. More precisely, given a non-empty, incomparable as well as tight
extension-set S, then the sets of stable as well as stage extensions of the canonical
framework Fcf

S do not necessarily coincide with S.

Example 3.17. Consider again Example 3.14. We define T = S \ {{b1, b2, b3}}.
Please note that Fcf

T and Fcf
S are identical since ArgsS = ArgsT and PairsS = PairsT.

Furthermore, according to Example 3.11 we have that T is non-empty, incomparable
and tight, but Estb

(
Fcf
T

)
= Estg

(
Fcf
T

)
= Ena

(
Fcf
S

)
= S 6= T. In order to get rid

of the undesired stable as well as stage extension E = {b1, b2, b3} we may simply
add a new self-defeating argument e to Fcf

S , s.t. e is attacked by all other arguments
excepting those stemming from E. The following framework F stb

T illustrates this idea.
Convince yourself that Estb

(
F stb
T

)
= Estg

(
F stb
T

)
= T.

e

a3
b3

a2

b2

a1
b1F stb

T :

The following definition generalizes the construction idea from above to arbi-
trary many undesired sets. The subsequent proposition states that we have indeed
found witnessing examples for non-empty, incomparable and tight extension-sets as
required for Theorem 3.12.

Definition 3.18 ([Dunne et al., 2015]). Given an extension-set S and its canonical
framework F cf

S = (Acf
S , R

cf
S ). Let X = Estb

(
F cf
S

)
\ S we define

F stb
S =

(
Acf

S ∪ {Ē | E ∈ X}, Rcf
S ∪ {(Ē, Ē), (a, Ē) | E ∈ X, a ∈ ArgsS \ E}

)
.

Proposition 3.19 ([Dunne et al., 2015]). For each non-empty, incomparable and
tight extension-set S, Estb

(
F stb
S

)
= Estg

(
F stb
S

)
= S.

3.2.2 Semantics based on Admissibility

Let us turn now to semantics based on admissible sets. In particular, we provide
characterization theorems for the finite signatures w.r.t. admissible sets as well as
preferred and semi-stable semantics. In contrast to semantics based on conflict-free
sets where the notion of tightness played a decisive role (cf. Theorem 3.12) we have to
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introduce a new concept, so-called conflict-sensitivity. Conflict-sensitivity is a very
basic property in the sense that it is fulfilled by almost all semantics σ (or rather,
their corresponding sets of σ-extensions) available in the literature. Furthermore, it
is strictly weaker than tightness, i.e. tight extension-sets are always conflict-sensitive,
but not necessarily vice versa. To explain the difference between these two notions
let us consider the following example taken from [Dunne et al., 2015].
Example 3.20. Consider the following framework F .

a′

F : b′

a

b d

c

f e

We have Epr(F ) = Ess(F ) = S = {A,B,C} = {{a, b}, {a, d, e}, {b, c, e}}. First,
observe that S is not tight. This can be seen as follows: Obviously, A ∪ {e} /∈ S,
but both (a, e) and (b, e) are contained in PairsS since {a, e} ⊆ B and {b, e} ⊆ C.
This means, although A∪{e} is not a reasonable position w.r.t. preferred and semi-
stable semantics we find witnessing extensions, namely B and C, showing that any
argument in A is compatible with e, i.e. they can be accepted together. Please observe
that this is not true for any two arguments in A and B or A and C, respectively. For
instance, b, d ∈ A∪B, but (b, d) /∈ PairsS as well as a, c ∈ A∪C, but (a, c) /∈ PairsS.
Furthermore, the same applies to B and C, since c, d ∈ B ∪ C and (c, d) /∈ PairsS.

The following definition precisely formalizes the observed property of the AF F
presented in the example above.
Definition 3.21 ([Dunne et al., 2015]). A set S ⊆ 2U is called conflict-sensitive if
for each A,B ∈ S such that A ∪B /∈ S it holds that ∃a, b ∈ A ∪B : (a, b) /∈ PairsS.

As the name suggests, the property checks whether the absence of the union of
any pair of extensions in an extension-set S is justified by a conflict indicated by S.
Note that for a, b ∈ A (likewise a, b ∈ B), (a, b) ∈ PairsS holds by definition. Thus
the property of conflict-sensitivity is determined by arguments a ∈ A\B, b ∈ B \A,
for A,B ∈ S. As already indicated tightness implies conflict-sensitivity as stated in
the following lemma.
Lemma 3.22 ([Dunne et al., 2015]). Every tight extension-set is also conflict-
sensitive.

Similarly to Lemma 3.10 one may show that the set of all ⊆-maximal elements
of a conflict-sensitive set is conflict-sensitive too. Moreover, if the initial set is in-
comparable in addition, then even any subset of it is conflict-sensitive. Furthermore,
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in contrast to tight extension-sets it is possible to add the empty set to a conflict-
sensitive set without loosing conflict-sensitivity.9

Lemma 3.23 ([Dunne et al., 2015]). For a conflict-sensitive ext.-set S ⊆ 2U ,

1. the ⊆-maximal elements in S form a conflict-sensitive set,

2. if S is incomparable then each S′ ⊆ S is conflict-sensitive, and

3. S ∪ {∅} is conflict-sensitive.

Having conflict-sensitivity at hand, we are now ready to present characterization
theorems for the signatures w.r.t. admissible sets as well as preferred and semi-stable
semantics. Interestingly, it turns out that preferred and semi-stable semantics are
equally expressive in case of finite AFs, i.e. Σf

Epr
= Σf

Ess
.

Theorem 3.24 ([Dunne et al., 2015]). Given a set S ⊆ 2U , then

1. S ∈ Σf
Ead
⇔ S is a conflict-sensitive ext.-set containing ∅,

2. S ∈ Σf
Epr
⇔ S is a non-empty, incomparable and conflict-sensitive ext.-set,

3. S ∈ Σf
Ess
⇔ S is a non-empty, incomparable and conflict-sensitive ext.-set.

Let us first argue that the mentioned properties are necessary conditions for
being in the corresponding signature. For admissible sets it suffices to recall the
following two facts: First, the empty set is admissible by definition; and second, if
the union of two admissible sets is conflict-free, then the union is admissible too.
In other words, if the union fails to be admissible, then there has to be a conflict
proving the conflict-sensitivity of any set of admissible sets. Now, for preferred and
semi-stable semantics. Non-emptiness is due to the already shown universal defined-
ness of both semantics in case of finite AFs (cf. Table 1). Moreover, incomparability
is clear since both semantics satisfy the I-maximality criterion [Baroni and Gia-
comin, 2007]. Finally, conflict-sensitivity of sets of admissible sets transfer to sets
of preferred extensions via statement 1 of Lemma 3.23 and therefore also to sets of
semi-stable extensions via statement 2 of Lemma 3.23 and the fact that ss ⊆ pr
(Proposition 2.6).

In order to show that the mentioned properties are not only necessary but even
sufficient we have to come up with witnessing AFs. In contrast to conflict-free based
semantics we have to find AFs which encode the central notion of admissibility.

9Note that any one-element extension-set S 6= {∅} is tight, whereas S ∪ {∅} is not.
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Please note that the already introduced canonical frameworks Fcf
S as well as F stb

S (cf.
Definitions 3.13 and 3.18) do not comply with the requirements. Consider therefore
the following example.

Example 3.25. Let us consider again the non-empty, incomparable as well as
tight set T = {{a1, b2, b3}, {a2, b1, b3}, {a3, b1, b2}} together with its corresponding
canonical framework F stb

T as presented in Example 3.17. Due to Lemma 3.22 we
have that any tight extension-set is even conflict-sensitive and thus, T satisfies
the necessary requirements of Theorem 3.24. Inspecting the canonical framework
reveals that Epr

(
F stb
T

)
= T ∪ {{b1, b2, b3}} 6= T. Although, Ess

(
F stb
T

)
= T one

may easily check that non-empty, incomparable as well as conflict-sensitive set S =
{{a, b}, {a, d, e}, {b, c, e}} mentioned in Example 3.20 shows that this equality does
not hold in general. Likewise, one may prove that the framework Fcf

S is not appro-
priated as a witnessing prototype for semi-stable as well as preferred semantics.

It turned out that suitable canonical AFs can be built by means of so-called
defense-formulae as introduced in the following definition.

Definition 3.26 ([Dunne et al., 2015]). Given an extension-set S, the
defense-formula DS

a of an argument a ∈ ArgsS in S is defined as:

DS
a =

∨

S ∈ S,
a∈S

∧

s∈S \{a}
s.

DS
a given as (a logically equivalent) CNF is called CNF-defense-formula CDS

a of
a in S.

The main idea of the formula DS
a is to describe the conditions for the argument

a being in an extension. Note that the variables coincide with the arguments. If
S amounts to a set of admissible extensions, then each disjunct represents a set
of arguments A which allows a to join in the sense that A ∪ {a} is a reasonable
position w.r.t. admissible semantics. Put it differently, propositional models of DS

a∧a
represent (if considered as set of atoms) supersets of certain reasonable position.
Please not that a defense-formula DS

a is tautological if and only if {a} ∈ S. We
proceed with an example.

Example 3.27. Consider again the non-empty, incomparable as well as conflict-
sensitive set S = {{a, b}, {a, d, e}, {b, c, e}} stemming from Example 3.20. We ob-
tain the following defense-formulae together with their corresponding CNF-defense-
formulae (written in clause form).
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• DS
a = b ∨ (d ∧ e) ≡ (b ∨ d) ∧ (b ∨ e) and CDS

a = {{b, d}, {b, e}}

• DS
b = a ∨ (c ∧ e) ≡ (a ∨ c) ∧ (a ∨ e) and CDS

b = {{a, c}, {a, e}}

• DS
c = b ∧ e and CDS

c = {{b, e}}

• DS
d = a ∧ e and CDS

d = {{a, e}}

• DS
e = (a ∧ d) ∨ (b ∧ c) ≡ (a ∨ b) ∧ (d ∨ b) ∧ (a ∨ c) ∧ (d ∨ c) and
CDS

d = {{a, b}, {a, c}, {b, d}, {c, d}}

One simple idea for the realization of a certain set S under admissible semantics
is the following two-step procedure. In the first step, we construct a framework F
which maintains all elements of S as conflict-free sets. This can be done via the the
canonical framework Fcf

S . In the second step, we augment the initial framework Fcf
S ,

s.t. only elements in S become admissible. The second step can be realized via adding
a certain amount of additional arguments. More precisely, for any argument a ∈
ArgsS we add n self-conflicting arguments αaC1 , ..., αaCn if

∣∣∣CDS
a

∣∣∣ = |{C1, ..., Cn}| = n.
Then, for any i ∈ {1, .., n}, αaCi attacks a and is in turn attacked by any argument
in Ci. Consider therefore the following example.

Example 3.28. Again consider the extension-set S = {{a, b}, {a, d, e}, {b, c, e}} and
its corresponding CNF-defense-formulae as presented in Example 3.27. In accor-
dance with the above mentioned two-step procedure we obtain the dashed AF Fcf

S
first. Then, in view of the CNF-defense-formulae we have to add 10 additional self-
defeating arguments which attacks their corresponding argument. This intermediate
step is depicted below.

a b c d e

αa{b,d} αa{b,e} αb{a,c} αb{a,e} αc{b,e} αd{a,e}

αe{c,d}αe{b,d}αe{a,c}αe{a,b}

Let us consider the set {a, b} ∈ S. In order for {a, b} to be admissible we have
to add counter-attacks for the arguments αa{b,d}, αa{b,e}, αb{a,c} and αb{a,e}. For
instance, αa{b,d} is attacked by b and d and so forth. The following figure (built
on top of the previous one) depicts resulting counter-attacks for the mentioned 4
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arguments highlighted as densely dotted edges. For the sake of clarity we do not
perform this construction for the remaining arguments.

a b c d e

αa{b,d} αa{b,e} αb{a,c} αb{a,e} αc{b,e} αd{a,e}

αe{c,d}αe{b,d}αe{a,c}αe{a,b}

The following definition precisely formalizes the mentioned two-step procedure.

Definition 3.29 ([Dunne et al., 2015]). Given an extension-set S, the canoni-
cal defense-argumentation-framework Fdef

S = (Adef
S , Rdef

S ) extends the canonical AF
Fcf
S = (ArgsS, R

cf
S ) as follows:

Adef
S = ArgsS ∪

⋃

a∈ArgsS

{
αaγ | γ ∈ CDS

a

}
, and

Rdef
S = Rcf

S ∪
⋃

a∈ArgsS

{
(b, αaγ), (αaγ , αaγ), (αaγ , a) | γ ∈ CDS

a, b ∈ γ
}
.

The subsequent proposition shows that not only all elements in S become ad-
missible in the constructed AF F def

S , but rather that the set of admissible sets of
F def
S exactly coincides with S given that S is conflict-sensitive as well as contains the

empty set.

Proposition 3.30 ([Dunne et al., 2015]). For each conflict-sensitive ext.-set S
where ∅ ∈ S, it holds that Ead

(
Fdef
S

)
= S.

Interestingly, we may even use the canonical defense-AF to show that any non-
empty, incomparable and conflict-sensitive extension-set S can be realized under the
preferred semantics. This can be seen as follows: First, via Lemma 3.23 we obtain the
conflict-sensitivity of S∪{∅} since S is assumed to be conflict-sensitive. Consequently,
using Proposition 3.31 we obtain Ead

(
Fdef
S∪{∅}

)
= S ∪ {∅}. Since Fdef

S = Fdef
S∪{∅} and

due to the incomparability of S, we have Epr
(
Fdef
S

)
= S as stated in the following

proposition.
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Proposition 3.31 ([Dunne et al., 2015]). For each non-empty, incomparable and
conflict-sensitive extension-set S, it holds that Epr

(
Fdef
S

)
= S.

Furthermore, due to a translation result by Dvořák and Woltran we obtain that
any non-empty, incomparable and conflict-sensitive extension-set S can be realized
under semi-stable semantics too. More precisely, in [Dvořák and Woltran, 2011] it
is shown that for any AF F exists an AF F ′, s.t. Epr(F) = Ess(F ′).

Proposition 3.32 ([Dunne et al., 2015]). Each non-empty, incomparable and con-
flict-sensitive extension-set S is ss-realizable.

3.2.3 Uniquely Defined Semantics

Let us finally turn to grounded, ideal and eager semantics. Remember that all
mentioned semantics warrants the existence of exactly one extension given that the
frameworks in question are finite (cf. Table 1). Furthermore, it is hardly surpris-
ing that this property is even sufficient for being in the corresponding signature,
since any one-element extension-set S = {E} can be realized via FE = (E, ∅). In
particular, we obtain that all three semantics are equally expressive.

Theorem 3.33 ([Dunne et al., 2016]). Given a set S ⊆ 2U , then

1. S ∈ Σf
Egr
⇔ S is an extension-set with |S| = 1,

2. S ∈ Σf
Eil
⇔ S is an extension-set with |S| = 1 and

3. S ∈ Σf
Eeg
⇔ S is an extension-set with |S| = 1.

3.2.4 Summary of Results and Further Remarks

In this subsection we provide a comprehensive overview of characterization results
w.r.t. extension-based realizability in case of finite AFs. The following table collect
and combine the results of the previous three subsections. The table has to be
interpreted as follows: Consider a certain column σ. Then, the entries “×” in rows
r1,...,rn indicate that for any extension-set S, S ∈ Σf

Eσ ⇔ r1, ..., rn. Moreover, an
entry “→” in row r reflects the fact that the collection of the properties r1, ..., rn
imply property r.

2814



On the Nature of Argumentation Semantics

fcf 2 fna2 fstb2fstg2 fad2 fpr2 fss2 fgr2 f il2 feg2

× × × → × × → → →

→ ×

× × ×

× → → →

× × × × × → → →

× → × × → → →

→ → → → × × × → → →

×

S 6= ∅

∅ ∈ S

|S| = 1

dcl(S) is tight

S is incomparable

S is tight

S is conflict-sensitive

dcl(S) = S

Table 2: Characterizing Properties for Realizable Extension-sets

Remember that the decision whether a certain extension-set S is realizable can
not be done via brute force (i.e., enumerating AFs and checking whether their exten-
sions coincide with S) since there are no a priori bounds on the number of required
arguments. Consequently, the results depicted in Table 2 put us in a very good
position since now, the question of realizability can be decided locally, i.e. by in-
specting the set in question itself. Moreover, all mentioned properties can checked
in polynomial time as shown in [Dunne et al., 2015, Theorem 6]. For the majority of
the properties tractability is immediately apparent. The only exception is tightness
of the downward-closure of a given extension-set S since its size is not polynomially
bounded in the size of S (cf. [Dunne et al., 2015, Proposition 12] for a way out of
this problem).

By inspecting the respective properties as depicted in Table 2, we can imme-
diately put the signatures of different semantics in relation to each other. The
following theorem includes the signature w.r.t. complete semantics in addition. The
reason why we did not included complete semantics in our considerations is simply
that a precise characterization of the complete signature is still an open problem.
Nevertheless, certain necessary properties are already found [Dunne et al., 2015,
Proposition 4] justifying items 3 and 4 of the following theorem.
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Theorem 3.34 ([Dunne et al., 2015]). The following relations hold

1. Σf
Ena
⊂ Σf

Estg
⊂ Σf

Ess
= Σf

Epr
,

2. Σf
Estb

= Σf
Estg
∪ {∅},

3. Σf
Ecf
⊂ Σf

Ead
⊂ Σf

Eco
,

4. Σf
Eσ ⊂ Σf

Eτ where σ ∈ {gr , il, eg}, τ ∈ {na, stb, stg, pr , ss, co} and

5.
{
S ∪ {∅} | S ∈ Σf

Epr

}
⊂ Σf

Ead
.

The following Venn-diagram provides a compact overview of subset relations
between the considered signatures. A bordered area represents a set of extension-
sets. The outer ellipse ES = {S ⊆ 2U | S is an ext.-set} stands for the set of all
extension-sets over U . Clearly, all other signatures are subsets of ES by definition.
Furthermore, we use {{∅}} or {∅} the set consisting of the single extension-set {∅}
(realizable by all considered semantics) or the set containing the empty extension-set
(realizable by stable semantics only), respectively. The right side of Figure 2 shows
signatures of semantics providing only incomparable extension-sets. The intersection
of these signatures with Σf

Eco
exactly coincides with Σf

Egr
as well as Σf

Eil
and Σf

Eeg
which contain all extension-sets S with |S| = 1. Moreover, the only extension-
set they have in common with the signatures of conflict-free and admissible sets is
the extension-set containing the empty extension. This fact causes the “missing”
intersection in the middle of Figure 2.

ES

{{∅}} Σf
Ena

Σf
Estg
=

ΣfEstb
\{∅}

Σf
Epr
=

Σf
Ess

Σf
EcfΣf

Ead
Σf
Eco

{∅}

Figure 2: Subset Relations between Finite Signatures
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Finally, we want to mention that all considered finite signatures, apart from the
complete signature, are closed under non-empty intersections. More precisely, if
two finitely σ-realizable sets S and T possess a non-empty intersection, then S ∩ T
is finitely σ-realizable too. This feature is mainly due to the fact that subsets of
incomparable and tight as well as incomparable and conflict-sensitive sets maintain
these properties (cf. Lemmas 3.10 and 3.23).

Theorem 3.35 ([Dunne et al., 2015]). Let σ ∈ {cf , ad,na, stb, stg, pr , ss}. For any
two finite AFs F1,F2 exists an finite AF F , s.t. Eσ(F) = Eσ(F1)∩Eσ(F2) given that
Eσ(F1) ∩ Eσ(F2) 6= ∅.10

3.3 Signatures w.r.t. Finite, Compact AFs
So far we considered realizibility without any restriction (apart from finiteness) for
witnessing AFs. This means, realizing AFs may contain rejected arguments, i.e.
arguments which do not appear in any extension. Rejected arguments are natural
ingredients in typical argumentation scenarios and it is a priori completely unclear
in which ways rejected arguments contribute to the expressibility of a particular
semantics. In order to have a handle for analyzing the effect of rejected arguments,
the class of compact AFs and its induced signatures were introduced and studied
[Baumann et al., 2014a; Baumann et al., 2014b; Baumann et al., 2016a]. An AF is
compact with respect to a semantics σ, if it does not contain rejected arguments,
i.e. each of its arguments appears in at least one σ-extension. Now, the main ques-
tion is whether it is possible to get rid of rejected arguments without changing the
outcome? or, in other words: Under which circumstances can AFs be transformed
into equivalent compact ones? Note that studying compactness is far from being an
academic exercise since there is a fundamental computational significance: When
searching for extensions, arguments span the search space, since extensions are to
be found among the subsets of the set of all arguments. Hence the more arguments,
the larger the search space. Compact AFs are argument-minimal since none of the
arguments can be removed without changing the outcome, thus leading to a minimal
search space.

Let us first have a brief look on the naive semantics, which is defined as ⊆-
maximal conflict-free sets: Here, it is rather easy to see that any AF can be trans-
formed into an equivalent compact AF by just removing all self-defeating arguments.
In other words, the same outcome (in terms of the naive extensions) can be achieved
by a simplified AF without rejected arguments. This means, naive semantics does
not lose expressive power if we stick to compact AFs. However, it is not hard to

10The prerequisite of a non-empty intersection can be dropped in case of stable semantics.
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find semantics where this coincidence does not hold implying that for such semantics
the full range of expressiveness indeed relies on the concepts of rejected arguments.
Consider therefore the following non-compact AF F .

a′F : a b b′

Let us consider admissible sets. We obtain S = Ead(F) = {∅, {a, b}}. Obviously,
any attempt of realizing S with a compact AF G = ({a, b}, R) is doomed to failure
since if {a, b} is admissible in G we necessarily obtain the admissibility of {a} as well
as {b} proving S 6= Ead(G). It was one main result in [Baumann et al., 2014a] to show
that the finite, compact signatures w.r.t. stable, preferred, semi-stable, and stage
semantics are strict subsets of their corresponding finite signatures. This means, in
case of those semantics, sticking to finite, compact AFs implies a loss of expressive
power.

3.3.1 Central Definitions and Preliminary Observations

In the following we formally introduce the central notions of compact argumenta-
tion frameworks, compact realizibility as well as compact signatures. As already
stated, the main idea behind compact AFs is the absence of rejected arguments. For
labelling-based semantics σ (i.e., a semantics returning n-tuples) we assume that
the first component of their associated σ-labellings are interpreted as acceptable sets
of arguments in analogy to σ-extensions in case of extension-based semantics. This
means, if a certain argument occur in no first component of given σ-labellings we
classify it as rejected. For a given labelling L we use LI to refer to its first component.

Definition 3.36. Given a semantics σ : F → 2(2U)n. An AF F = (A,R) is
compact for σ (or simply, σ-compact) if ArgsEσ(F) = A (in case of n = 1) or
Args{LI|L∈Lσ(F)} = A (for n ≥ 2), respectively.

Although extension-based and labelling-based semantics are formally different
semantics (according to Definition 2.2) we often speak of the extension-based version
or labelling-based version of a certain semantics. This can be formally justified for
the considered semantics since there is a close relationship between both versions (cf.
Facts 4.38 and 4.39 for some formal relations). The following fact shows that for all
considered semantics σ there is no need to distinguish between σ-compactness w.r.t.
the extension-based version of σ and σ-compactness w.r.t. the labelling-based version
of σ. As an aside, such a coincidence does not require a one-to-one correspondence
between the extension-based and labelling-based version of a semantics σ. It suffices
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that any σ-extension induces a σ-labelling and vice versa in such a way that accepted
arguments are preserved (cf. statements 1 and 2 of Fact 4.38).

Fact 3.37. For any σ ∈ {stb, ss, stg, cf2 , stg2 , pr , ad, co, gr , il, eg,na, cf } and any11

AF F we have: F is compact for Eσ iff F is compact for Lσ.

In the following we use CAFσ for AFs compact for σ. Moreover, we use CAFfσ to
indicate that the considered frameworks are finite in addition. It is intuitively clear
that there are AFs F being σ-compact without being τ -compact for two different
semantics σ and τ . The following example firstly presented in [Baumann et al.,
2014a, Figure 1] provides us with a witnessing framework.

Example 3.38. Consider the following AF F .12

a3 a1
a2 b3 b1

b2

x1F : x2 x3 y1 y2 y3

z

The preferred extensions of F are Epr(F) = {{z}, {x1, a1}, {x2, a2}, {x3, a3},
{y1, b1}, {y2, b2}, {y3, b3}}, meaning that F is pr-compact (F ∈ CAFfpr) since each
argument occurs in at least one preferred extension. On the other hand observe that
Ess(F) = Epr(F)\{{z}} and Estg(F) = {{xi, ai, bj}, {yi, bi, aj} | 1 ≤ i, j ≤ 3}, i.e. z is
not contained in any semi-stable or stage extension. Therefore F is neither compact
for semi-stable nor compact for stage semantics (i.e. F /∈ CAFfss and F /∈ CAFfstg).

How are the different sets of compact AFs related? We start with an easy
observation.

Lemma 3.39 ([Baumann et al., 2016a]). For any two semantics σ and τ such that
for each AF F , for every S ∈ Eσ(F) there is some S′ ∈ Eτ (F) with S ⊆ S′, we have
CAFσ ⊆ CAFτ .

Note that σ ⊆ τ is a special case of the premise of Lemma 3.39. Thus, CAFσ ⊆
CAFτ , whenever σ ⊆ τ (see Figure 1 for an overview). Strict subset relations
have to be proven by providing a witnessing AF as presented in Example 3.38.
Moreover, CAFpr = CAFco = CAFad as well as CAFna = CAFcf is justified by
Lemma 2.14 and the fact that pr ⊆ co ⊆ ad and na ⊆ cf . Finally, in case of the

11Indeed, no finiteness restriction is required here.
12The construct in the lower part of the figure represents symmetric attacks between each pair

of distinct arguments. We will make use of this style in illustrations throughout the whole section.
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uniquely defined grounded and ideal semantics we have, F = (A,R) is compact if
and only if R = ∅. This in turn implies that F is compact for stable semantics.
This means, CAFgr = CAFil ⊂ CAFstb. Remember that eager semantics is uniquely
defined w.r.t. finitary AFs only (Theorem 2.25, Example 2.9). Consequently, we
may conclude CAFfgr = CAFfeg only. Although, the majority of the results do not
require the finiteness restriction we present the following theorem in terms of finite
AFs. Detailed proofs for the relations between stable, semi-stable, preferred, stage
and naive semantics can be found in [Baumann et al., 2016a, Theorem 2].

Theorem 3.40. The following relations hold:

1. CAFfgr = CAFfil = CAFfeg,

2. CAFfpr = CAFfco = CAFfad ,

3. CAFfna = CAFfcf ,

4. CAFfgr ⊂ CAFfstb ⊂ CAFfss ⊂ CAFfpr ⊂ CAFfna,

5. CAFfstb ⊂ CAFfstg ⊂ CAFfna and

6. CAFfstg 6⊆ CAFfσ as well as CAFfσ 6⊆ CAFfstg for any σ ∈ {pr , ss}.

The following figure concisely summarizes all relations mentioned in the theorem
above. Directed arrows between two boxes have to be interpreted as strict subset
relations between the mentioned sets of compact AFs in these boxes.

CAFfgr
=

CAFfil
=

CAFfeg

CAFfstb

CAFfstg

CAFfpr
=

CAFfco
=

CAFfad

CAFfss
CAFfna

=
CAFfcf

Figure 3: Subset Relations between Finite, Compact AFs

Instantiating Definitions 3.1 and 3.2 with C = CAFfσ formalize the notions of
realizibility as well as signatures relativised to finite, compact AFs. Consider the
following definitions.
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Definition 3.41. Given a semantics σ : F → 2(2U)n. A set S ⊆
(
2U
)n

is finitely,
compactly σ-realizable if there is an AF F ∈ CAFfσ, s.t. σ(F) = S.

Definition 3.42. Given a semantics σ. The finite, compact σ-signature is defined
as
{
σ(F) | F ∈ CAFfσ

}
abbreviated by Σf,c

σ .

It is clear that Σc,f
σ ⊆ Σf

σ holds for any semantics σ, i.e. finite, compact realizibil-
ity implies finite realizibility. In the following we shed light on the question whether
the mentioned subset relation is strict for a given semantics? In other words, we
answer the question whether we indeed lose expressive power if sticking to compact
AFs.

3.3.2 The Loss or Stability of Expressive Power

Let us consider the uniquely defined grounded, ideal and eager semantics first.
We already stated that a set S is realizable w.r.t. these semantics if and if only
if S is an one-element extension-set if considering finite AFs (Theorem 3.33). Fur-
thermore, it is immediate that an extension-set S = {E} can be compactly realized
via FE = (E, ∅). This means, these semantics do not lose expressive power if we re-
strict ourselves to compact AFs. Furthermore, the attentive reader may have noticed
that the canonical argumentation framework Fcf

S , which was used as a witnessing
framework for conflict-free sets and naive semantics (cf. Definition 3.13 as well as
Propositions 3.15 and 3.16), does not involve further artificial arguments. Thus,
it verifies finite, compact realizibility and shows that there is no expressive loss in
case of conflict-free sets and naive semantics. For the other considered semantics,
namely admissible, stable, stage, semi-stable, preferred as well as complete seman-
tics we have to accept a strict weaker expressibility if we stick to compact AFs. In
order to prove that in case of these semantics the full range of expressiveness indeed
relies on the concept of rejected arguments we have to come up with witnessing
extension-sets. Consider therefore the following example.

Example 3.43. The extension-set S = {{a, b}, {a, d, e}, {b, c, e}} is realizable un-
der preferred as well as semi-stable semantics (cf. Example 3.20 for a realizing
non-compact framework). Let σ ∈ {pr , ss}. Now suppose there exists an AF
F = ({a, b, c, d, e}, R), s.t. Eσ(F) = S. Since {a, d, e}, {b, c, e} ∈ S and σ ⊆ cf
we conclude that there is no attack in R involving e, i.e. e is an isolated argument
in F . But then, e is contained in each σ-extension of F contradicting {a, b} ∈ S. In
Summary, S ∈ Σf

Eσ \ Σf,c
Eσ .

For further witnessing extension-sets we refer the reader to [Baumann et al.,
2016a, Propositions 35 and 57] and proceed with the main theorem.
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Theorem 3.44. It holds that

1. Σf,c
Eσ = Σf

Eσ for σ ∈ {cf ,na, gr , il, eg}, and

2. Σf,c
Eσ ⊂ Σf

Eσ for σ ∈ {ad, stb, stg, ss, pr , co}.

In both cases we may benefit of characterization theorems for finite signatures
(cf. Theorems 3.12, 3.24 and 3.33). If both signatures are identical (first item), then
necessary and sufficient properties for being finitely σ-realizable immediately carry
over to finite, compact σ-realizibility. If we observe a strict subset relation (second
item), then we obtain at least necessary properties for being in the finite, compact
σ-signature.

Theorem 3.45. Given a set S ⊆ 2U , then

1. S ∈ Σf,c
Ecf
⇔ S is a non-empty, downward-closed and tight ext.-set,

2. S ∈ Σf,c
Ena
⇔ S is a non-empty, incomparable ext.-set and dcl(S) is tight,

3. S ∈ Σf,c
Egr
⇔ S is an ext.-set with |S| = 1,

4. S ∈ Σf,c
Eil
⇔ S is an ext.-set with |S| = 1,

5. S ∈ Σf,c
Eeg
⇔ S is an ext.-set with |S| = 1 and

6. S ∈ Σf,c
Estb
⇒ S is an incomparable and tight ext.-set,

7. S ∈ Σf,c
Estg
⇒ S is a non-empty, incomparable and tight ext.-set,

8. S ∈ Σf,c
Ead
⇒ S is a conflict-sensitive ext.-set containing ∅,

9. S ∈ Σf,c
Epr
⇒ S is a non-empty, incomparable and conflict-sensitive ext.-set,

10. S ∈ Σf,c
Ess
⇒ S is a non-empty, incomparable and conflict-sensitive ext.-set.

3.3.3 Comparing Finite, Compact Signatures and Final Remarks

In the following we relate the finite, compact signatures of the semantics under
consideration to each other. Recall that for finite signatures it holds that Σf

Ena
⊂

Σf
Estg

=
(
Σf
Estb
\ {∅}

)
⊂ Σf

Ess
= Σf

Epr
(cf. Figure 2). This picture changes dramatically

when considering the relationships between finite, compact signatures as depicted in
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Figure 4 (incomparable semantics only) and formally stated in Theorem 3.46. The
dashed areas represent particular intersections for which the question of existence
of extension-sets is still an open question.

Σf,c
Ena

Σf,c
Epr

Σf,c
Estg Σf,c

Ess
Σf,c
Estb

Figure 4: Subset Relations between Finite, Compact Signatures

We proceed with an enumeration of relationships between finite, compact sig-
nature including further semantics like conflict-free and admissible sets as well as
grounded, ideal, eager and complete semantics. For formal proofs we refer the in-
terested reader to [Baumann et al., 2016a, Theorem 36, Proposition 58].

Theorem 3.46. The following relations hold:

1. Σf,c
Eσ ⊂ Σf,c

Ena
⊂ Σf,c

Eτ for σ ∈ {gr , il, eg} and τ ∈ {stb, stg, ss, pr},

2. Σf,c
Estb
⊂ Σf,c

Eσ for σ ∈ {stg, ss},

3. Σf,c
Ecf
⊂ Σf,c

Ead
,

4. Σf,c
Eco
\ Σf,c
Eσ 6= ∅ and Σf,c

Eσ \ Σf,c
Eco
6= ∅ for σ ∈ {cf , ad},

5. Σf,c
Epr
\
(
Σf,c
Estb
∪ Σf,c

Ess
∪ Σf,c

Estg

)
6= ∅,

6. Σf,c
Estg
\
(
Σf,c
Estb
∪ Σf,c

Epr
∪ Σf,c

Ess

)
6= ∅,

7. Σf,c
Estb
\ Σf,c
Epr
6= ∅,

8.
(
Σf,c
Epr
∩ Σf,c

Ess

)
\
(
Σf,c
Estb
∪ Σf,c

Estg

)
6= ∅ and

9. Σf,c
Ess
\
(
Σf,c
Estb
∪ Σf,c

Epr
∪ Σf,c

Estg

)
6= ∅.
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Comparing the results on expressiveness of the considered semantics as stated
in Theorems 3.34 and 3.46 we observe notable differences. When allowing rejected
arguments, preferred and semi-stable semantics are equally expressive and at the
same time strictly more expressive than stable and stage semantics. As we have
seen, this property does not carry over to the compact setting (with the exceptions
Σf,c
Estb
⊂ Σf,c

Ess
and Σf,c

Estb
⊂ Σf,c

Estg
) where signatures become incomparable.

Finally, regarding the open issues represented as dashed areas in Figure 4. More
precisely, it is an open problem whether there are extension-sets lying in the inter-
section between Σf,c

Epr
(resp. Σf,c

Ess
) and Σf,c

Estg
but outside of Σf,c

Estb
. In [Baumann et al.,

2016a] it is conjectured that such extension-sets do not exist.

Conjecture 3.47 ([Baumann et al., 2016a]). It holds that Σf,c
Epr
∩ Σf,c

Estg
⊂ Σf,c

stb and
Σf,c
Ess
∩ Σf,c

Estg
= Σf,c

Estb
.

3.4 Signatures w.r.t. Finite, Analytic AFs
We now turn to a further phenomenon, so-called implicit conflicts which can be
frequently observed in typical argumentation scenarios. Consider therefore the fol-
lowing AF F .

x1
y1

x2

y2

x3
y3F :

Let us consider stable semantics. Please note that any xi is jointly accept-
able with one specific yj . More precisely, Estb(F) = {{x1, y3}, {x2, y1}, {x3, y2}}
implying that we do not have any rejected arguments, i.e. F is stable compact.
What can be said about the two pairs of arguments x1 and x2 as well as y1 and
y2? First of all, both pairs represent a semantical conflict in F since neither of
those pairs occur together in any stable extension. In case of x1 and x2, the con-
flict is even a syntactical one since both arguments attack each other in contrast
to the pair consisting of y1 and y2. This difference leads to the distinction be-
tween syntactically underlined explicit conflicts and syntactically unfounded im-
plicit ones (indicated by dashed lines). In order to understand how implicit con-
flicts contribute to the expressiveness of a certain semantics, the set of analytic AFs
and its induced signatures were introduced and studied [Linsbichler et al., 2015;
Baumann et al., 2016a]. An analytic framework, i.e. a framework which is free
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of implicit conflicts maximizes the information on conflicts. One main question
is: under which circumstances an arbitrary framework can be transformed into an
equivalent analytic one? This question is interesting from a theoretical as well as
practical point of view. On the one hand, analytic frameworks are natural candi-
dates for normal forms of AFs, and on the other maximizing the number of explicit
conflicts might help argumentation systems to evaluate AFs more efficiently.

Let us consider again the extension-set S = {{x1, y3}, {x2, y1}, {x3, y2}} stem-
ming from the AF F depicted above. Replacing the dashed arrows with symmetric
attacks in F shows that S can be analytically realized under stable semantics. Inter-
estingly, this is no coincidence, since it was shown that in case of stable semantics
any AF can be transformed into an equivalent analytical one. However, in general it
is not that easy to make implicit conflicts explicit since there are frameworks where
any suitable transformation requires the use of additional arguments as shown in
[Linsbichler et al., 2015].

3.4.1 Central Definitions and Preliminary Observations

In this section we consider the central notions of analytic argumentation frameworks,
analytic realizability as well as analytic signatures. In order to define analytic AF we
have to differentiate between the concept of an attack (as a syntactical element) and
the concept of a conflict (with respect to the evaluation under a given semantics).
More precisely, if two arguments cannot be accepted together, i.e. no reasonable
position contain them jointly as elements, we say that these arguments are in conflict.
If this conflict is syntactically underlined by an attack between them, we call this
conflict explicit, otherwise implicit. Now, an analytic framework is an AF which
simply does not contain any implicit conflicts. Consider the following definition.

Definition 3.48. Given a semantics σ : F → 2(2U)n, an AF F = (A,R) and two
arguments a, b ∈ A. We say that

1. a and b are in conflict for σ if (a, b) /∈ PairsEσ(F) (in case of n = 1) or
(a, b) /∈ Pairs{LI|L∈Lσ(F)} (for n ≥ 2), respectively,

2. the conflict is explicit w.r.t. σ if (a, b)∈R or (b, a)∈R, otherwise implicit,

3. the AF F is analytic for σ (or σ-analytic) if all conflicts are explicit.

Please notice that Definition 3.48 does not require a and b to be different argu-
ments. In particular, an argument that is not contained in any reasonable position
is in conflict with itself. This conflict is explicit if the argument is self-attacking and
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implicit otherwise. Furthermore, for all considered semantics σ we observe there is
no need to distinguish between σ-analyticality w.r.t. the extension-based version of
σ and σ-analyticality w.r.t. the labelling-based version of σ (similarly as in case of
σ-compactness as stated in Fact 3.37). Please note that this coincidence is justified
for any semantics σ whenever Eσ(F) = {LI | L ∈ Lσ(F)} is guaranteed.

Fact 3.49. For any σ ∈ {stb, ss, stg, cf2 , stg2 , pr , ad, co, gr , il, eg,na, cf } and any
AF F we have: F is analytic for Eσ iff F is analytic for Lσ.

In the following we denote the set of all σ-analytic AFs as XAFσ. To indicate
that the frameworks under consideration are finite we use XAFfσ. We proceed with
an example illustrating the new definitions.

Example 3.50. As a simple example consider the following AF F depicted below.

c dcF : a b d

For σ ∈ {stb, pr , ss, stg} we have Eσ(F) = {{a, d}, {b, c}}. Observe that there
is only one implicit conflict, namely the conflict between the arguments c and d,
denoted by a dashed line. Hence, F is not σ-analytic, i.e. F /∈ XAFfσ. However,
since Ena(F) = Eσ(F) ∪ {{c, d}} we have that F is na-analytic, i.e. F ∈ XAFfna.

As indicated in Example 3.50 the sets of analytic AFs can differ for different
semantics. Just like in case of compact AFs (cf. Lemma 3.39) one may easily verify
the following lemma which allows to obtain a plenty of subset relations between sets
of analytic AFs.

Lemma 3.51 ([Baumann et al., 2016a]). For any two semantics σ and τ such that
for each AF F , for every S ∈ Eσ(F) there is some S′ ∈ Eτ (F) with S ⊆ S′, we have
XAFσ ⊆ XAFτ .

In line with the existing literature we restrict our considerations to finite AFs.
Regarding universal (but not uniquely) defined semantics we obtain the same rela-
tions as in case of compact AFs (see explanations below Lemma 3.39). In any case we
have XAFfgr ⊆ XAFfil ⊆ XAFfeg since ideal semantics accepts more arguments than
grounded semantics and eager semantics is even more credulous than ideal semantics.
Furthermore, XAFfeg ⊆ XAFfss because the unique eager extension is contained in all
semi-stable extension by definition and moreover, semi-stable semantics guarantees
reasonable positions in case of finite AFs. Now, let F = (A,R) be analytic w.r.t.
eager semantics and Eeg(F) = {E}. We deduce that all arguments in A \E have to
be self-defeating. Consequently, its corresponding (conflict-free) base semantics (cf.
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Definition 2.17) warrants exactly one extension for F . More precisely, Ess(F) = {E}.
Finally, due to the self-conflicting arguments and the admissibility of E we obtain
Epr(F) = {E} and thus, Eil(F) = {E} showing that F is even analytic w.r.t. ideal
semantics, i.e. XAFfil = XAFfeg. The AF F = ({a, b}, {(a, b), (b, a), (b, b)}) proves
that a similar result in case of grounded and ideal semantics does not hold. De-
tailed proofs for the relations between stable, semi-stable, preferred, stage and naive
semantics can be found in [Baumann et al., 2016a, Theorem 4].

Theorem 3.52. The following relations hold:

1. XAFfgr ⊂ XAFfil = XAFfeg ⊂ XAFfss,

2. XAFfpr = XAFfco = XAFfad ,

3. XAFfna = XAFfcf ,

4. XAFfstb ⊂ XAFfss ⊂ XAFfpr ⊂ XAFfna,

5. XAFfstb ⊂ XAFfstg ⊂ XAFfna,

6. XAFfstg 6⊆ XAFfσ and XAFfσ 6⊆ XAFfstg for any σ ∈ {pr , ss},

7. XAFfσ 6⊆ XAFfτ and XAFfτ 6⊆ XAFfσ for any σ∈{gr , il, eg}, τ ∈{stb, stg}.
The following figure summarizes all relation in a compact way. Similarly to

Figure 3, a directed arrow between two boxes has to be interpreted as strict subset
relation between the mentioned sets of analytic AFs therein.

XAFfgr

XAFfil
=

XAFfeg

XAFfstb

XAFfstg

XAFfpr
=

XAFfco
=

XAFfad

XAFfss
XAFfna

=
XAFfcf

Figure 5: Subset Relations between Finite, Analytic AFs

At this point we want to mention that although Figures 3 and 5 look very sim-
ilar we have that compactness and analyticality are sufficiently distinct properties.
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More precisely, apart from the uniquely defined semantics as well as naive semantics
and conflict-free sets no subset relations between the sets of compact and analytic
frameworks can be stated in general. Sticking to self-loop-free AFs allows one to
draw further relations such as analyticality implies compactness for any considered
semantics. The main reason for this general relation is that rejected arguments has
to be self-defeating in case of analytic frameworks. A selection of proofs of relations
listed below can be found in [Baumann et al., 2016a, Proposition 5-8].

Proposition 3.53. Given an AF F , then

1. CAFfσ ⊂ XAFfσ for σ ∈ {gr , il, eg,na, cf },

2. CAFfσ 6⊆ XAFfσ and XAFfσ 6⊆ CAFfσ for σ ∈ {ad, stb, ss, pr , stg, co}.

If F is self-loop-free in addition, then

3. F ∈ XAFfσ and F ∈ CAFfσ for σ ∈ {na, cf },

4. F ∈ XAFfσ ⇔ F ∈ CAFfσ for σ ∈ {gr , il, eg} and

5. F ∈ XAFfσ ⇒ F ∈ CAFfσ for σ ∈ {ad, stb, ss, pr , stg, co}.

We now precisely formalize the notions of realizibility as well as signatures rela-
tivised to finite, analytic AFs. This can be formally done via instantiating Definitions
3.1 and 3.2 with C = XAFfσ.

Definition 3.54. Given a semantics σ : F → 2(2U)n. A set S ⊆
(
2U
)n

is finitely,
analytically σ-realizable if there is an AF F ∈ XAFfσ, s.t. σ(F) = S.

Definition 3.55. Given a semantics σ. The finite, analytic σ-signature is defined
as
{
σ(F) | F ∈ XAFfσ

}
abbreviated by Σf,x

σ .

3.4.2 The Loss or Stability of Expressive Power

Clearly, every set in the finite, analytic signature of a semantics is also contained
in the finite signature. Remember that in case of compact AFs we do not lose
any expressive power if considering the uniquely defined grounded, ideal and eager
semantics as well as naive semantics and conflict-free sets (Theorem 3.44). These
equal expressiveness results carry over to analytic AFs and moreover, even stable
and stage semantics may realize the same sets. For instance, consider again the
non-analytic AF F as introduced in Example 3.50. One may easily verify that
adding an attack from c to d or vice versa yields an AF F ′ analytic for stable
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semantics which does not change the set of stable extensions. However, in general
it is not that easy to make implicit conflicts explicit but it was shown that the
use of additional arguments indeed allows one to turn any finite framework in an
analytical one without changing the set of stable or stage extensions, respectively
[Baumann et al., 2016a, Proposition 28, Theorem 29]. For the sake of completeness,
we mention that it was an open question for a while, known as Explicit Conflict
Conjecture [Baumann et al., 2014a], whether it is possible, under stable semantics,
to translate a given AF into an equivalent analytic one without adding further
arguments. In [Baumann et al., 2016a] the conjecture was refuted for stable and even
stage semantics. For the remaining semantics, i.e. admissible, semi-stable, preferred
and complete semantics the conjecture does not hold either since in case of these
semantics we even have that the finite, analytic signature is a strict subset of the
corresponding finite one. This means, the full range of expressiveness indeed relies
on the use of implicit conflicts. Consider the following example firstly presented in
[Baumann et al., 2016a, Example 6].

Example 3.56. Take into account the AF F = (A,R) as depicted below.

a1

F : u3

a1 b1 x1 u1

a2 b2 x2 u2

a3 b3 x3 u3

Formally, we have

A = {ai, bi, xi, ui | i ∈ {1, 2, 3}} and
R = {(ai, bi), (bi, ai), (bi, xi), (xi, ui) | i ∈ {1, 2, 3}} ∪ {(x1, x2), (x2, x3), (x3, x1)} .

Regarding the extension-based version of preferred semantics we obtain the set
S = Epr(F) = {Sa, Sb, A1, A2, A3, B1, B2, B3} with

Sa = {a1, a2, a3} Sb = {b1, b2, b3, u1, u2, u3}
A1 = {a2, a3, b1, x2, u1, u3} B1 = {a1, b2, b3, x1, u2, u3}
A2 = {a1, a3, b2, x3, u1, u2} B2 = {a2, b1, b3, x2, u1, u3}
A3 = {a1, a2, b3, x1, u2, u3} B3 = {a3, b1, b2, x3, u1, u2}
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We observe three implicit conflicts indicated by dashed lines. Consequently, F is
not analytic w.r.t. preferred semantics. Moreover, we claim that S is not analytically
pr-realizable at all. For a contradiction we assume that there exists an AF G ∈
XAFfpr , s.t. Epr(G) = S. We now investigate this hypothetical AF G. The main idea
is to show that if the conflict between a1 and x2 is made explicit, then S 6= Epr(G).
First, note that G contains at least all arguments in A since ArgsS = A. Due to
A3 and B3 we deduce that Sa ∪ {u2} is conflict-free in G. Furthermore, due to A1,
the admissibility of Sa in G and the assumption that all conflicts has to be explicit,
we infer that a1 attacks x2. Moreover, in consideration of S, it is easy to see that
x2 is the only possible attacker of u2 among ArgsS. This implies that Sa defends u2
against all arguments in ArgsS. Finally, any additional argument z /∈ ArgsS in G
must be attacked by Sa since G is analytic w.r.t. preferred semantics and Sa must
be admissible. This causes Sa ∪ {u2} to be admissible in G and hence, Sa cannot be
preferred in G. In summary, any AF realizing S has to be non-analytic for preferred
semantics, i.e. S ∈ Σf

Epr
\ Σf,x
Epr

.

We proceed with the main theorem comparing finite signatures with their corre-
sponding analytical ones.

Theorem 3.57 ([Baumann et al., 2016a]). It holds that

1. Σf,x
Eσ = Σf

Eσ for σ ∈ {cf ,na, gr , il, eg, stb, stg}, and

2. Σf,x
Eσ ⊂ Σf

Eσ for σ ∈ {ad, ss, pr , co}.

In the following we present characterization theorems for finite, analytic sig-
natures or at least necessary properties for being finitely, analytically realizable.
All results can be verified via combining the main theorem above as well as the
already presented characterization theorems for finite signatures, namely Theo-
rems 3.12, 3.24 and 3.33.

Theorem 3.58. Given a set S ⊆ 2U , then

1. S ∈ Σf,x
Ecf
⇔ S is a non-empty, downward-closed and tight ext.-set,

2. S ∈ Σf,x
Ena
⇔ S is a non-empty, incomparable ext.-set and dcl(S) is tight,

3. S ∈ Σf,x
Egr
⇔ S is an ext.-set with |S| = 1,

4. S ∈ Σf,x
Eil
⇔ S is an ext.-set with |S| = 1,

5. S ∈ Σf,x
Eeg
⇔ S is an ext.-set with |S| = 1,
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6. S ∈ Σf,x
Estb
⇔ S is a incomparable and tight ext.-set,

7. S ∈ Σf,x
Estg
⇔ S is a non-empty, incomparable and tight ext.-set and

8. S ∈ Σf,x
Ead
⇒ S is a conflict-sensitive ext.-set containing ∅,

9. S ∈ Σf,x
Epr
⇒ S is a non-empty, incomparable and conflict-sensitive ext.-set,

10. S ∈ Σf,x
Ess
⇒ S is a non-empty, incomparable and conflict-sensitive ext.-set.

3.4.3 Comparing Finite, Analytic Signatures and Final Remarks

So far we have compared finite signatures and finite, analytic signatures for the
semantics under consideration. We have seen, for example, that preferred and semi-
stable semantics can realize strictly more when allowing the use of implicit conflicts,
while this is not the case for stable and stage semantics. In the following we relate the
finite, analytic signatures of all considered semantics. Remember that we observed a
considerable variety in the relations between incomparable semantics if sticking from
finite to finite, compact signatures (cf. Figures 2 and 4). However, in the analytic
case we have slight differences only as illustrated in Figure 8 (for incomparable
semantics) and formally stated in Theorem 3.60. For instance, preferred and semi-
stable signatures do not coincide anymore as shown by the following example taken
from [Baumann et al., 2016a, Figure 9, Proof of Theorem 34].

Example 3.59. Consider the following AF F as depicted below.

x1

x2

x3

F : x4

x5

x6

z1

z2

z3

z4

z5

z6

y1

y2

y3

y4

y5

y6

The preferred extension of F can be compactly presented via a cyclic successor
functions. More precisely, if s(1) = 2, s(2) = 3, s(3) = 1 and s(4) = 5, s(5) =
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6, s(6) = 4, then Epr(F) = S = S0 ∪ S1 ∪ S2 with

S0 =
{{
xi, yj , zs(i), zs(j)

}
| i ∈ {1, 2, 3}, j ∈ {4, 5, 6} or i ∈ {4, 5, 6}, j ∈ {1, 2, 3}

}
,

S1 =
{{
xi, yi, zs(i)

}
| i ∈ {1, 2, 3, 4, 5, 6}

}
and

S2 =
{{
xi, ys(i), zs(s(i))

}
,
{
xs(i), yi, zs(s(i))

}
| i ∈ {1, 2, 3, 4, 5, 6}

}
.

This means, F is pr-analytic and therefore, S ∈ Σf,x
Epr

. We show now that S /∈ Σf,x
Ess

.
Assume that there is some G = (B,S) ∈ XAFfss with Epr(G) = S. We take
a look at S1 and more specifically {x1, y1, z2} ∈ S1. Now we need an explicit
conflict between x1 and x4, but in the selected set only x1 can possibly defend
against this attack, hence (x1, x4) ∈ S. The same argument works for x1 and
x3 as well as z2 and z3, meaning that also (x1, x3), (z2, z3) ∈ S. For symme-
try reasons {(xi, xj), (xj , xi), (yi, yj), (yj , yi) | i ∈ {1, 2, 3}, j ∈ {4, 5, 6}} ⊆ S and
{(xs(i), xi), (zi, zs(i)) | i ∈ {1, 2 . . . 6}} ⊆ S.

We take a look at S2 and more specifically {x1, y2, z3} ∈ S2. As there should
be an explicit conflict between x1 and x2 with only x1 possibly defending this ex-
tension against x2 we need (x1, x2) ∈ S. Further as in this set only y2 and z3
can possibly attack z2 we have the set {y2, z3} attacking z2. For symmetry rea-
sons {(xi, xs(i)), (yi, ys(i)) | i ∈ {1, 2 . . . 6}} ⊆ S and each set {xi, zs(i)}, {yi, zs(i)} for
i ∈ {1, 2 . . . 6} attacks zi.

Finally we take a look at S0 and specifically the set I = {x1, y4, z2, z5} ∈ S0.
Since I necessarily is an admissible extension in an analytic AF we have that I
attacks all rejected arguments. By the above observations we now have that I even
attacks all arguments not being member of I in G, which means that I is a stable
extension and stable semantics and semi-stable semantics thus coincide on G. But
then, with J = {x1, y1, z2} ∈ S1 not being in conflict with for instance z4 we have
that J can not be a stable or semi-stable extension in G concluding S /∈ Σf,x

Ess
.

Σf,x
Ena

Σf,x
EprΣf,x

Ess
Σf,x

Estb
\{∅} = Σf,x

Estg

Figure 6: Subset Relations between Finite, Analytic Signatures
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Theorem 3.60 ([Dunne et al., 2015]). The following relations hold:

1. Σf,x
Eσ ⊂ Σf,x

Ena
⊂ Σf,x

Estg
⊂ Σf,x

Ess
⊂ Σf,x

Epr
for σ ∈ {gr , il, eg},

2. Σf,x
Estb

= Σf,x
Estg
∪ {∅},

3. Σf,x
Ecf
⊂ Σf,x

Ead
and

4. Σf,x
Eco
\ Σf,x
Eσ 6= ∅ and Σf,x

Eσ \ Σf,x
Eco
6= ∅ for σ ∈ {cf , ad}.

3.5 Remarks on Unrestricted AFs and Intertranslatability

Recently, some first results regarding expressibility w.r.t. unrestricted frameworks
were presented in [Baumann and Spanring, 2017]. Remember that the set of unre-
stricted frameworks, abbreviated by F , contains all AFs F = (A,R), s.t. A ⊆ U (cf.
Section 2.1 for further information). This means, F contains finite as well as infinite
AFs and especially, AFs possessing all available arguments. It is obvious that sig-
natures w.r.t. unrestricted frameworks contain more realizable sets then their finite
counterparts since finite AFs may realize finite as well as finitely many extensions
only. The following definition formally captures all considered types of signatures
(cf. Definitions 3.4, 3.42 and 3.55) without any finite assumption.

Definition 3.61. Given a semantics σ. We call the set S the

1. (unrestricted) σ-signature if S = {σ(F) | F ∈ F} abbreviated by Σσ,

2. compact σ-signature if S = {σ(F) | F ∈ CAF} abbreviated by Σc
σ and

3. analytic σ-signature if S = {σ(F) | F ∈ XAF} abbreviated by Σx
σ.

In [Baumann and Spanring, 2017] the authors were interested in a comparison
of the expressive power of several mature semantics in the unrestricted setting. The
following result shows that the relation between unrestricted signatures is intimately
connected to their relation in case of finite, compact signatures. More precisely,
non-empty relative complements in case of finite, compact signatures between two
semantics carry over to their unrestricted versions. The main reason for this relation
is the fact that unrestricted frameworks may contain any available argument of the
universe U .
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Theorem 3.62 ([Baumann and Spanring, 2017]). Given two semantics
σ, τ ∈ {na, stb, stg, ss, pr , co, gr , il, eg, cf , ad} we have:

1. If Σf,c
Eσ \ Σf,c

Eτ 6= ∅, then Σc
Eσ \ Σc

Eτ 6= ∅ and

2. If Σc
Eσ \ Σc

Eτ 6= ∅, then ΣEσ \ ΣEτ 6= ∅.

The following example illustrates the main proof idea.

Example 3.63. Let E ∈ Σf,c
Epr
\ Σf,c
Estb

(cf. Figure 4) and F = (A,R) a witnessing
framework. This means, F is finite, Epr(F) = E and pr-compact, i.e. ⋃ E = A.
Consider now H = (U , R). Obviously, E ′ = Epr(H ) = {E ∪ (U \ A) : E ∈ E}
and ⋃ E ′ = U showing the σ-compactness of H . In particular, E ′ ∈ Σc

Epr . Note
that any stb-realization of E ′ has to be compact too since there are no additional
arguments available. Assume E ′ ∈ Σc

Estb
, i.e. there is an AF G ′ = (U , R′), s.t.

Estb(G ′) = E ′. We observe that due to conflict-freeness there can not be attacks in
G ′ between arguments from A and U \ A nor between any of the arguments from
U \ A. Consequently, G = (A,R′) is finite, Estb(G) = E and stb-compact implying
that E ∈ Σf,c

Estb
in contradiction to the initial assumption.

Now we are prepared for a comparison in case of unrestricted frameworks.
Ignoring the superscripts in Figure 4 provides you with a graphical representation
for selected semantics.

Theorem 3.64. For unrestricted signatures the following hold:

1. {{E} | E ⊆ U} = ΣEσ ⊂ ΣEna ⊂ ΣEτ for σ ∈ {gr , il}, τ ∈ {stb, stg, ss, pr},

2. ΣEeg ⊂ ΣEpr ,

3. ΣEstb ⊂ ΣEσ for σ ∈ {stg, ss},

4. ΣEpr \
(
ΣEstb ∪ ΣEss ∪ ΣEstg

)
6= ∅,

5. ΣEstg \
(
ΣEstb ∪ ΣEpr ∪ ΣEss

) 6= ∅,

6. ΣEstb \ ΣEpr 6= ∅,

7. ΣEss \
(
ΣEstb ∪ ΣEpr ∪ ΣEstg

)
6= ∅,

8. ΣEco \ ΣEσ 6= ∅ and ΣEσ \ ΣEco 6= ∅ for σ ∈ {cf , ad},

9. ΣEcf ⊂ ΣEad .
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Finally, we briefly consider the closely related topic of intertranslatability. Inter-
translatability revolves around the idea of mapping one semantics to another. One
main motivation for studying this issue is the possibility to reuse a solver for one
semantics for another [Dvořák and Woltran, 2011]. The main tool for this endeavour
are functions mapping AFs to AFs, so-called translations formally defined as follows.

Definition 3.65. [Dvořák and Woltran, 2011] Given two semantics σ, τ . A function
f : F → F is called an exact translation for σ → τ , if σ(F) = τ(f(F)) for any AF
F . It is called a faithful translation if for any AF F first |σ(F)| = |τ(f(F))| and
second σ(F) = {S ∩A(F) | S ∈ τ(f(F))}.

Please note that for some semantics there are no exact translations available due
to reasons inherent to those semantics. For instance, preferred semantics satisfies
I-maximality, i.e. for any AF F , Epr(F) forms a ⊆-antichain [Baroni and Giacomin,
2007]. This implies that an exact translation Ead → Epr can not exist since for
F = ({a}, ∅) we observe {∅, {a}} = Ead(F). Sticking to faithful translations provides
us with a positive answer if we consider finite AFs only [Spanring, 2012, Translation
3.1.85]. Interestingly, the considered translation does not serve in the general unre-
stricted case and interestingly, it was shown that a search for a suitable translation
will never succeed (cf. [Baumann and Spanring, 2017, Example 6]).

The following theorem (a generalization of the finite version from [Dvořák and
Spanring 2016, Section 6.1]) establishes a close relation between realizability and
intertranslatability as promised, namely: if τ is not less expressive than σ, then σ
can be exactly translated to τ and vice versa.

Theorem 3.66 ([Baumann and Spanring, 2017]). Given two semantics σ and τ .
We have: Σσ ⊆ Στ if and only if there is an exact translation for σ → τ .

The following Figure 7 illustrates translational (im)possibilities in an eye-catch-
ing way. Figure 7b summarizes known results regarding faithful translations in the
finite case [Dvořák and Woltran, 2011; Spanring, 2012; Dvořák and Spanring, 2016],
augmented with obvious insights for unique status semantics il and eg. For seman-
tics σ, τ , encirclement in the same component indicates bidirectional translations.
An arrow from σ to τ means directional translations. If there is no directed path (for
instance for na to cf , or for cf to gr), then there is no translation. Figure 7a features
the same visualization for unrestricted AFs. Dropping the finiteness restriction has
some further consequences for the considered semantics, namely exact and faithful
intertranslatability coincide. It is an open question whether both forms of transla-
tions are essentially the same in the general unrestricted setting. In consideration
of Theorem 3.66 we may interpret Figure 7a as a comparison of the expressiveness
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of the considered semantics. That is, Σσ ⊂ Στ if and only if there is a directed path
from σ to τ .

cf

ad

gr , il

co eg

pr

na

stb

stg ss

(a) Unrestricted AFs (faithful, exact)

gr , il, eg

na

cf

ad

co

stg, ss, pr

stb

(b) Finite AFs (faithful)

Figure 7: Translational (Im)Possibilities

As a final note, in contrast to the unrestricted setting Baumann and Spanring
observed that for slightly restricted AFs F = (A,R), s.t. |A| ≤ |U \A| it is possible
to provide exact and efficiently computable translations from preferred to semi-
stable semantics via f(F) = F ′ = (A′, R′) with A′ = A ∪ {a′ | a ∈ A} and R′ =
R ∪ {(a, a′), (a′, a′) | a ∈ A}. It is an interesting question whether this restriction
allows for similar translational possibilities as in case of finite AFs.

3.6 Realizability and Signatures for Labelling-based Versions
Although any considered semantics σ possesses an extension-based version (indicated
by Eσ) as well as a closely related 3-valued labelling-based version (indicated by
Lσ) we formally have that both versions are different semantics (or more precisely,
functions) in the sense of Definition 2.2. This formal difference has some impact
on realizability as well as signatures. Let us consider realizability in the realm of
finiteness. As a matter of fact, for any considered 3-valued labelling-based version Lσ
we have: if F = (A,R) and L = (LI,LO,LU) ∈ Lσ(F), then A = LI ∪ LO ∪ LU. This
means, σ-labellings assign a status to any argument in F . Now, in case of finite AFs
we know that potentially realizable sets of labellings have to involve finitely many
arguments only. Moreover, these finitely many arguments precisely determine the
set A of witnessing AFs F = (A,R).13 Consider therefore the following example.

13This is exactly the point which does not carry over to finite realizability in case of extension-
based semantics (cf. statement 2 of Theorem 3.44).
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Example 3.67. Consider the following set of 3-valued labellings S =
{({a}, ∅, {b, c}), ({a, b}, {c}, ∅)}. Is S co-realizable? Since {a} ∪ ∅ ∪ {b, c} = {a, b, c}
we deduce that candidates have to be members of C = {F = (A,R) | A = {a, b, c}}.
Note that |C| = 2|{a,b,c}|2 = 29 = 512. Clearly, this is a huge number, but it is a
finite one. Consequently, the question of realizability can be decided by computing
the σ-labellings of all AFs in C. Of course, any intelligent search algorithm would
involve further information like {a, b} has to be conflict-free in a witnessing AF.
Such an observation would decrease the number of candidates to 25 = 32. However,
in both cases one would find the unique witnessing framework F , i.e. Lco(F) = S,
as depicted below.

aF : b c

The example above shows that the search space can be very large even in
case of small numbers of arguments. Consequently, locally verifiable necessary
as well as sufficient properties for realizability just like in case of extension-based
semantics are of high interest too. To the best of our knowledge only two pa-
pers have dealt with labelling-based realizability in the context of AFs. The first
study was presented by Dyrkolbotn [Dyrkolbotn, 2014]. The author showed that,
as long as additional arguments are allowed any finite set of labellings is realiz-
able under preferred and semi-stable semantics. It is important to emphasize that
Dyrkolbotn uses a more relaxed notion of realizibility, namely realizibility under
projection (cf. Definition 3.72). The other work [Linsbichler et al., 2016] deals
with the standard notion of finite realizability (Definition 3.3). The authors pre-
sented an algorithm which returns either “No” in case of non-realizibility or a
witnessing AF F in the positive case. The algorithm is not purely a guess-and-
check method since it also includes a propagation step where certain necessary
properties of witnessing AFs are processed. Remarkably, the algorithm is not re-
stricted to the formalism of abstract argumentation frameworks only. In fact, it
can also be used to decide realizability in case of the more general abstract dialec-
tical frameworks as well as various of its sub-classes [Brewka and Woltran, 2010;
Brewka et al., 2013].

3.6.1 Preliminary Results for Labelling-based Signatures

In the following we shed light on general relations between the labelling-based and
extension-based signatures of the considered semantics. Fortunately, due to former
characterization results we will even achieve characterizing or at least necessary
properties for finite realizability regarding labelling-based versions. We proceed
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with the definition of an labelling-set which is the n-valued analogon (for n ≥ 2)
to an extension-set as introduced in Definition 3.5. A labelling-set is a finite set
of n-tuples which are dealing with the same set of arguments and moreover, any
n-tuple assigns exactly one status to each argument in question.

Definition 3.68. Given S ⊆
(
2U
)n

. ArgsS denotes ⋃L=(L1,...,Ln)∈S
⋃n
i=1 Li and ‖S‖

stands for |ArgsS|. We say that S is a labelling-set if

1. ‖S‖ is a finite cardinal,

2. for any L = (L1, . . . ,Ln) ∈ S, ArgsS = ⋃n
i=1 Li and

3. for any L = (L1, . . . ,Ln) ∈ S, L1, . . . ,Ln are pairwise disjoint.

The following proposition establishes a connection between extension-based and
labelling-based realizibility for any considered semantics. Roughly speaking, it states
that labelling-based realizability requires extension-based realizability of the corre-
sponding sets of in-labelled arguments. For a 3-tuple L = (L1,L2,L3) we also write
(LI,LO,LU) as usual.

Proposition 3.69. Given a set of 3-tuples S ⊆
(
2U
)3
. For any semantics

σ ∈ {stb, ss, stg, cf2 , stg2 , pr , ad, co, gr , il, eg,na, cf } we have,

1. S ∈ ΣLσ ⇒ {LI | L ∈ S} ∈ ΣEσ (unrestricted realizability)

2. S ∈ Σc
Lσ ⇒ {LI | L ∈ S} ∈ Σc

Eσ (compact realizability)

3. S ∈ Σx
Lσ ⇒ {LI | L ∈ S} ∈ Σx

Eσ (analytic realizability)

4. S ∈ Σf
Lσ ⇒ {LI | L ∈ S} ∈ Σf

Eσ (finite realizability)

5. S ∈ Σf,c
Lσ ⇒ {LI | L ∈ S} ∈ Σf,c

Eσ (finite, compact realizability)

6. S ∈ Σf,x
Lσ ⇒ {LI | L ∈ S} ∈ Σf,x

Eσ (finite, analytic realizability)

Please note that the implications above are justified for any semantics σ when-
ever the different versions of it satisfy Eσ(F) = {LI | L ∈ Lσ(F)} for any relevant AF
F . In the former sections we already presented characterization theorems or at least
necessary properties for being finitely realizable regarding extension-based versions
(cf. Theorems 3.12, 3.24 and 3.33). Combining these results with the proposition
above yields the following necessary properties for finite realizability in the labelling-
based case. Note that the mentioned implications apply to finite, compact as well as
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finite, analytic signatures too since Σf,c
Lσ ⊆ Σf

Lσ as well as Σf,x
Lσ ⊆ Σf

Lσ by definition.
In case of grounded, ideal and eager semantics we have that being an one-element
labelling-set is necessary and even sufficient for being finitely realizable. One may
easily verify that the only-if-directions of these semantics are justified by the wit-
nessing framework FL = (LI ∪ LO ∪ LU, {(i, o) | i ∈ LI, o ∈ LO} ∪ {(u, u) | u ∈ LU})
given that S = {L}.

Theorem 3.70. Given a set of 3-tuples S ⊆
(
2U
)3
, then

1. S ∈ Σf
Lcf
⇒ {LI | L ∈ S} is a non-empty, downward-closed and tight ext.-set,

2. S ∈ Σf
Lna

⇒ {LI | L ∈ S} is a non-empty, incomparable ext.-set and
dcl(S) is tight,

3. S ∈ Σf
Lgr
⇔ S is a labelling-set with |S| = 1,

4. S ∈ Σf
Lil
⇔ S is a labelling-set with |S| = 1,

5. S ∈ Σf
Leg
⇔ S is a labelling-set with |S| = 1,

6. S ∈ Σf
Lstb
⇒ {LI | L ∈ S} is a incomparable and tight extension-set,

7. S ∈ Σf
Lstg
⇒ {LI | L ∈ S} is a non-empty, incomparable and tight ext.-set,

8. S ∈ Σf
Lad
⇒ {LI | L ∈ S} is a conflict-sensitive ext.-set containing ∅,

9. S ∈ Σf
Lpr
⇒ {LI | L ∈ S} is a non-empty, incomparable and

conflict-sensitive ext.-set,

10. S ∈ Σf
Lss
⇒ {LI | L ∈ S} is a non-empty, incomparable and

conflict-sensitive ext.-set.

3.6.2 Realizibility under Projection

We turn now to realizability under projection which was first considered in [Dyrkol-
botn, 2014]. In order to realize a set of labellings S under projection it suffices to
come up with an AF F , s.t. its set of labellings restricted to the relevant arguments
coincide with S. Consider therefore the following illustrating example.
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Example 3.71. Given S = {({a}, {b}, ∅), ({b}, {a}, ∅), (∅, {a, b}, ∅)}. We observe
that the corresponding set of sets of in-labelled arguments SI = {∅, {a}, {b}} violates
incomparability. Thus, applying statement 9 of Theorem 3.70 we derive that S is
not finitely pr-realizable. Consider now the following AF F .

c

b

aF :
We obtain Lpr(F) = {({a}, {b, c}, ∅), ({b}, {a, c}, ∅), ({c}, {a, b}, ∅)}. Now, if we

restrict any labelling L = (LI,LO,LU) ∈ Lpr(F) to the arguments a and b, i.e.
L|{a,b} = (LI∩{a, b},LO∩{a, b},LU∩{a, b}) we obtain exactly all labellings in S. In
this sense, S is pr-realizable under projection.

We proceed with the formal definitions. For the sake of completeness we intro-
duce realizability under projection and its corresponding signatures w.r.t. any kind
of semantics as defined in Definition 2.2.

Definition 3.72. Given a semantics σ : F → 2(2U)n. A set S ⊆
(
2U
)n

is σ-
realizable under projection if there is an AF F , s.t. σ(F )|ArgsS = {E|ArgsS | E ∈
Eσ(F)} = S (in case of n = 1) or σ(F)|ArgsS = {L|ArgsS | L ∈ Lσ(F)} = S (for
n ≥ 2), respectively.

Definition 3.73. Given a semantics σ. The unrestricted as well as finite σ-
projection-signatures are defined as follows:

1. Σp
σ = {σ(F)|B | F = (A,R) ∈ F , B ⊆ A} and

2. Σf,p
σ = {σ(F)|B | F = (A,R) ∈ F ,F is finite, B ⊆ A}

Analogously to Proposition 3.69 we state the following relation between labelling-
based and extension-based versions of the considered semantics.

Proposition 3.74. Given a set of 3-tuples S ⊆
(
2U
)3
. For any semantics

σ ∈ {stb, ss, stg, cf2 , stg2 , pr , ad, co, gr , il, eg,na, cf } we have,

1. S ∈ Σp
Lσ ⇒ {LI | L ∈ S} ∈ Σp

Eσ (unrestricted realizability under projection)

2. S ∈ Σf,p
Lσ ⇒ {LI | L ∈ S} ∈ Σf,p

Eσ (finite realizability under projection)

As a matter of fact, any projection signature is a superset of the corresponding
signature. The following question then arises naturally: how much more sets can
be generated if we stick to realizability under projection? For instance, we have
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already seen that even comparable sets are realizable under projection by semantics
satisfying incomparability (Example 3.71). It was the main result in [Dyrkolbotn,
2014, Theorem 3.1] that in case of semi-stable and preferred semantics indeed any
3-valued labelling-set is finitely realizable under projection. The proof relies on two
basic constructions. The first step generates an AF, consisting of so-called circuits,
s.t. its set of preferred as well as semi-stable labellings restricted to the relevant
arguments contains any possible labelling. The second construction eliminates un-
desired labellings step by step. Combining this realizability result with statement 2
of Proposition 3.74 yields the following theorem.

Theorem 3.75. Let σ ∈ {pr , ss}. We have,

1. Σf,p
Lσ =

{
S ⊆

(
2U
)3
| S is a labelling-set

}
and

2. Σf,p
Eσ =

{
S ⊆ 2U | S is an extension-set

}
.

3.7 Final Remarks and Conclusion
We have dealt with different forms of realizability in the context of abstract argu-
mentation frameworks. In accordance with the existing literature the main part of
this section was devoted to finite realizability for extension-based semantics. How-
ever, for any semantics σ we may state the following general subset relations depicted
as Venn-diagram.

Σf,c
σ

Σf,p
σΣf

σΣσΣp
σ

Σf,x
σ

Figure 8: Subset Relations between Different Kinds of Signatures

In case of the extension-based versions of naive, grounded, ideal, eager, stable,
stage, preferred and semi-stable semantics as well as conflict-free and admissible sets
we provided exact characterizations for their corresponding general signatures. We
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have seen that for some semantics we do not lose any expressive power if sticking
to compact or analytic AFs, i.e. Σf

σ = Σf,c
σ or Σf

σ = Σf,x
σ , respectively. However, for

certain prominent semantics, e.g. preferred semantics we have that the expressive
power indeed relies on the use of rejected arguments or implicit conflicts. For such
semantics, it remains an open problem to present exact characterizations for finite,
compact or finite, analytic realizability, respectively. In case of labelling-based ver-
sions of semi-stable and preferred semantics we have seen that any labelling-set is
realizable under projection. In [Dyrkolbotn, 2014] it was already noted that this
equality does not hold for any semantics. For instance, the empty labelling is ad-
missible for any AF F . Hence, in case of admissible semantics, no labelling-set is
realizable under projection if it fails to include the empty labelling.

Finally, let us mention some computational issues not considered so far. It can
be said that on the one hand, the classes of finite, compact and finite, analytic
provide computational benefits both in practice and in terms of theoretical worst-
case analysis. On the other hand testing for membership in one of the classes is,
for most of the semantics, of rather high complexity and thus these classes cannot
be directly used to improve systems. We refer the interested reader to [Baumann et
al., 2016a] for more details. Moreover, in general, given an extension-set S, deciding
whether S is compactly realizable is a hard problem, that is, by definition of the
decision problem there are no good reasons to believe that we can do any better
than guessing a compact AF and checking whether its extension-set coincides with S.
Nevertheless, for some semantics we have seen that finite, compact realizability can
be characterized locally, i.e. by properties of S itself (as shown in Theorem 3.45). In
this case, finite, compact realizability can be checked in polynomial time as shown
in [Dunne et al., 2015, Theorem 6]. Moreover, in [Baumann et al., 2016a] a huge
number of shortcuts to detect non-compactness are provided. By shortcut we mean
a property of the given extension-set S that is easily computable (preferably in
polynomial time) which (sometimes) provides us with a definitive answer to the
decision problem. These shortcuts are related to numerical aspects of argumentation
frameworks like results concerning maximal number of extensions [Baumann and
Strass, 2013].

4 Replaceability

Given a certain logical formalism L and two syntactically different L-theories T1 and
T2. One central question is whether, and if so, how to decide that these L-theories
represent the same information? Of course, in order to answer this question we
have to clarify what we exactly mean by sharing the same information first. Note
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that there is neither a uniquely determined, nor a certain preferred interpretation
by the formalism L itself. For instance, equating information with possessing the
same semantics yields to the well-known notion of ordinary or standard equivalence.
This means, assuming that σL is the semantics of L we might answer that T1 and
T2 are equivalent if and only if σL(T1) = σL(T2). A more demanding interpretation
of sharing the same information is to require that T1 and T2 are semantically indis-
tinguishable even if further L-theories T are added to both simultaneously. More
formally, we may state: T1 and T2 are considered to be equivalent if and only if
σL(T1 ∪ T ) = σL(T2 ∪ T ) for any theory T . This notion is known as strong equiva-
lence and is of high interest for any logical formalism since it allows one to locally
replace, and thus give rise for simplification, parts of a given theory without chang-
ing the semantics of the latter. In contrast to classical (monotone) logics where
standard and strong equivalence coincide (cf. [Baumann and Strass, 2016] for more
detailed information on this issue), it is possible to find ordinary but not strongly
equivalent objects for any nonmonotonic formalism available in the literature. Con-
sequently, much effort has been devoted to characterizing strong equivalence for
nonmonotonic formalisms such as logic programs [Lifschitz et al., 2001], causal the-
ories [Turner, 2004], default logic [Turner, 2001] as well as nonmonotonic logics in
general [Truszczynski, 2006].

In [Oikarinen and Woltran, 2011] the authors introduced the notion of strong
equivalence for abstract AFs. They provided a series of characterization theorems
for deciding strong equivalence of two AFs with respect to several semantics. In
view of the fact that strong equivalence is defined semantically it is the main and
quite surprisingly insight that being strongly equivalent can be decided syntacti-
cally. More precisely, they introduced the notion of a kernel of an AF F which is
(informally speaking) a subgraph of F where certain attacks are deleted and showed
that syntactical identity of suitably chosen kernels characterizes strong equivalence
w.r.t. the considered semantics. Strong equivalence is, as its name suggests, a very
(and often unnecessarily to) strong notion of equivalence if dynamic evolvements are
considered. In many argumentation scenarios the type of modification which may
potentially occur can be anticipated and furthermore, more importantly, does not
range over arbitrary expansions as required for strong equivalence. Let us consider
the instantiation-based context where AFs are built from an underlying knowledge
base. Here, we typically observe that older arguments and their corresponding at-
tacks survive and only new arguments which may interact with the previous ones
arise given that a new piece of information is added to the underlying knowledge
base. This type of dynamic evolvement is a so-called normal expansion and its
corresponding equivalence notion were firstly studied in [Baumann, 2012a]. Over
the last five years several equivalence notions taking into account specific types of
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evolvements reflecting the nature of various argumentation scenarios were defined
and characterized. The considered dynamic scenarios range from the most gen-
eral form, so-called updates [Baumann, 2014a] where arguments and attacks can be
deleted and added to different types of expansions [Oikarinen and Woltran, 2011;
Baumann, 2012a; Baumann and Brewka, 2010] and deletions [Baumann, 2014a]
where arguments and/or attacks are allowed to be added or deleted in a certain way
only.

Into the year 2015 all characterization theorems were stated in terms of extension-
based semantics. Recently, Baumann presents their labelling-based counterparts
and showed that, although labelling-based semantics contain more information then
there extension-based counterpart, there is a majority of equivalence relations where
labelling-based and extension-based versions coincide [Baumann, 2016]. Even more
recently, a first consideration of strong equivalence regarding unrestricted frame-
works were presented in [Baumann and Spanring, 2017]. It turned out that there
are no characterizational differences compared to the finite case as long as the AFs
in question are jointly expandable, i.e. that the existence of fresh arguments is guar-
anteed.

Another approach somehow complementary to the ones mentioned before is pre-
sented in [Baroni et al., 2014] where sharing the same information is interpreted
as possessing the same Input/Output behavior. Roughly speaking, the main idea
is to consider an argumentation framework as a kind of black box which receives
some input from the external world (i.e, a set of external arguments) via incoming
attacks and produces an output to the external world via outgoing attacks. Such
an interacting module is called an argumentation multipole. Two multipoles con-
nected with the same external world are considered as Input/Output equivalent if
the effects, i.e. the produced labellings for external arguments are the same for any
reasonable input-labelling. This notion yields the possibility of replacing a multipole
with another one embedded in a larger framework without affecting the labellings
of the unmodified part of the initial framework. In the following we shed light on
equivalence notions induced by certain dynamic scenarios.

4.1 Dynamic Scenarios and Corresponding Equivalence Notions

There are two main classes of dynamic scenarios, namely expansions and deletions.
Both of them can be further divided in normal and local versions. These scenarios are
motivated by real-world argumentation as well as instantiation-based argumentation
[Caminada and Amgoud, 2007]. For instance, let us consider the dynamics of a
discussion or dispute illustrated by the following citation [Besnard and Hunter, 2009]:

2844



On the Nature of Argumentation Semantics

How does argumentation usually take place? Argumentation starts when
an initial argument is put forward, making some claim. An objection is
raised, in the form of a counterargument. The latter is addressed in turn,
eventually giving rise to a counter-counterargument, if any. And so on.

This means, in order to strengthen the own point of view or to rebut the
opponents arguments it is natural that one tries to come up with stronger arguments,
i.e. new arguments which are not attacked by the former arguments. This type of
dynamics is formally captured by so-called strong expansions [Baumann and Brewka,
2010]. The formal counterpart of it, so-called weak expansions [Baumann and
Brewka, 2010], where the new arguments do not attack (but may be attacked by) the
old ones seem to be more an academic exercise than a task with practical relevance
with regard to real-world argumentation.14 Let us turn to instantiation-based argu-
mentation where arguments and attacks stem from an underlying knowledge base
(cf. [Caminada and Amgoud, 2007; Besnard and Hunter, 2008]). What happens on
the abstract level if a new piece of information is added? It turns out that in al-
most all deductive argumentation systems older arguments and their corresponding
attacks survive and only new arguments which may interact with the previous ones
arise. This type of dynamic evolvement is formally captured by so-called normal ex-
pansions. Local expansions in contrast, i.e. expansions where new attacks are added
only correspond to re-instantiations if we change to a less restrictive notion of attack
(cf. [Besnard and Hunter, 2001] for different attack notions).

We start with the definition of the different types of expansions together with
some introducing examples.

Definition 4.1 ([Baumann and Brewka, 2010]). An AF G is an expansion of AF
F = (A,R) (for short, F �E G) iff G = (A ∪̇ B,R ∪̇ S) for some (maybe empty)
sets B and S. An expansion is called

1. normal (F �N G) iff ∀ab ((a, b) ∈ S → a ∈ B ∨ b ∈ B),

2. strong (F �S G) iff F �N G and ∀ab ((a, b) ∈ S → ¬(a ∈ A ∧ b ∈ B)),

3. weak (F �W G) iff F �N G and ∀ab ((a, b) ∈ S → ¬(a ∈ B ∧ b ∈ A)),

4. local (F �LG) iff B = ∅.

For short, being a normal expansion means that new attacks must involve at
least one new argument in contrast to local expansions where new attacks involve

14We mention that they do play a decisive role w.r.t. computational issues, so-called splitting
methods (cf. [Baumann, 2011; Baumann et al., 2011; Baumann et al., 2012]).
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old arguments only. Moreover, strong and weak expansions are normal and their
names refer to properties of the additional arguments, namely arguments which are
never attacked by former arguments (so-called strong arguments) and arguments
which do not attack former arguments (so-called weak arguments).

Observe that any arbitrary expansion can be splitted up in a normal and a local
part. This can be nicely seen in the following example.

Example 4.2. The AF F is the initial framework. An arbitrary, normal, strong,
weak or local expansion of it are FE, FN , FS, FW and FL, respectively. Grey-
highlighted arguments or attacks represent added information.

aF : b aFE : b

c d

aFN : b

c d

aFS : b

c d

aFW : b

c d

aFL : b

Figure 9: Different Kinds of Expansions

In 2014 the natural counter-parts (or more precisely, inverse operations) to
arbitrary, normal and local expansions, so-called deletions were introduced
[Baumann, 2014a]. Furthermore, the most general form of a dynamic scenario
(where expansion and deletion can be combined) a so-called update were consid-
ered too. Analogously to expansions, any arbitrary deletion can be splitted in a
normal and a local part. This means, a normal deletion retract arguments and their
corresponding attacks. Local deletions in contrast delete attacks only.15 The main
motivation behind these notions stems from instantiation-based context. More pre-
cisely, a normal deletion on the abstract level correspond to deleting information of a
given knowledge base. Changing to a more restrictive notion of attack correspond to
a local deletion and a combination of both of them give rise to an arbitrary deletion
on the abstract level. We proceed with the formal definitions as well as introductory
examples.

15We mention that strong as well as weak deletions are not introduced/considered so far. They
could be easily defined as inverse operations of their expansion counterparts. Before doing so, it
would be interesting to identify real-world situations or instantiation-based dynamics were such
kind of evolvements naturally occur.
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Definition 4.3 ([Baumann, 2014a]). Given an AF F = (A,R), a set of arguments
B and a set of attacks S as well as a further AF H . The AF

G = (F \ [B,S]) ∪H :=
(
(A,R \ S)|A\B

)
∪H

is called an update of F (for short, F �U G). An update is called a
1. deletion (F �D G) iff H = (∅, ∅),
2. normal deletion (F �ND G) iff (F �D G) and S = ∅,
3. local deletion (F �LD G) iff F �D G and B = ∅.
Let us take a closer look at the definition of G = (F \ [B,S]) ∪ H . The AF

H plays the role of added information, i.e. it contains new arguments and attacks.
Consequently, for all kind of deletions we have H = (∅, ∅) which leaves us with G =
F\[B,S]. The set B contains arguments which have to deleted. Since attacks depend
on arguments we have to delete the attacks which involve arguments from B too.
This operation is formally captured by the restriction of F to A \ B. Furthermore,
the set S contains particular attacks which have to be deleted. This means, the
pair [B,S] does not necessarily have to be an AF. Therefore we use [B,S] instead
of (B,S). If clear from context we use B and S instead of [B, ∅] or [∅, S], i.e. we
simply write F \B as well as F \ S for normal or local deletions, respectively.
Example 4.4. The AF F represents the initial situation. An update as well as
arbitrary, normal or local deletion of it are given by FU , FD, FND and FLD. Grey-
highlighted arguments or attacks represent added information in contrast to dotted
arguments and attacks which represent deleted objects.16 More formally, in accor-
dance with Definition 4.3 we have that FU = (F \ [B,S]) ∪ H , FD = F \ [B,S],
FND = F \B, FLD = F \ S where the set of arguments B = {c}, the set of attacks
S = {(b, a)} and the AF H = ({b, d, e, f}, {(d, b), (e, f), (f, d)}).

aF : b

c d

aFU : b

c d

e

f

aFD : b

c d

aFND : b

c d

aFLD : b

c d

Figure 10: An Update and Different Kinds of Deletions
16This convention will be used throughout the whole section.
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We now turn to the corresponding equivalence notions (cf. [Baumann and Strass,
2015, Section 3.8] for chronological order). Two AFs F and G are said to be ordinarily
equivalent w.r.t. a semantics σ if they possess the same σ-extensions/labellings. In
this case, we say that F and G possess the same explicit information. In contrast,
sharing the same implicit information, i.e. being semantically indistinguishable w.r.t.
any suitable future scenario is a much more demanding property which allows to
replace F and G by each other without loss of semantical information.

Example 4.5. Consider the following AFs F and G. We have Epr(F) = Epr(G) =
{{a}}. This means, F and G possess the same explicit information w.r.t. preferred
semantics or in other words, they are ordinarily equivalent.

aF : b c aG : b c

Assume that expansions as well deletions are the dynamic scenarios of inter-
est. This means, we ask whether the AFs F and G even possess the same implicit
information w.r.t. expansions or deletions, respectively? In order to give a nega-
tive answer one has to come up with one single dynamic scenario were the revised
versions possess different preferred extensions. A positive answer in contrast is a
statement about infinitely many dynamic scenarios (even in case of finite AFs). In
this example, we give a negative answer for both modification types.

In case of expansions, we conjoin to both the AF H = ({a, b}, {(b, a)}). Consider
the resulting frameworks below. We have Epr(F∪H ) = {{a}, {b}} and since G∪H =
G we obtain Epr(G ∪H ) = {{a}} without re-computing.

aF ∪H : b c aG ∪H : b c

To reveal the inherent difference between F and G in case of deletions we may
retract with the argument c. Consider the resulting (normal) deletions F \ {c} and
G \ {c} of F or G, respectively. Now, {b} becomes a preferred extension in F \ {c}
but still not in G \ {c}.

aF \ {c} : b c aG \ {c} : b c

We now formally define what we precisely mean by possessing the same implicit
information. As already stated, the first paper in this line of work was [Oikarinen
and Woltran, 2011] engaged with characterizing strong equivalence. For the sake
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of clarity and comprehensibility we use the term expansion equivalence since strong
equivalence [Oikarinen and Woltran, 2011, Definition 2] corresponds to semantical
indistinguishability w.r.t. arbitrary expansions.

Definition 4.6. Given a semantics σ. Two AFs F and G are

1. ordinarily equivalent w.r.t. σ (for short, F ≡σG) iff σ(F) = σ(G),

2. expansion equivalent w.r.t. σ (for short, F ≡σE G) iff for each AF H we have,
F ∪H ≡σG ∪H ,

3. normal expansion equivalent w.r.t. σ (for short, F ≡σN G) iff for each AF H ,
such that F �N F ∪H and G �N G ∪H we have, F ∪H ≡σG ∪H ,

4. strong expansion equivalent w.r.t. σ (for short, F ≡σS G) iff for each AF H ,
such that F �S F ∪H and G �S G ∪H we have, F ∪H ≡σG ∪H ,

5. weak expansion equivalent w.r.t. σ (for short, F ≡σW G) iff for each AF H ,
such that F �W F ∪H and G �W G ∪H we have, F ∪H ≡σG ∪H ,

6. local expansion equivalent17 w.r.t. σ (for short, F ≡σL G) iff for each AF H ,
such that A(H ) ⊆ A(F ∪G) we have, F ∪H ≡σG ∪H .

7. update equivalent w.r.t. σ (for short, F ≡σU G) iff for any pair [B,S] and any
AF H we have, (F \ [B,S]) ∪H ≡σ (G \ [B,S]) ∪H ,

8. deletion equivalent w.r.t. σ (for short, F ≡σDG) iff for any pair [B,S] we have,
F \ [B,S] ≡σG \ [B,S],

9. normal deletion equivalent w.r.t. σ (for short, F ≡σND G) iff for any set of
arguments B we have, F \B ≡σG \B,

10. local deletion equivalent w.r.t. σ (for short, F ≡σLDG) iff for any set of attacks
S we have, F \ S ≡σG \ S,

Remember that there are several relations between the considered dynamic sce-
narios. For instance, in accordance with Definitions 4.1 and 4.3, any normal ex-
pansion (deletion) is an arbitrary expansion (deletion). Furthermore, in the light of
Definition 4.6, we certainly affirm that expansion equivalence is much more demand-
ing then local expansion equivalence. In other words, local expansion equivalence of

17Note that a suitable AF H is not necessarily a local expansion of F and G in the sense of
Definition 4.1. Nevertheless, we may loosely speak about local expansions.
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two AFs is an immediate and unavoidable consequence of being expansion equivalent.
Finally, any considered equivalence notion is at least as demanding then ordinary
equivalence.18 Please note that these relations do not depend on certain properties
of a considered semantics. Consequently, Figure 11 gives a preliminary overview for
such interrelations (arising from the definitions) between the introduced equivalence
notions for any possible semantics. For reasons, which will become clearer later, we
also consider the identity relation. For two equivalence notion Φ and Ψ we have
Φ ⊆ Ψ iff there is a link from Φ to Ψ.

identity
relation

update
equivalence

expansion
equivalence

deletion
equivalence

local
deletion
equivalence

normal
deletion
equivalence

local
expansion
equivalence

normal
expansion
equivalence

strong
expansion
equivalence

weak
expansion
equivalence

ordinary
equivalence

Figure 11: Preliminary Subset Relations between Equivalence Notions

In the remainder of this section we shed light on the question of how to determine
whether two AFs are equivalent w.r.t. certain scenarios? As a by-product of these
characterization results we will see that for many semantics the preliminary relations
between the introduced equivalence notions depicted above can be delineated in a
much more compact way. The majority of the presented characterization results is
devoted to finite AFs as well as extension-based semantics. We will see that there
are some differences if sticking to unrestricted frameworks or the corresponding
labelling-based versions.

18The empty framework (∅, ∅) as well as the empty pair [∅, ∅] justifies this assertion for any type
of expansions or deletions, respectively.
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4.2 Characterization Theorems for Extension-based Semantics
4.2.1 The Central Notion of Expansion Equivalence

In order to get an idea of how to find a characterization we start with some re-
flections. For this purpose we consider the most restrictive semantics, namely the
stable one as well as the most prominent type of equivalence, namely expansion
equivalence. What are necessary features of expansion equivalence w.r.t. stable
semantics, i.e. which properties are implied if two AFs F and G are expansion
equivalent? In consideration of Figure 11 we deduce their ordinary equivalence, i.e.
Estb(F) = Estb(G). Note that possessing the same set of extensions neither imply
sharing the same arguments nor sharing the same self-loops as shown in the following
example.

Example 4.7. Consider the AFs F , G and H . Each two of them are ordinarily
equivalent since Estb(F) = Estb(G) = Estb(H ) = {{a}}.

aF : b c aG : b aH : b c

The AFs I1 = ({c}, ∅) and I2 = ({a, b, c}, {(b, a), (b, c)}) witness that neither F
and G, nor F and H are expansion equivalent w.r.t. stable semantics. Convince
yourself that Estb(F ∪ I1) = {{a}} 6= {{a, c}} = Estb(G ∪ I1) and Estb(F ∪ I2) =
{{a}, {b}} 6= {{a}} = Estb(G ∪ I2).

Restricting ourselves to finite AFs, it is not difficult to see that in case of expan-
sion equivalence w.r.t. stable semantics the observed relation between non-sharing
the same arguments/loops and non-equivalence does hold in general. In other words,
possessing the same arguments as well as possessing the same loops are indeed nec-
essary conditions for being expansion equivalent in the finite setting.

Let us summarize our observations in the following fact.

Fact 4.8. Given two finite AFs F and G. If F ≡Estb
E G, then

1. Estb(F) = Estb(G),

2. A(F) = A(G) and

3. L(F) = L(G).

As already stated in Figure 11, being identical (i.e. A(F) = A(G) and R(F) =
R(G)) is sufficient for being expansion equivalent. Combining this undeniable fact
together with the second and third items of Fact 4.8 encourages one to search for
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syntactical properties sufficient as well as necessary for being expansion equivalent.
In order to guarantee the first item of Fact 4.8 we have to identify attacks which do
not contribute anything when computing stable extensions. Moreover, these attacks
which do not affect the evaluation of a given AF F have to be redundant, no matter
how F is extended. Remember that being a stable extension can be simply verified
by checking whether the set in question is conflict-free and possesses a full range.19

This means, good candidates for “useless” attacks w.r.t. stable semantics should
fulfill the following two properties: firstly, having or not having such an attack does
not change the status of a set from being conflict-free to conflicting or vice versa and
secondly, having or not having such an attack does not affect the range of a conflict-
free set. Certainly, an attack (a, b) stemming from a self-defeating argument a does
not change the conflict status of a certain set E. This can be seen as follows: If
a ∈ E, then E was conflicting as well as remains conflicting after deleting or adding
(a, b). Furthermore, if a /∈ E, then E might be conflicting or not. In either case the
conflict status of E does not change if (a,b) is added or removed since {a, b} * E.
Finally, such an attack (a, b) might have an influence on the range of conflicting
sets but it definitely has not in case of conflict-free sets since a /∈ E can not be
questioned.

Example 4.9. Consider the following AF F . We have, Estb(F) = {{a}}.

aF : b c

According to our considerations above adding or deleting an attack stemming
from the self-defeating argument b does not change the semantics. Consider therefore
the following three possible “manipulations”.

aG1 : b c aG2 : b c aG3 : b c

Indeed, Estb(F) = Estb(G1) = Estb(G2) = Estb(G3) = {{a}} support our claims
for the static case. We encourage the reader to try to do the impossible, namely
semantically distinguish the AFs F and its manipulations by an arbitrary expansion.

It was the main result in [Oikarinen and Woltran, 2011] that expansion equiva-
lence can be indeed decided by looking at the syntax only. The authors introduced

19The topic of verifiability of argumentation semantics σ was studied in [Baumann et al., 2016b].
The main question is which (minimal amount of) information on top of conflict-free sets is exactly
needed to determine whether a certain set is a σ-extension.
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so-called kernels which are simply functions mapping each AF F to its redundancy-
free version. This means, the kernel of an AF F does not possess any redundant
attack. Put it differently, for any surviving attack exist at least one dynamic sce-
nario were deleting this attack would cause a semantical difference. We proceed
with the formal definition of the very first kernels already introduced in [Oikarinen
and Woltran, 2011]. We sometimes call them classical.
Definition 4.10. Let σ ∈ {stb, ad, gr , co}. The σ-kernel k(σ) : F → F with
k(σ)(F) = Fk(σ) =

(
A,Rk(σ)

)
for a given AF F = (A,R) is defined as:

Rk(stb) = R \ {(a, b) | a 6= b, (a, a) ∈ R},
Rk(ad) = R \ {(a, b) | a 6= b, (a, a) ∈ R, {(b, a), (b, b)} ∩R 6= ∅},
Rk(gr) = R \ {(a, b) | a 6= b, (b, b) ∈ R, {(a, a), (b, a)} ∩R 6= ∅},
Rk(co) = R \ {(a, b) | a 6= b, (a, a), (b, b) ∈ R}.

In order to get an idea of how the classical kernels work we proceed with an
example.
Example 4.11. Consider again the AF G3 depicted in Example 4.9. We apply now
all classical kernels.

aGk(stb)
3 : b caG3 : b c

aGk(gr)
3 : b caGk(ad)

3 : b c

The stable kernel deletes all attacks (a, b) stemming from a self-defeating argu-
ment a. A deletion of (a, b) in case of the grounded kernel additionally requires that
a is counter-attacked by b or b is self-defeating or both. Interchanging a and b yields
the condition for deletion in case of the grounded kernel. Finally, Gk(co)

3 = G3 since
deleting an attack (a, b) w.r.t. the complete kernel requires that both arguments a
and b are self-defeating.

Before turning to characterization theorems, we collect some useful properties
of the introduced kernels. The following fact contains intrinsic properties of the
classical kernels.20 More precisely, any classical kernel k is node-preserving and loop-
preserving, i.e. the sets of arguments and self-defeating arguments do not change

20Although most of the properties are immediately clear even in case of unrestricted frameworks
we will state all of them for finite AFs only as done in the existing literature. The same applies to
Fact 4.18. Some results regarding unrestricted frameworks can be found in Section 4.3.
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if applying k. Moreover, in the absence of self-loops, each AF coincides with its
classical kernels. Furthermore, the decision whether an attack (a, b) has to be deleted
does not depend on further arguments than a and b. Put differently, the reason of
being redundant is context-free, i.e. it stems from the arguments themselves. The
last two properties claim that equality of kernels is robust w.r.t. further compositions
as well as deleting arguments and corresponding attacks. For a given AF F = (B,S)
we use A(F), R(F) and L(F) to refer to its arguments, attacks and self-defeating
arguments, i.e. A(F) = B, R(F) = S and L(F) = {a ∈ A(F) | (a, a) ∈ R(F)}.

Fact 4.12 (cf. [Oikarinen and Woltran, 2011; Baumann, 2014a]). Given
k ∈ {k(stb), k(ad), k(gr), k(co)}. For any finite AF F we have:

1. A(F) = A
(
Fk
)
, (node-preserving)

2. L(F) = L
(
Fk
)
, (loop-preserving)

3. L(F) = ∅ ⇒ F = Fk and (sufficient condition for identity)

4. (a, b) ∈ R
(
Fk
)
⇔ (a, b) ∈ R

(
(F |{a,b})k

)
. (context-freeness)

Furthermore, for finite AFs F and G we have:

4. If Fk = Gk , then (F ∪H )k = (G ∪H )k for any finite AF H (∪-robustness)

5. If Fk = Gk , then (F \B)k = (G \B)k for any finite set of args B.
(\-robustness)

We proceed with extrinsic properties, i.e. features of kernels in presence of se-
mantics. More precisely, stable, admissible, grounded and complete semantics are
insensitive w.r.t. the application of their corresponding classical σ-kernel, i.e. the
set of σ-extensions remains unchanged. Furthermore, the admissible kernel neither
effects semi-stable, eager, preferred and ideal semantics. Similarly in case of stable
kernel and stage semantics.

Fact 4.13 ([Oikarinen and Woltran, 2011; Gaggl and Woltran, 2013]). For any
finite AF F we have:

1. Eσ(F) = Eσ
(
Fk(σ)

)
for σ ∈ {stb, ad, gr , co},

2. Eσ(F) = Eσ
(
Fk(ad)

)
for σ ∈ {ss, eg, pr , il} and

3. Estg(F) = Estg
(
Fk(stb)

)
.
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As already mentioned, kernels play a decisive role in deciding expansion equiva-
lence. In general, we say that an equivalence notion ≡ is characterizable through k
or simply, k is a characterizing kernel (of ≡) if for any two AFs F and G, F ≡ G iff
Fk = Gk . This means, proving whether two frameworks are equivalent can be done
by simply checking whether the corresponding kernels are identical. Note that all
classical kernels can be efficiently constructed from a given AF. The following main
theorem states that for all nine considered semantics σ there is a certain classical
kernel k, s.t. expansion equivalence w.r.t. σ is characterizable through k in the fi-
nite setting. This is a very remarkable result since expansion equivalence is defined
semantically. For instance, two finite AFs F and G are expansion equivalent w.r.t.
stable semantics if and only if the associated stable kernels Fk(stb) and Gk(stb) are
syntactically equal. Observe that there is no need to introduce further kernels since
one single kernel may serve for different semantics.

Theorem 4.14. [Oikarinen and Woltran, 2011; Gaggl and Woltran, 2013] For finite
AFs F and G we have:

1. F ≡EσE G ⇔ Fk(σ) = Gk(σ) for any σ ∈ {stb, ad, co, gr},

2. F ≡EσE G ⇔ Fk(ad) = Gk(ad) for any σ ∈ {pr , il, ss, eg} and

3. F ≡Estg
E G ⇔ Fk(stb) = Gk(stb).

Having Theorem 4.14 at hand we can now formally verify that all AFs depicted
in Example 4.9 are expansion equivalent w.r.t. stable semantics. This means, the
recommended search for arbitrary expansions revealing semantical difference be-
tween them will never succeed. As an aside, one might get the impression that the
syntactical characterization presented in Theorem 4.14 is somehow unique. This is
not true. Consider therefore the equivalence class [F ]Estb

E = {G | F ≡Estb
E G} induced

by F . Mathematically speaking, the stable kernel Fk(stb) represents the least (w.r.t.
subgraph-relation) element in [F ]Estb

E . It is not difficult to prove that [F ]Estb
E even

possesses a greatest element, namely Fk′(stb) = (A(F), R(F) ∪ {(a, b) |
a 6= b, (a, a) ∈ R(F)}), i.e. the framework resulting from F by adding (instead of
deleting) all redundant attacks. In case of finite AFs it can be shown with reasonable
effort that expansion equivalence w.r.t. stable semantics is characterizable through
k ′(stb) too. In the same manner, all other semantics considered in Theorem 4.14 pos-
sess alternative “greatest elements” characterizations. We will see that the so-called
naive kernel (compare Definition 4.17) provides such a kind of characterization for
naive semantics. The reason for this “choice” is simply that the induced equivalence
classes do not necessarily possess a least element in case of naive semantics.
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Finally, let us turn to the more exotic cf2 as well as stage2 semantics which
are defined via a recursive schema based on the decomposition of AFs along their
strongly connected components (SCCs). These semantics are exceptional regarding
expansion equivalence since in contrast to all other semantics considered in this sec-
tion we have that even attacks between two self-attacking arguments are meaningful.
This means, the presence or absence of such attacks may change the outcome of an
AF. Moreover, it turned out that any attack is non-redundant. In summary, expan-
sion equivalence coincides with syntactical identity or more formally, for any finite
AF F ,

∣∣∣[F ]Ecf2
E

∣∣∣ =
∣∣∣[F ]Estg2

E

∣∣∣ = |{F}| = 1.

Theorem 4.15. [Gaggl and Woltran, 2013; Gaggl and Dvořák, 2016] Given seman-
tics σ ∈ {cf2 , stg2}. For finite AFs F and G we have,

F ≡EσE G ⇔ F = G.

4.2.2 Further Equivalence Notions Characterizable through Kernels

Let us turn to the remaining equivalence notions? Are there similar syntax-based
characterization results?

Weaker Notions of Expansion Equivalence Let us consider less demanding
notions than expansion equivalence, e.g. normal and local expansion equivalence.
In consideration of Definition 4.1 we do not have good reasons to believe that two
AFs could be semantically distinguished by normal or local expansions, given that
we only have a witnessing arbitrary expansion showing their non-equivalence. It
was one surprising result in this line of research, that for many semantics, expansion
equivalence coincide with definitorially weaker notions of it. This implies that weaker
notions than expansion equivalence can be characterized by classical kernels too.
The first results in this respect were already given in [Oikarinen and Woltran, 2011,
Theorem 8]. The authors showed that for some semantics expansion equivalence and
local expansion equivalence coincide if considering finite AFs. It is worthwhile to gain
a thorough understanding of this relation since it actually means that if there is an
arbitrary expansion which semantically distinguish two finite AFs, than there has to
be a local expansion doing likewise. Later it was shown that even normal expansion
equivalence coincides with expansion equivalence for a whole bunch of semantics
[Baumann, 2012a]. Interestingly, in contrast to local expansion equivalence, there
are (to the best of our knowledge) no semantics together with witnessing AFs known
which show that this coincidence does not hold in general.
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Example 4.16. Consider the following AFs F and G. According to Theorem 4.14
they are not expansion equivalent w.r.t. preferred semantics since Fk(ad) = F 6= G =
Gk(ad).

aF : b c aG : b c

As already stated (up to now) normal expansion equivalence coincides with expan-
sion equivalence for any considered semantics. One possible scenario which makes
the predicted different behaviour explicit is the following.

aF ∪H : b c

d

aG ∪H : b c

d

Formally, we define H = ({b, c, d}, {(b, d), (d, c)}) and we obtain {{a, d}} =
Epr(F ∪ H ) 6= {∅} = Epr(G ∪ H ). We encourage the reader to try to find a wit-
nessing example showing that F and G are not local expansion equivalent w.r.t.
preferred semantics. Due to Theorem 4.20 there has to be at least one distinguishing
local expansion.

How do the semantics behave in case of strong expansion equivalence? Re-
member, a special feature of strong expansions is that a former attack between old
arguments will never become a counterattack to an added attack. In this sense, for-
mer attacks do not play a role with respect to being a potential defender of an added
argument. Hence, in contrast to arbitrary expansions where such attacks might be
relevant, we may delete them without changing the behavior with respect to further
evaluations. To make this point clearer consider again the AF F ∪ H depicted in
Example 4.16. Note that the already existing attack (a, b) in F becomes a defending
attack of the newly added argument d. This means, such attacks in fact play an
important role with respect to further evaluation in case of arbitrary expansions.
It was one main result in [Baumann, 2012a] that for some semantics attacks like
(a, b) in F are indeed redundant w.r.t. strong expansions. Even more surprising,
strong expansion equivalence is characterizable through kernels. Therefore, more
involved kernel definitions, so-called σ-*-kernels had to be introduced. These ker-
nels allow more deletions than their classical counterparts for expansion equivalence.
In contrast to them, σ-*-kernels are context-sensitive, i.e. the question whether an
attack (a, b) is redundant can not be answered by considering the arguments a and
b only [Baumann, 2014a].

The first three kernels presented in the definition below were firstly introduced
in [Baumann, 2012a] with the objective to characterize strong expansion equivalence
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with respect to certain semantics. For the sake of completeness we also present the
so-called stg-*-kernel as well as na-kernel [Baumann and Woltran, 2016; Baumann
et al., 2016b].21

Definition 4.17. Let σ ∈ {ad, gr , co, stg}. The σ-*-kernel k∗(σ) : F → F with
k∗(σ)(F) = Fk∗(σ) =

(
A,Rk∗(σ)

)
for a given AF F = (A,R) is defined as:

Rk∗(ad) = R \ {(a, b) | a 6= b, ((a, a) ∈ R ∧ {(b, a), (b, b)} ∩ R 6= ∅)
∨ ((b, b) ∈ R ∧ ∀c ((b, c) ∈ R→ {(a, c), (c, a), (c, c), (c, b)} ∩R 6= ∅))},

Rk∗(gr) = R \ {(a, b) | a 6= b, ((b, b) ∈ R ∧ {(a, a), (b, a)} ∩ R 6= ∅)
∨ ((b, b) ∈ R ∧ ∀c ((b, c) ∈ R→ {(a, c), (c, a), (c, c)} ∩R 6= ∅))},

Rk∗(co) = R \ {(a, b) | a 6= b, ((a, a), (b, b) ∈ R) ∨ ((b, b) ∈ R ∧ (b, a) /∈ R
∧∀c ((b, c) ∈ R→ {(a, c), (c, a), (c, c), (c, b)} ∩R 6= ∅))},

Rk∗(stg) = R \ {(a, b) | a 6= b, (a, a) ∈ R ∨ ∀c (c 6= a→ (c, c) ∈ R)}
Rk(na) = R ∪ {(a, b) | a 6= b, {(a, a), (b, a), (b, b)} ∩R 6= ∅}.

The latter represents the so-called na-kernel Fk(na) =
(
A,Rk(na)

)
.

For an illustrating example we refer the reader to Example 4.19. Analogously to
Fact 4.12 we collect some properties of the newly introduced kernels. The first three
properties are immediately clear by definition.22 The robustness w.r.t. deletions and
corresponding attacks is less obvious but it is already shown for all considered kernels
(except the stg-*-kernel) in case of finite AFs (cf. [Baumann, 2014a, Theorems 6,14]).

Fact 4.18. Given kernels k ∈ {k∗(ad), k∗(gr), k∗(co), k∗(stg), k(na)} as well as
k∗ ∈ {k∗(ad), k∗(gr), k∗(co), k∗(stg)}. For two finite AFs F and G we have:

1. A(F) = A
(
Fk
)
, (node-preserving)

2. L(F) = L
(
Fk
)
, (loop-preserving)

3. L(F) = ∅ ⇒ F = Fk∗ and (sufficient condition for identity)

4. If Fk = Gk , then (F \B)k = (G \B)k for any finite set of arguments B.
(\-robustness)

21As an aside, we use the supplement “*”, whenever the kernel in question is non-classical and
expansion equivalence is already characterized by another kernel.

22The AF F = ({a, b}, {(a, b)}) shows that the naive kernel has to be excluded from item 3 of
Fact 4.18 since Fk(na) = ({a, b}, {(a, b), (b, a)}) 6= F .
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Let us consider the ad-*-kernel (which, as we shall see, characterizes strong
expansion equivalence for preferred semantics) in more detail. Consider the first
disjunct. This first condition is exactly the same as in case of the ad-kernel (compare
Definition 4.10), i.e. an attack (a, b) has to be deleted if a is self-attacking and at least
one of the attacks (b, a) or (b, b) exist. The second disjunct provides one with further
options to delete an attack (a, b), namely if b is self-defeating and furthermore, for
all arguments c which are attacked by b at least one of the following conditions has
to be fulfilled:

1. a attacks c,

2. c attacks a,

3. c attacks c,

4. c attacks b.

The motivation for the second disjunct is the following: At first observe that
b cannot be an element of any conflict-free set. Consequently, in case of strong
expansions the attack (a, b) may only be relevant with respect to the defense of c. In
the first three cases this relevance becomes unimportant since {a, c} is conflicting.
In the fourth case the redundancy of (a, b) with respect to the defense of c is given by
the fact that c already defends itself against b. Please note that the consideration
of c = a or c = b is not excluded by Definition 4.17. The following frameworks
exemplify different cases.

Example 4.19. The following graphs show six frameworks and their corresponding
ad-*-kernels. The dotted attacks represent initial attacks which have to be deleted if
applying the ad-*-kernel.

aF1 : b c aF2 : b c

aF3 : b c aF4 : b c

aF5 : b c aF6 : b c

Consider the formal description of Rk∗(ad) as given in Definition 4.17. The AF
F1 is somehow the base case since the only argument c, s.t. (b, c) ∈ R(F1) is b itself.
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Since (b, b) ∈ R(F1) we deduce that the considered intersection is non-empty and
thus, the deletion of (a, b) is justified. The subsequent four frameworks F2, F3, F4
and F5 are the base case plus one further argument c different from a and b, s.t.
for any i ∈ {2, 3, 4, 5}, (b, c) ∈ R(Fi). The last framework F6 illustrates the case
b counterattacks a. Note that the reason to delete (a, b) is somehow self-referential
since (additionally to the base case) it is justified by (a, b) ∈ R(F6). Due to the first
disjunct (i.e. just like in case of the classical ad-kernel) even the attack (b, a) has to
be deleted.

We proceed with further characterization theorems.23 An comprehensive over-
view of equivalence notion and their characterizing kernels in case of finite AFs and
extension-based semantics is presented in Figure 12.

Theorem 4.20. [Oikarinen and Woltran, 2011; Baumann„ 2012a; Baumann and
Woltran, 2016] For finite AFs F and G we have the following coincidences.

1. F ≡EσE G ⇔ F ≡EσN G for σ ∈ {stg, stb, ss, eg, ad, pr , il, gr , co,na, cf2 , stg2},

2. F ≡EσE G ⇔ F ≡EσL G for σ ∈ {ss, eg, ad, pr , il,na} and

3. F ≡EσE G ⇔ F ≡EσS G for σ ∈ {stg, stb, ss, eg,na}.

Furthermore, for any two finite AFs F and G we have the following non-classical
characterizations.

4. F ≡Estg
L G ⇔ Fk∗(stg) = Gk∗(stg),

5. F ≡EσS G ⇔ Fk∗(ad) = Gk∗(ad) for σ ∈ {ad, pr , il},

6. F ≡EσS G ⇔ Fk∗(σ) = Gk∗(σ) for σ ∈ {co, gr} and

7. F ≡Ena
E G ⇔ Fk(na) = Gk(na).

At this point we want to highlight a very surprising relation. Remember that
normal expansion equivalence and normal deletion equivalence are completely unre-
lated in the general picture (cf. Figure 11). The observation that the characterizing
kernels (including the identity map in case of cf2 and stage2 semantics) of normal ex-
pansion equivalence w.r.t. all considered semantics in this section satisfy \-robustness
(cf. Facts 4.12 and 4.18) reveals that normal expansion equivalence implies normal
deletion equivalence for these semantics.

23Please note that the results in case of cf2 and stage2 semantics have never been published
before.
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Corollary 4.21. Given σ ∈ {stg, stb, ss, eg, ad, pr , il, gr , co,na, cf2 , stg2} and two
finite AFs Fand G. We have: F ≡EσN G ⇒ F ≡EσNDG.

The attentive reader may have noticed that we do not have characterized local
expansion equivalence w.r.t. stable, complete as well as grounded extension-based
semantics. We mention that all three equivalence notions are already characterized
but the characterization theorems are not purely kernel-based (cf. [Oikarinen and
Woltran, 2011, Theorems 9,10,11]). Furthermore, it can be checked that none of the
kernels presented in Definitions 4.10 and 4.17 serve as a characterizing kernel. Con-
sider therefore the following example [Oikarinen and Woltran, 2011, Example 15].

Example 4.22. The AFs F and G are local expansion equivalent w.r.t. stable se-
mantics. This can be seen as follows. Given an AF H , s.t. A(H ) ⊆ {a, b}. If
(a, b) ∈ R(H ) and (a, a) /∈ R(H ), we obtain Estb(F ∪ H ) = Estb(G ∪ H ) = {{a}}.
Otherwise, Estb(F ∪H ) = Estb(G ∪H ) = ∅.

aF : b bG :

Remember that all introduced kernels are node-preserving (Facts 4.12 and 4.18).
Consequently, none of them may serve as a characterizing kernel for local expansion
equivalence w.r.t. stable semantics.

We mention that weak expansion equivalence is already characterized in case of
stable semantics [Baumann, 2012a, Proposition 3] as well as admissible, preferred
and complete semantics [Baumann and Brewka, 2015, Theorem 1]. All character-
ization results are not kernel-based. For instance, two AFs are weak expansion
equivalent w.r.t. stable semantics iff both do not possess stable extensions at all or if
they share the same arguments and at the same time possess the same stable exten-
sions. Consequently, F = ({a}, {(a, a)}) and G = ({a, b, c}, {(a, b), (b, c), (c, a)}) are
weak expansion equivalent w.r.t. stable semantics. Both frameworks witness that
any potential characterizing kernel k is necessarily neither node- nor loop-preserving.

As a final note, we are not aware of any study of weaker notions of expansion
equivalence in case of cf2 as well as stage2 semantics.

Notions of Deletion Equivalence and Update Equivalence We start with
local deletion equivalence. Remember that local deletion equivalent AFs cannot be
semantically distinguished by deleting a certain set of attacks in both simultane-
ously. How “strong” is this notion? Are there redundant attacks or even redundant
arguments?
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Example 4.23. Consider the following AFs F , G and H .

aF : b c aG : b aH : b c

The AFs F and G do not possess the same arguments. Let us delete all occurring
attacks, i.e. SA = R(F) ∪ R(G). We obtain the following local deletions where
{a, b, c} ∈ Eσ(F \ SA) \ Eσ(G \ SA) for all semantics σ considered in this section.

aF \ SA : b c aG \ SA : b

The AFs F and H possess the same arguments but differ in their attack-relation,
e.g. (b, c) ∈ R(H ) \ R(F). This difference can be made more explicit if defining
SR = (R(F) ∪R(H )) \ {(b, c)}. Consider the resulting local deletions.

aF \ SR : b c aH \ SR : b c

Once again we have {a, b, c} ∈ Eσ(F \ SR) for all known semantics σ and
{a, b, c} /∈ Eσ(H \ SR) if assuming conflict-freeness of the considered semantics.

The observations above indicate that there is not much space for redundancy in
case of local expansion equivalence and indeed, it was one main result in [Baumann,
2014a] that local expansion equivalence collapse to identity for all semantics consid-
ered in this section. Moreover, instead of proving this one by one for any semantics
the author followed the line in [Baroni and Giacomin, 2007] and provide abstract
criteria guaranteeing the coincidence with syntactical identity. These criteria are
very weak requirements, namely conflict-freeness (CF) and the principle of isolate-
inclusion (II). The latter is fulfilled by a semantics σ iff for any AF F , the set of
all isolated arguments is contained in at least one σ-extension. Observe that any
considered semantics apart from stable semantics satisfy II.24

Theorem 4.24 ([Baumann, 2014a]). Given a semantics σ satisfying CF and II.
For two finite AFs F and G we have:

F ≡EσLD G ⇔ F = G.

Since being identical implies local deletion equivalence we deduce that all equiv-
alence notion “inbetween” them collapse to identity too (cf. Figure 11).

24Note that only universally defined semantics σ, i.e. semantics which warrants the existence of
at least one σ-extension (cf. Definition 2.3), may satisfy isolate-inclusion. A counter-example in
case of stable semantics is given by F = ({a, b}, {(b, b)}). Obviously, a is isolated but Estb(F) = ∅.
Nevertheless, local expansion equivalence in case of stable semantics collapse to identity too.
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Proposition 4.25. Given a semantics σ satisfying CF and II. For any two finite
AFs F and G we have:

F ≡EσU G ⇔ F ≡EσD G ⇔ F = G.

This means, for semantics satisfying conflict-freeness and isolate-inclusion any
argument/attack may play a crucial role with respect to further evaluations if up-
dates, deletions or local deletions are considered. Note that the results may apply
to future semantics. In order to refine the general picture (as depicted in Figure 11)
for the semantics considered in this section we state the following relations.25

Corollary 4.26. Let σ ∈ {stg, stb, ss, eg, ad, pr , il, gr , co,na, cf2 , stg2}. For any two
finite AFs F and G we have:

1. F ≡EσU G ⇔ F ≡EσD G ⇔ F ≡EσLD G ⇔ F = G, (k = id)

2. F ≡EσD G ⇒ F ≡EσE G, (deletion vs. expansion)

3. F ≡EσLD G ⇒ F ≡EσL G. (local versions)

4.2.3 The Exceptional Case of Normal Deletion Equivalence

Normal deletion equivalence, where the retraction of arguments and corresponding
attacks is considered, is exceptional in several regards. Firstly, the characterization
theorems for admissible, complete and grounded semantics partially rely on σ-*-
kernels. Remember that these kernels were originally introduced to characterize
strong expansion (cf. Theorem 4.20). Secondly, normal deletion equivalent AFs do
not even have to share the same arguments and thus give space for simplifications.

Example 4.27. Consider the following AFs F and G. We have Ead(F) = Ead(G) =
{∅, {a}}. Even more, for any set of arguments B, Ead(F \B) = Ead(G \B) showing
their normal deletion equivalence, i.e. F ≡Ead

ND G.

aF : b c

d

e

aG : b c

f

25The results in case of cf2 and stage2 semantics have never been published before. It can be
checked that both semantics satisfy the preconditions of Theorem 4.25.
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Observe that the non-shared arguments d, e and f do not play a role for the
evaluation w.r.t. admissible semantics since firstly, they are self-defeating and thus
cannot be part of an admissible set; and secondly, if they attack a non-looping argu-
ment shared by both arguments, e.g. e attacks c in F or f attacks a in G, then they
are counter-attacked by the same argument, i.e. c attacks e in F and a attacks f in
G. Consequently, they cannot influence potential admissible sets being a subset of
{a, b}. Finally, let us consider the ad-*-kernel of both frameworks (cf. Example 4.19
and the comments above for more details).

aFk∗(ad) : b c

d

e

aGk∗(ad) : b c

f

Obviously, F and G do not possess the same kernels but note that their restric-
tions to the shared arguments do, i.e.

(
F |{a,b,c}

)k∗(ad)
=
(
G|{a,b,c}

)k∗(ad)
.

It turned out that the issues raised in Example 4.27 are essential to characterize
normal deletion equivalence w.r.t. admissible semantics. In case of complete and
grounded semantics slightly different conditions have to be fulfilled, namely w.r.t. the
non-shared arguments we have “it is forbidden to be attacked” instead of “counter-
attack if attacked” like in case of admissible semantics and furthermore, instead
of the ad-*-kernel the corresponding σ-*-kernels are used. Consider therefore the
following definition and the characterization theorem. We use ∆ to denote the
symmetric difference, i.e. A∆A′ = A\A′∪A′ \A. Moreover, NL(F) = A(F)\L(F),
i.e. NL(F) contains all arguments of F which are not self-defeating.

Definition 4.28. Given F = (A,R) and G = (A′, R′) and let σ ∈ {co, gr}.

1. Loop(F,G)⇔def L (F ∪G|A∆A′) = A∆A′,
(“non-shared args are self-defeating”)

2. Attad(F,G)⇔def ∀b ∈ A \A′ ∀a ∈ NL(F |A∩A′) : ((b, a)∈R→ (a, b)∈R)
∧ ∀b ∈ A′ \A ∀a ∈ NL(G|A∩A′) : ((b, a)∈R′ → (a, b)∈R′),

(“counter-attack if attacked”)

3. Attσ(F,G)⇔def ∀b ∈ A \A′ ∀a ∈ NL(F |A∩A′) : (b, a) /∈R
∧ ∀b ∈ A′ \A ∀a ∈ NL(G|A∩A′) : (b, a) /∈ R′.

(“it is forbidden to be attacked”)
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Theorem 4.29 ([Baumann, 2014a]). Let σ ∈ {ad, co, gr}. Given two finite AFs
F = (A,R) and G = (A′, R′) and let I = A ∩A′,

F ≡EσNDG ⇔ Loop(F,G), Attσ(F,G), (F |I)k
∗(σ) = (G|I)k

∗(σ) .

In contrast to admissible, complete and grounded semantics where normal dele-
tion equivalence is indeed weaker than normal expansion equivalence we observe
that these notions coincide in case of stable semantics. This means, normal deletion
equivalence w.r.t. stable semantics is characterized by the classical stable kernel too.

The following theorem corrects the corresponding result in [Baumann, 2014a,
Theorem 10] which did not take into account that an empty framework possess a
stable extension, namely the empty one.26

Theorem 4.30. For finite AFs F and G we have:

F ≡Estb
NDG ⇔ Fk(stb) = Gk(stb).

Proof. (⇒) We show the contrapositive, i.e. Fk(stb) 6= Gk(stb) ⇒ F 6≡Estb
NDG.

1st case: Assume A
(
Fk(stb)

)
6= A

(
Gk(stb)

)
and w.l.o.g. let a ∈ A

(
Fk(stb)

)
\

A
(
Gk(stb)

)
. Since the stable kernel is node-preserving (Fact 4.12) we obtain G \B =

(∅, ∅) and F \ B ∈ {({a}, ∅), ({a}, {(a, a)})} if B = (A(F) ∪A(G)) \ {a}. In either
case, ∅ ∈ Estb(G) \ Estb(F) since Estb(F) ∈ {∅, {{a}}}. From now on we assume
A
(
Fk(stb)

)
= A

(
Gk(stb)

)
.

2nd case: Consider R
(
Fk(stb)

)
6= R

(
Gk(stb)

)
and w.l.o.g. let (a, b) ∈ R

(
Fk(stb)

)
\

R
(
Gk(stb)

)
. Let a = b. Remember that the stable kernel is loop-preserving (Fact

4.12). Therefore, (a, a) ∈ R (F) \ R (G). We obtain G \ B = ({a}, ∅) and F \ B =
({a}, {(a, a)}) if B = (A(F) ∪A(G)) \ {a}. Hence, ∅ = Estb(F) 6= Estb(G) = {{a}}.
From now on we assume L

(
Fk(stb)

)
= L

(
Gk(stb)

)
. Consider now a 6= b. Con-

sequently, (a, b) ∈ R(F) and (a, a) /∈ R(F). Hence, (a, a) /∈ R(G) and further-
more, (a, b) /∈ R(G). Define B = (A(F) ∪A(G)) \ {a, b}. In any case, {a} ∈
Estb(F \B) \ Estb(G \B) concluding the if-direction.
(⇐) Given Fk(stb) = Gk(stb). Applying Theorems 4.14 and 4.20 one after the other
yields F ≡Estb

E G and then F ≡Estb
N G. Finally, Corollary 4.21 justifies F ≡Estb

ND G
concluding the proof.

26We mention that Theorem 10 in [Baumann, 2014a] hold, given that resulting AFs have to be
non-empty. The claimed normal deletion equivalence of the AFs F and G depicted in [Baumann,
2014a, Example 4] can be disproved by setting B = {a, b, c, f}.
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4.2.4 Characterization Theorems in Case of Self-loop-free AFs

We already observed that apart from naive kernel any mentioned kernel k does not
change anything if the considered AF F is self-loop-free, i.e. F = Fk (cf. Facts 4.12
and 4.18). Consequently, any equivalence relation characterizable through such a
kernel collapses to identity if we restrict ourselves to self-loop-free AFs. This is
stated in the following theorem.

Theorem 4.31. Given a relation ≡ ⊆ F × F characterizable through k where
k ∈ {k(stb), k(ad), k(gr), k(co), k∗(ad), k∗(gr), k∗(co), k∗(stg)}. For any self-loop-free
AFs F and G,

F ≡ G ⇔ F = G.

We will refrain from listing all combinations of semantics and equivalence notions
characterizable through a kernel mentioned in the theorem above. Please confer
Figures 12 and 15 for compact overviews. For all such combinations, self-loop-free
AFs are redundancy-free, i.e. all attacks as well as arguments may play a crucial
role w.r.t. further evaluations and thus, there is no space for simplification. In
the introductory part of this section we noted that many equivalence notions, e.g.
normal and local expansion equivalence are motivated by the instantiation-based
context where AFs are built from an underlying knowledge base. However, we want
to mention that there are some formalisms like classical logic-based argumentation
where self-attacking arguments do not occur [Besnard and Hunter, 2001, Theorem
4.13], while for other systems, e.g. ASPIC self-defeating arguments indeed may arise
[Prakken, 2010, Section 7].

4.2.5 Summary of Results and Conclusion

In the presented results the notion of a kernel played a crucial role. Indeed, kernels
are interesting from several perspectives: First, they allow to decide the correspond-
ing notion of equivalence by a simple check for topological (i.e. syntactical) equality.
Moreover, all kernels we have obtained so far can be efficiently constructed from
a given argumentation framework. This means, if a certain equivalence notion is
characterizable through such a kernel, then we have tractability of the associated
decision problem.

The following Figure 12 provides a comprehensive overview of the state of the art
in case of extension-based semantics. The entry “k” in rowM and column σ indicates
that ≡EσM is characterizable through k. The abbreviation “id” stands for identity
map and the question mark represents an open problem. Further abbreviations like
“L” and “Attσ” refer to additional conditions relevant in case of normal deletion
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equivalence (cf. Theorem 4.29). The entry “[m,n]” indicates three facts. First,
the characterization problem is already solved in Theorem/Proposition n in m.27

Second, the characterization result is not (purely) kernel-based and third, it can be
checked that none of the introduced kernels serve as a characterization.

dstgp dstbp dssp degp dadp dprp dilp dgrp dcop dnap dcf2pdstg2p

? [1,3] ? ? [2,1] [3,1] ? ? [2,1] ? ? ?

k∗(stg) [4,9] k(ad) k(ad) k(ad) k(ad) k(ad) [4,10] [4,11] k(na) ? ?

k(stb) k(stb) k(ad) k(ad) k(ad) k(ad) k(ad) k(gr) k(co) k(na) id id

k(stb) k(stb) k(ad) k(ad) k(ad) k(ad) k(ad) k(gr) k(co) k(na) id id

k(stb) k(stb) k(ad) k(ad) k∗(ad) k∗(ad) k∗(ad) k∗(gr) k∗(co) k(na) ? ?

? k(stb) ? ?
k∗(ad)
L,Attad ? ?

k∗(gr)
L,Attgr

k∗(co)
L,Attco ? ? ?

id id id id id id id id id id id id

id id id id id id id id id id id id

id id id id id id id id id id id id

W

L

E

N

S

ND

D

LD

U

Figure 12: Extension-based Characterizations for Finite AFs

Remember that any arbitrary expansion (deletion) can be split into a normal
and local part. So one natural conjecture is that normal and local expansion (dele-
tion) equivalence jointly imply expansion (deletion) equivalence. Using the results
presented in this section we can not only verify the addressed conjecture but even
give a significantly stronger result. In fact, the main and quite surprisingly relations
for the considered semantics can be briefly and concisely stated in the following two
equations, namely “normal expansion equivalence = expansion equivalence” and
“local deletion equivalence = deletion equivalence”.

27For m we use the following assignments: 1 = [Baumann, 2011], 2 =[Baumann and Brewka,
2015], 3 =[Baumann and Brewka, 2013] and 4 =[Oikarinen and Woltran, 2011]
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The fact that different notions of equivalence might or might not coincide is
interesting from a conceptual point of view. To illustrate this let us have a look
at normal and strong expansion equivalence. Recall that normal expansions add
new arguments and possibly new attacks which involve at least one of the fresh
arguments, while strong expansions (a subclass of normal expansions) restrict the
possible attacks between the new arguments and the old ones to a single direction.
In dynamic settings, both concepts can be justified in the sense that new arguments
might be raised but this will not influence the relation between already existing
arguments. For strong expansions, only strong arguments will be raised, i.e. argu-
ments which cannot be attacked by existing ones. The corresponding equivalence
notions now check whether two AFs are “equally robust” to such new arguments,
and indeed, normal expansion equivalence always implies strong expansion equiva-
lence but the other direction is only true for some of the semantics, namely stage,
stable, semi-stable, eager and naive semantics. One interpretation is that when two
AFs are not normal expansion equivalent, then this can be made explicit by only
posing strong arguments (not attacked by existing ones), while for the other seman-
tics this is not the case. For this particular example, it seems that the notion of
admissibility which is more “explicit” in the admissible, preferred, ideal, grounded
and complete semantics is responsible for the fact that frameworks might be strong
expansion equivalent but not normal expansion equivalent.

identity
=

update
=

deletion
=

local
deletion
equivalence

expansion
=

normal
expansion
equivalence

normal
deletion
equivalence

local
expansion
equivalence

strong
expansion
equivalence

weak
expansion
equivalence

ordinary
equivalence

Figure 13: Relations for σ ∈ {stg, stb, ss, eg, ad, pr , il, gr , co,na, cf2 , stg2} -
Extension-based Versions and Finite AFs
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In Figure 11 we presented preliminary relations between several notions of equiv-
alence which hold for any semantics. The refinement depicted in Figure 13 applies
to any extension-based semantics considered in this section.

Finally, we present the overall picture for the most prominent semantics, namely
the stable one. Interestingly, in contrast to Figure 13 all equivalence notions are
comparable, i.e. they are totally ordered w.r.t. ⊆. Comprehensive overviews for
single semantics can be found in [Baumann, 2014b, Section 5.5.2] or [Baumann
and Brewka, 2015b]. The latter also contains a comparison to different notions of
minimal change equivalence firstly introduced in [Baumann, 2012b]. As an aside,
very recently the authors of [Baumann et al., 2017] introduced so-called C-relativized
equivalence that subsumes ordinary and expansions equivalence as its extreme corner
cases. The set C represents so-called core arguments which will not be directly
touched by the possible expansions. This means, for any set C we obtain a further
intermediate notion between expansion and ordinary equivalence. However, due to
its recency further relations are not studied so far.

identity
=

update
=

deletion
=

local
deletion
equivalence

expansion
=

normal
expansion

=
strong

expansion
=

normal
deletion
equivalence

local
expansion
equivalence

weak
expansion
equivalence

ordinary
equivalence

Figure 14: Stable Semantics - Extension-based Version and Finite AFs

4.3 Equivalence in the Light of Unrestricted Frameworks

Recently, a first study of several abstract properties in the unrestricted setting were
presented in [Baumann and Spanring, 2017]. The main result regarding expansion
equivalence can be summarized as follows: All characterization results carry over
to the unrestricted setting as long as the AFs in question are jointly expandable
(w.r.t. U). Consider therefore the following definition and the corresponding char-
acterization theorem.
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Definition 4.32. F and G are jointly expandable if U \ (A(F) ∪A(G)) 6= ∅.
Theorem 4.33. [Baumann and Spanring, 2017] For jointly expandable AFs
F and G we have:

1. F ≡EσE G ⇔ Fk(σ) = Gk(σ) for any σ ∈ {stb, ad, co, gr ,na},

2. F ≡EσE G ⇔ Fk(ad) = Gk(ad) for any σ ∈ {pr , il, ss, eg} and

3. F ≡Estg
E G ⇔ Fk(stb) = Gk(stb).

The main proof strategies are straightforward extensions of those presented in
[Oikarinen and Woltran, 2011]. However, finiteness assumptions are often used im-
plicitly and one has to pay attention whether a certain reasoning step (e.g. subset
relation between semantics, definedness statuses of semantics, finitely many exten-
sions etc.) carry over to the infinite setting.

Interestingly, in case of the admissible as well as naive kernel we may even drop
the restriction of joint expandability as stated in the following theorem.
Theorem 4.34. [Baumann and Spanring, 2017] For unrestricted AFs F,G we have:

1. F ≡Ena
E G ⇔ Fk(na) = Gk(na) and

2. F ≡EσE G ⇔ Fk(ad) = Gk(ad) for any σ ∈ {ad, pr , il, ss, eg}.
The following two examples taken from [Baumann and Spanring, 2017] show

that this assertion does not hold for all kernels considered in this section. The main
reason for this different behaviour is that for some semantics it plays a decisive
role whether AFs can be expanded by “fresh” arguments which is not given for
unrestricted frameworks in general but guaranteed for jointly expandable AFs (cf.
Definition 4.32).
Example 4.35. Given c ∈ U and define F = (U \{c}, {(a, a) | a ∈ U \ {c}}) and
G = (U , {(a, a) | a ∈ U \ {c}}). For any H we observe Estb(F ∪ H ) = Estb(G ∪ H ).
In particular,

Estb(F ∪H ) =
{
{{c}}, if {(c, a) | a ∈ U \ {c}} ⊆ R(H )and (c, c) /∈ R(H )
∅, otherwise

Consequently, F≡Estb
E G although A(F) 6= A(G) (and thus, Fk(stb) 6= Gk(stb)).

Example 4.36. Consider the AFs F = (U ,{(a, a) | a ∈ U}) as well as G =
(U , {(a, b) | a, b ∈ U , a 6= b). Applying the grounded kernel does not change any-
thing for either framework, i.e. Fk(gr) = F and G = Gk(gr). Due to the absence of
unattacked arguments we deduce Egr(F ∪ H ) = Egr(G ∪ H ) = {∅} for any AF H .
Consequently, F≡Egr

E G although Fk(gr) 6= Gk(gr).

2870



On the Nature of Argumentation Semantics

4.4 Characterization Theorems for Labelling-Based Semantics

We now return to the finite setting and consider the second main approach used
for evaluating argumentation scenarios, namely labelling-based semantics. As a
matter of fact, the labelling-based versions of all considered semantics provides one
with more information than their extension-based counter-parts. More precisely, the
defined 3-valued labellings assign a status to any argument of the considered AF F ,
i.e. in addition to the information which arguments are accepted we also have labels
for the remaining arguments indicating that they are either rejected or undecided
with respect to F (cf. [Baroni et al., 2011] for more details). It is well known that
many semantics establish a one-to-one correspondence between their extension-based
and labelling-based versions. This means, any labelling is associated with exactly
one extension and vice versa. It is not immediately apparent whether this property
guarantees that there is a coincidence of the extension-based and labelling-based
equivalence notions. In [Baumann, 2016] a negative answer was given. The main
reason for the invalidity is that AFs may possess the same extensions without sharing
the same arguments which is impossible in case of labellings since any argument has
to be labelled. Furthermore, even sharing the same arguments does not ensure the
validity of the converse direction. Consider therefore the following example.

Example 4.37. Consider the AFs F and G as depicted below. Although both frame-
works possess the same unique preferred extension, they do not share the same pre-
ferred labellings. More precisely, Epr(F) = Epr(G) = {{a}} but {({a}, {b}, ∅)} =
Lpr(F) 6= Lpr(G) = {({a}, ∅, {b})}.

aF : b aG : b

Moreover, observe that Fk∗(ad) = G = Gk∗(ad). Consequently, both frameworks
are even strong expansion equivalent w.r.t. preferred extension-based semantics (The-
orem 4.20). This means, equivalence notions may differ considerably if considered
under the extension-based or labelling-based approach.

In contrast to extension-based semantics where characterization results are
spread over a high number of publications there is only one reference, namely [Bau-
mann, 2016] concerned with labelling-based semantics. The author considered 8 dif-
ferent equivalence notions w.r.t. 8 prominent labelling-based semantics in the finite
setting. In effect, similarly to extension-based semantics, almost all labelling-based
equivalence notions can be decided syntactically. Differently from the extension-
based approach we observe a much more homogeneous picture. For instance, there
is no need for the more sophisticated σ-*-kernels as we will see.
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4.4.1 Basic Properties and a Fundamental Relation

Before turning to the main results we start with some preliminary facts relating σ-
extensions and σ-labellings. In the following we restrict ourselves to the semantics
considered in [Baumann, 2016]. For any 3-valued labelling L = (L1,L2,L3) we use
L = (LI,LO,LU) as usual.
Fact 4.38. Given a finite AF F = (A,R) and a set E ⊆ A. We write EL for
(E,E+, A \ E⊕)). For all σ ∈ {stb, ss, eg, ad, pr , il, gr , co} we have,

1. If L ∈ Lσ(F), then LI ∈ Eσ(F), (extension induced by labelling)

2. If E ∈ Eσ(F), then EL ∈ Lσ(F) and (labelling induced by extension)

3. Obviously, (EL)I = E. (I ◦ L = id)
We point out that the first two properties mentioned in Fact 4.38 do not ensure

that there is a one-to-one correspondence between σ-labellings and σ-extensions.
This desirable feature (which would indeed justify the terms σ-labellings and σ-
extensions) is given if additionally, labellings are uniquely determined by their in-
labelled arguments.
Fact 4.39. Given a finite AF F = (A,R) and a set E ⊆ A. For all semantics
σ ∈ {stb, ss, eg, pr , il, gr , co} we have,

1. For any L,M ∈ Lσ(F),LI = M I iff L = M , (uniquely determined by in-labels)

2. Given L ∈ Lσ(F), then (LI)L = L and (L ◦ I = id)

3. |Lσ(F)| = |Eσ(F)|. (same cardinality)
As an aside, we mention that (although not immediately apparent) the first two

items of Fact 4.39 are equivalent independently of any semantics definition. Please
note that admissible labellings are excluded from Fact 4.39. The AF F depicted in
Example 4.37 shows that this is no coincidence. It possesses two admissible labellings
associated with one admissible extension. More precisely, the admissible labellings
({a}, {b}, ∅) as well as ({a}, ∅, {b}) refer to the same admissible extension {a}.

We proceed with a general relation between labelling-based and extension-based
versions of certain equivalence notion. More precisely, for any considered semantics
and any equivalence notion presented in Definition 4.6 we have that being equivalent
w.r.t. labellings implies being equivalent w.r.t. extensions. The main reason for
this fundamental relation is the following lemma stating that possessing the same
labellings implies sharing the same extensions. We mention that this property is
already guaranteed if the semantics σ in question satisfies that any σ-extension
induces an σ-labelling and vice versa (cf. statements 1 and 2 of Fact 4.38).
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Lemma 4.40 ([Baumann, 2016]). Given two finite AFs F and G. For any seman-
tics σ ∈ {stb, ss, eg, ad, pr , il, gr , co} we have,

Lσ(F) = Lσ(G)⇒ Eσ(F) = Eσ(G).

Proof. Reductio ad absurdum. Assume Eσ(F) 6= Eσ(G). Then, w.l.o.g. exists E ∈
Eσ(F)\Eσ(G). Consequently, EL ∈ Lσ(F) (item 2 of Fact 4.38). Thus, EL ∈ Lσ(G)
(assumption). Hence, (EL)I ∈ Eσ(G) (item 1 of Fact 4.38). Furthermore, (EL)I =
E ∈ Eσ(G) (item 3 of Fact 4.38). Contradiction!

We now present the fundamental relation between labelling-based and extension-
based equivalence notion.

Theorem 4.41 ([Baumann, 2016]). Given two finite AFs F and G. For any σ ∈
{stb, ss, eg, ad, pr , il, gr , co} and any M ∈ {W,L,E,N, S,ND,D,LD,U} we have,

F ≡LσM G ⇒ F ≡EσM G.

Proof. We show the contrapositive. Assume F 6≡EσM G. This means, there is a
certain scenario S according to M , s.t. Eσ(S(F)) 6= Eσ(S(G)).28 Consequently,
Lσ(S(F)) 6= Lσ(S(G)) (Lemma 4.40) proving F 6≡LσM G.

In Example 4.37 we have seen that the converse direction does not hold in general.
Nevertheless, there is huge number of equivalence notions where labelling-based and
extension-based versions do indeed coincide (cf. Figure 15 for an overview).

4.4.2 Coincidences of Extension-based and Labelling-based Versions

Remember that the identity relation is the finest equivalence relation. Furthermore,
it is already shown that deletion, local deletion as well as update equivalence w.r.t.
Eσ collapse to identity (see Figure 13). Consequently, applying the fundamental
relation stated in Theorem 4.41 we obtain the identical characterization results w.r.t.
labelling-based semantics.

Theorem 4.42 ([Baumann, 2016]). For finite AFs F and G, a scenario M ∈
{D,LD,U} and a semantics σ ∈ {stb, ss, eg, ad, pr , il, gr , co} we have,

F ≡LσM G ⇔ F = G.

28For instance, in case of expansion equivalence (i.e. M = E) a scenario S is simply the union
with a further AF H , i.e. S(F) = F ∪ H and S(G) = G ∪ H .
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Analogously to extension-based semantics (cf. Fact 4.13) we have that there are
combinations of kernels and semantics σ, s.t. the application of a kernel does not
vary the set of σ-labellings.

Fact 4.43. For any finite AF F ,

1. Lσ(F) = Lσ
(
Fk(σ)

)
for σ ∈ {co, stb, gr} and

2. Lτ (F) = Lτ
(
Fk(ad)

)
for τ ∈ {ss, eg, pr , il}.

The fact above is the decisive property which allows one to carry over further
kernel-based characterization results for extension-based semantics to their labelling-
based version. In order to show this result it was necessary to find a condition for
equality of two complete labellings of different AFs. Remember that two complete
labellings of the same framework are identical if and only if they possess the same
in-labelled arguments (Fact 4.39). In case of different AFs we have to require addi-
tionally that both frameworks share the same arguments and the same range w.r.t.
the set of in-labelled arguments.

Fact 4.44. Given two finite AFs F and G as well as L ∈ Lco(F) and
M ∈ Lco(G). We have L = M iff simultaneously A(F) = A(G), LI = M I and
R+

F (LI) = R+
G(M I).

Please observe that admissible labellings do not fulfill Fact 4.44. Consider for
instance again the AF F depicted in Example 4.37 and its two admissible labellings
({a}, {b}, ∅) and ({a}, ∅, {b}).

We proceed with the main coincidence theorem. It stipulates that several expan-
sion equivalence relations as well as weaker notions do not distinguish between their
labelling-based and extension-based version. This means, kernel-based characteriza-
tion results (depicted in Figure 11) carry over to labelling-based semantics. Similarly
to extension-based semantics we present an overview of characterizing kernels at the
end of this section (cf. Figure 15).

Theorem 4.45 ([Baumann, 2016]). Given finite AFs F and G. We have,

1. F ≡EσM G ⇔ F ≡LσM G for σ ∈ {stb, ss, eg, pr , il, gr , co},M ∈ {E,N},

2. F ≡EσL G ⇔ F ≡LσL G for σ ∈ {ss, eg, pr , il} and

3. F ≡EσS G ⇔ F ≡LσS G for σ ∈ {stb, ss, eg}.
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4.4.3 Non-Coincidence of Extension-based and Labelling-based Versions

We now leave the realm of uniformity of extension-based and labelling-based charac-
terizations. This section is divided into three parts. We start with characterization
theorems for admissible labellings. In particular, we will see that the admissible
kernel (originally introduced to characterize equivalence notions w.r.t. admissible
extension-based semantics) does not serve as characterizing kernel for admissible
labellings. We then proceed with strong expansion equivalence w.r.t. labellings.
We will see that the remaining notions are characterizable via traditional kernels
instead of σ-*-kernels. In the third part we consider normal deletion equivalence
w.r.t. labelling-based semantics. In contrast to their extension-based versions where
many notions has defied any attempt of solving, we present characterization theo-
rems based on traditional kernels for all eight considered semantics.

Expansion Equivalence w.r.t. Admissible Labellings Expansion equivalence
as well as its local, normal and strong versions w.r.t. admissible extensions are
characterizable through the admissible kernel. The following example shows that
this assertion does not hold in case of admissible labellings.

Example 4.46. The following two AFs possess the same admissible kernels, namely
Fk(ad) = Gk(ad) = F . Consequently, applying characterization theorems for
extension-based semantics we obtain F ≡Ead

M G for M ∈ {L,E,N} (cf. Figure 12).

aF : b aG : b

Observe that ({b}, ∅, {a}) ∈ Lad(G) \ Lad(F) because the argument a cannot be
undecided in F since it attacks the in-labelled argument b. Thus F 6≡Lad

M G for
M ∈ {L,E,N, S}.

Let us assume that the equivalence notions considered in the example above
are characterizable through a certain kernel k. Due to the fundamental relation
(Theorem 4.41) and the characterization results w.r.t. admissible extensions (Fig-
ure 12), we already know that the kernel k has to satisfy the following implication:
Fk = Gk ⇒ Fk(ad) = Gk(ad) for any two AFs F and G. This means, we are look-
ing for a weaker kernel than the admissible one in the sense that first, everything
which is redundant w.r.t. k has to be redundant w.r.t. the admissible kernel too; and
second, an attack from a to b has to survive even if a is self-defeating and b coun-
terattacks a. One candidate for k is the complete kernel since redundancy w.r.t. the
complete kernel implies redundancy w.r.t. to the admissible one, and furthermore,
it deletes an attack between two arguments if and only if both are self-defeating.
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And indeed, it was shown that expansion equivalence as well as its local, normal and
strong variant w.r.t. admissible labellings are characterizable through the complete
kernel as stated by the following theorem.

Theorem 4.47 ([Baumann, 2016]). Given finite AFs F and G. We have,

F ≡Lad
M G ⇔ Fk(co) = Gk(co) with M ∈ {L,E,N, S}.

Strong Expansion Equivalence for Preferred, Ideal, Grounded and Com-
plete Labellings In this subsection we present characterization theorems for
strong expansion equivalence w.r.t. labelling-based preferred, ideal, grounded and
complete semantics. Remember that in case of strong expansions a former attack
between old arguments will never become a counterattack to an added attack. Con-
sequently, in contrast to arbitrary expansions former attacks do not play a role with
respect to being a potential defender of an added argument. The context-sensitive
σ-*-kernels took these considerations into account and allow for more deletions than
their classical counterparts.

Example 4.48. According to Definition 4.17 we have, Fk∗(σ) = Gk∗(σ) for any
semantics σ ∈ {ad, gr , co}. More precisely, the attacks (a, b) in F as well as (c, b)
in G are redundant w.r.t. all three σ-*-kernels. This means, in consideration of
Figure 12 both frameworks are strong expansion equivalent w.r.t. the extension-based
versions of preferred, ideal, grounded and complete semantics.

aF : b c aG : b c

Consider the following dynamic scenario where a stronger argument than the
former ones is added. Formally, we conjoin the AF H = ({c, d}, {(d, c)}) to both
frameworks F and G.

aF ∪H : b c

d

aG ∪H : b c

d

Note that both frameworks has to possess the same σ-extension since G ≡EσS H for
σ ∈ {pr , il, gr , co} is already ensured. Furthermore, we observe ({a, d}, {b, c}, ∅) ∈
Lσ(F ∪H ) \ Lσ(G ∪H ) since b cannot be out-labelled in G ∪H because there is no
in-labelled attacker. This means, F 6≡LσS G for σ ∈ {pr , il, gr , co}.

Analogously to the previous section let us assume that strong expansion equiv-
alence w.r.t. the considered labelling-based semantics are characterizable through a
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certain kernel k. We immediately obtain, Fk =Gk ⇒ Fk∗(σ) =Gk∗(σ) for any two AFs
F and G. Possible candidates are the classical counterparts of the σ-*-kernels and
indeed it was shown that these kernels guarantee the desired outcome. This means,
in case of strong expansion equivalence w.r.t. preferred, ideal, grounded and com-
plete semantics we have that the labelling-based version is characterizable through a
classical σ-kernel if and only if the extension-based version is characterizable through
the corresponding σ-*-kernel.

Theorem 4.49 ([Baumann, 2016]). Given finite AFs F and G. We have,

1. F ≡LσS G ⇔ Fk(ad) = Gk(ad) for σ ∈ {pr , il},

2. F ≡Lgr
S G ⇔ Fk(gr) = Gk(gr) and

3. F ≡Lco
S G ⇔ Fk(co) = Gk(co).

Normal Deletion Equivalence Characterizing normal deletion equivalence in
case of extension-based semantics is exceptional in several regards. Remember that
normal deletions retract arguments and their corresponding attacks. Firstly, only a
few characterization results are achieved (cf. Figure 12). Furthermore, apart from
stable semantics, none of the characterization results is purely kernel-based, i.e.
beside the equality of kernels on certain parts of the frameworks further loop- as well
as attack-conditions have to be satisfied. Finally, quite surprisingly, normal deletion
equivalent AFs do not even have to share the same arguments enabling equivalence
classes with an infinite number of elements. Being equivalent w.r.t. labellings and
possessing different arguments at the same time is impossible in case of labellings
since any argument has to be labelled. It turned out that any considered labelling-
based semantics is characterizable through traditional kernels and thus, do not share
any of the features mentioned above. Consider the following main theorem.

Theorem 4.50 ([Baumann, 2016]). Given finite AFs F and G. We have,

1. F ≡Lstb
ND G ⇔ Fk(stb) = Gk(stb),

2. F ≡LσNDG ⇔ Fk(ad) = Gk(ad) for σ ∈ {ss, eg, pr , il},

3. F ≡LσNDG ⇔ Fk(co) = Gk(co) for σ ∈ {ad, co} and

4. F ≡Lgr
NDG ⇔ Fk(gr) = Gk(gr).
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4.4.4 Summary of Results and Conclusion

The following Figure 15 presents a comprehensive overview of the state of the art in
case of labelling-based semantics. Analogously to Figure 12 the entry “k” in row M
and column σ indicates that ≡LσM is characterizable through k given the finiteness
restriction. The abbreviation “id” stands for identity map and the question mark
represents an open problem.29 A grey-highlighted entry reflects the situation that
extension-based and labelling-based version do not coincide.

dstbp dssp degp dadp dprp dilp dgrp dcop

? k(ad) k(ad) k(co) k(ad) k(ad) ? ?

k(stb) k(ad) k(ad) k(co) k(ad) k(ad) k(gr) k(co)

k(stb) k(ad) k(ad) k(co) k(ad) k(ad) k(gr) k(co)

k(stb) k(ad) k(ad) k(co) k(ad) k(ad) k(gr) k(co)

k(stb) k(ad) k(ad) k(co) k(ad) k(ad) k(gr) k(co)

id id id id id id id id

id id id id id id id id

id id id id id id id id

L

E

N

S

ND

D

LD

U

Figure 15: Labelling-based Characterizations for Finite AFs

In contrast to extension-based semantics we observe a much more homogeneous

29In contrast to extension-based semantics the labelling versions of conflict-free-based semantics
like stage, naive, cf2 as well as stage2 semantics (cf. [Caminada, 2011; Gaggl and Dvořák, 2016])
as well as weak expansion equivalence at all were not considered so far and thus, represent open
problems too.
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picture. Firstly, there is no need for the more sophisticated σ-*-kernels. Secondly,
normal deletion equivalence w.r.t. labelling-based semantics is naturally incorpo-
rated in the overall picture in the sense that it coincides with its corresponding
expansion, normal expansion and strong expansion equivalence notions.

The following Figure 16 applies to each one of the eight labelling-based semantics
considered in this section. In comparison to Figure 11 where preliminary relations
are depicted it illustrates (to a certain extent) a collapse of the diversity of the
introduced equivalence notions in case of labelling-based semantics.

identity
=

update
=

deletion
=

local
deletion
equivalence

expansion
=

normal
expansion

=
strong

expansion
=

normal
deletion
equivalence

local
expansion
equivalence

weak
expansion
equivalence

ordinary
equivalence

Figure 16: Relations for σ ∈ {stb, ss, eg, ad, pr , il, gr , co} - Labelling-based Versions
and Finite AFs

4.5 Final Remarks

In this section we motivated and discussed several notions of equivalence in the
context of abstract argumentation and provided an exhaustive number of character-
ization theorems for extension-based as well as labelling-based semantics. In general
we may state that Dung’s abstract argumentation frameworks are a very compact
formalism since the majority of the considered equivalence notion possess only lit-
tle space for redundancy. Moreover, most of these notions collapse to identity if
self-loop-free AFs are considered. This means, in this case any subframework of the
AF in question may play a decisive role w.r.t. further evaluations and thus, can-
not be locally replaced by another. This insight is sometimes used as an argument
against the usefulness of the study of equivalence notions in the context of abstract
argumentation. Obviously, we agree that if you are expecting much space for simpli-
fication, then the results are somehow disappointing but let us not lose sight of the
fact that this is only clear after it has been proved. Furthermore, as already stated,
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the results underline that in case of abstract argumentation (almost) everything is
meaningful similar to other non-monotonic formalisms available in the literature (cf.
[Lifschitz et al., 2001] for logic programs, [Turner, 2004] for causal theories, [Turner,
2001] for default logic and [Truszczynski, 2006] for nonmonotonic logics in general).
However, one decisive difference to these formalisms is that equivalence notions in
case of abstract argumentation can be decided syntactically. Indeed, kernels are
interesting from several perspectives: First, they allow to decide the correspond-
ing notion of equivalence by a simple check for topological equality and second, all
kernels we have obtained so far can be efficiently constructed from a given argu-
mentation framework. This means, if a certain equivalence notion is characterizable
through such a kernel, then we have tractability of the associated decision problem.
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Abstract
In this study, we will explore the respective roles of logic and nonmonotonic

reasoning in argumentation. As a first step, we introduce the notion of collec-
tive argumentation as a logical basis of argumentation frameworks, and provide
it with a natural (four-valued) logical semantics. This will allows us, in partic-
ular, to augment the underlying language with appropriate logical connectives
that will transform abstract argumentation frameworks into a reasoning system
with full-fledged logical capabilities. On the way, we will show not only that
argumentation and logic are important for nonmonotonic reasoning, but also
the other way round, namely that the main nonmonotonic formalisms and argu-
mentation systems constitute actually primary instantiations of Dung’s abstract
argumentation in appropriately extended logical languages.

1 The new stage of argumentation theory
Dung’s argumentation frameworks are viewed today as a general formal basis of the
argumentation theory, but they have deep roots in nonmonotonic reasoning, and it
is due to these roots that they constitute a new stage in the development of the
theory of argumentation.

Traditional formal argumentation theory (see, e.g., [Hamblin, 1971]) has been
based, implicitly or explicitly, on the standard deductive paradigm, according to
which our corpus of knowledge and beliefs comprises a set of propositional (factual
or epistemic) assertions, coupled with a set of strict, universal deductive rules (=
the Logic) that govern their acceptance. These rules allow us, in particular, to
derive (support) further propositional claims, as well as to reveal possible inconsis-
tencies among them. This underlying logic can also be given a precise argumentative
(dialectical) formulation in the form of allowable attack and defense moves in argu-
mentation games ([Lorenzen and Lorenz, 1978]). In this way, the traditional formal
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argumentation theory could be largely viewed as a ‘human-friendly’ instantiation of
standard deductive reasoning.

The above deductive paradigm has been challenged, however, with the advent of
nonmonotonic reasoning in AI. Studies in the latter (including related areas such as
the AGM theory of belief revision), as well as contemporaneous studies of defeasible
reasoning in philosophical logic (see [Pollock, 1987]), have shown that epistemic
states underlying our reasoning are much more complex and structured than plain
sets of beliefs governed by logic. They have shown, in particular, an important
role of default assumptions in our reasoning, assumptions that we normally accept
in the absence of evidence to the contrary. These assumptions usually appear in
the conditional form “If A, then normally B”, and it can even be argued that such
normality conditionals constitute one of the central ingredients of our commonsense
epistemic states.

Despite their presumptive acceptability status, default assumptions are defea-
sible, that is, they can be attacked, and even eventually refuted, due to other as-
sumptions and available evidence. The corresponding adjudication process, how-
ever, already cannot be represented as a deductive inference or proof in some logic,
primarily because it is in general non-local and non-monotonic. The eventual ac-
ceptability of such assumptions depends on other assumptions present, and it can
change from acceptance to rejection and vice versa with addition of new assumptions
or facts. This reasoning process displays, however, distinctive features of genuine
argumentation.

As a matter of fact, the intimate connections between argumentation and non-
monotonic reasoning has been noticed at the very beginning of the studies in non-
monotonic reasoning. The starting point of this understanding can be found al-
ready in the Truth Maintenance System (TMS) of [Doyle, 1979] and assumption-
based truth maintenance (ATMS) of [de Kleer, 1986]. This understanding has even
led to a general view of NMR as a theory of the reasoned use of assumptions in
[Doyle, 1994]. In fact, even before Dung, a significant argumentation-based repre-
sentation of default logic and other nonmonotonic formalisms has been suggested in
[Lin and Shoham, 1989].

Developing further this line of research, Dung has shown a fundamental and
unifying role of argumentation in logic programming and general nonmonotonic
formalisms such as default and modal nonmonotonic logics. More precisely, he
has shown that all these formalisms can be viewed as particular instantiations of a
uniform argumentation scheme that implements the principle of default acceptability
for arguments in an abstract framework based solely on a single relation of attack
among them.

Dung’s argumentation frameworks have had two crucial novel features. First,
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they implemented the basic principle of default acceptance for arguments1. On
Dung’s vision, however, this principle admits a number of different interpretations,
which lead to different possible nonmonotonic semantics for the argumentation
frameworks.

The second, more formal, novel feature of the Dung’s formalism was the asym-
metric (directional) character of the attack relation; it was this ‘degree of freedom’
that has allowed to provide an adequate representation of the above-mentioned non-
monotonic formalisms. This feature has also marked an important formal difference
with the traditional, deductive argumentation that has been based primarily on
symmetric inconsistency relations.

It could even be argued that the main contribution of Dung’s theory has con-
sisted in incorporating these two novel features as central conceptual ingredients of
argumentation. It is this conceptual advancement that has given the argumentation
theory its current impetus.

2 Logic in argumentation
One of the fundamental questions that have been re-opened, however, with the ad-
vent of Dung’s argumentation frameworks was the question of the relation between
argumentation and logic. Indeed, on the face of it, Dung’s abstract frameworks
do not include, or even require, any explicit logical components. On the other
hand, it has been shown in subsequent argumentation literature that arbitrary, un-
restricted combinations of argumentation frameworks with deductive rules may lead
to patently inappropriate results, so such compositions should be constrained by
some (more or less) reasonable ‘rationality postulates’, see, e.g., Caminada and Am-
goud, 2007; Amgoud and Besnard, 2013; Dung and Thang, 2014].

As we are going to show in this study, though the relations between argumenta-
tion and logic have irrevocably changed, logic still plays (or, better, should play) an
important role in argumentation. However, we contend that a crucial prerequisite
for a proper understanding of this role amounts to a clear separation of the logical
and non-monotonic aspects of argumentation.2 In fact, the latter objective is not
specific to argumentation theory, but pertains to all nonmonotonic formalisms.

In nonmonotonic formalisms, logic no longer ‘pervades the world’ (using the
famous Wittgenstein’s phrase). Namely, the logic, taken by itself, cannot provide

1Dung himself has called it the basic principle of argumentation and described it in
[Dung, 1995b] as the principle “The one who has the last word laughs best”.

2In this respect, our construction below will be distinct from a large number of
other suggested ways of combining logic with argumentation - see, e.g., [Boella et al., 2005;
Caminada and Gabbay, 2009; Gabbay, 2011; Strasser and Seselja, 2010].

2889



Bochman

the final ‘output’ of these formalisms; this latter task is relegated to the associated
nonmonotonic semantics.

Nevertheless, logic still plays a distinctive and even crucial role in these for-
malisms. First of all, logic and its associated (monotonic) semantics should still
provide a formal interpretation and meaning for the very syntax of a nonmonotonic
formalism. Note that a nonmonotonic semantics is usually defined as a distinguished
subset of the corresponding logical semantics, so it cannot be used for interpreting
the source language. In addition, the logic provides deductive inferences that are
‘safe’ with respect to the nonmonotonic semantics, so it can be used to facilitate
proofs and computations of the latter.

However, an even more profound benefit of the separation between logical and
nonmonotonic aspects of a reasoning formalism emerges from the fact that, once the
separation is made, many of these formalisms can be reconstructed as instantiations
of the same nonmonotonic semantics in different logical languages.

The field of formal argumentation is abundant with different formalisms, which
creates a fertile ground for extensive and rapid development. But there is also a lot
of conceptual affinity among these argumentation formalisms, as well as between the
latter and the major knowledge representation languages in AI. It is this affinity that
allows us to use many of them for basically the same reasoning tasks. This situation
creates, however, an obvious incentive for unification, namely for constructing a
general theory of argumentation and reasoning where these formalisms could find
their proper and hospitable place.

As we are going to show in this study, the logic appropriate for Dung’s argumen-
tation frameworks can be constructed on the basis of a four-valued logical semantics
that can be found, in effect, already in [Jakobovits and Vermeir, 1999]. In that
paper, the authors described a general semantic framework based on acceptance
and rejection of arguments. This semantics was essentially four-valued, because
assignments of acceptance and rejection to arguments were primarily viewed as mu-
tually independent, which permitted valuations in which arguments can be both
accepted and rejected, or neither accepted, nor rejected. The semantics suggested
in [Jakobovits and Vermeir, 1999] were designed, however, to be generalizations of
existing nonmonotonic argumentation semantics, so they incorporated also some
non-logical, nonmonotonic features (see below). Still, we will show that a (properly
generalized) four-valued semantics can be used as a logical basis of Dung’s argu-
mentation frameworks. It will allows us, in particular, to augment the underlying
language with appropriate logical connectives that will transform this abstract ar-
gumentation to real argumentation reasoning with full-fledged logical capabilities.

As we are going to see in what follows, the assumption-based frameworks of
[Bondarenko et al., 1997] could be viewed as a ‘focal point’ of this logical devel-
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opment. On our reconstruction of the latter, assumption-based frameworks can be
obtained from abstract Dung’s frameworks just by adding a particular negation con-
nective to the underlying language of arguments. This connective will also allow us
to establish straightforward relations between attack and inference, as well as be-
tween (non-propositional) arguments and (propositional) assumptions that can be
viewed as their reified counterparts in the object language.

Further stages of this logical development will allow us to provide a more system-
atic description of many other argumentation and general nonmonotonic formalisms,
such as logic programming, default logic, abstract dialectical frameworks and the
causal calculus.

The general picture that will emerge from this formal development is not only
that argumentation is important for nonmonotonic reasoning, but also the other
way round, namely that the main nonmonotonic formalisms and argumentation
systems constitute actually primary instantiations of Dung’s abstract argumentation
in appropriately extended logical languages.

3 Abstract Collective Argumentation
As a general formal basis of argumentation theory, we will use the formalism of collec-
tive argumentation suggested in [Bochman, 2003a] as a ‘disjunctive’ generalization
of Dung’s argumentation theory. In this formalism, a primitive attack relation holds
between sets of arguments3: in the notation introduced below, a →֒ b says that a set
a of arguments attacks a set of arguments b. This fact implies, of course, that these
two sets arguments are incompatible. a →֒ b says, however, more than that, namely
that the set a of arguments, being accepted, provides a reason, or explanation, for
rejection of the set of arguments b. Accordingly, the attack relation will not in gen-
eral be symmetric, since in this situation acceptance of b need not give reasons for
rejection of a. In addition, the attack relation is not reducible to attacks between
individual arguments. For instance, we can disprove some conclusion jointly sup-
ported by a disputed set of arguments, though no particular argument in the set,
taken alone, could be held responsible for this.

In what follows, a, b, c, . . . will denote finite sets of arguments, while u, v,w, . . .
will denote arbitrary such sets. We will use the same agreements for the attack
relation as for usual consequence relations. Thus, a, a1 →֒ b,B will have the same
meaning as a ∪ a1 →֒ b ∪ {B}, etc.

In what follows, proofs will be provided only for the main theorems. Proofs

3A similar idea has been suggested in [Nielsen S.H., 2007], though only for attacking sets, not
attacked ones.
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of all the other claims mentioned in this and the next section can be found in
[Bochman, 2005].

Definition 1. Let A be a set of arguments. A (collective) attack relation is a
relation →֒ on finite sets of arguments satisfying the following postulate:

Monotonicity If a →֒ b, then a, a1 →֒ b, b1.

As we will see below, the above Monotonicity postulate turns out to be sufficient
to characterize the primary logic behind the attack relation.

Though defined initially on finite sets of arguments, the attack relation can be
extended to arbitrary such sets by imposing the compactness requirement: for any
u, v ⊆ A,

(Compactness) u →֒ v iff there exist finite a ⊆ u and b ⊆ v such that a →֒ b.

The original Dung’s argumentation frameworks can be seen as a special case of
collective argumentation that satisfies additional properties (cf. [Kakas and Toni,
1999]):

Definition 2. An attack relation will be called

• affirmative if no argument set attacks the empty set ∅;

• local if it satisfies the following condition:

(Locality) If a →֒ b, b1, then either a →֒ b, or a →֒ b1.

• normal if it is both affirmative and local.

Then the following facts can be easily verified:

Lemma 3. • If →֒ is a normal attack relation, then a →֒ b holds if and only if
a →֒A, for some A ∈ b.

• If →֒ is a local attack relation, then a →֒ b holds iff either a →֒ ∅, or a →֒A, for
some A ∈ b.

Thus, the normal attack relation is reducible to the relation a →֒A between
argument sets and single arguments, and the resulting theory will coincide, in effect,
with that given in [Dung, 1995a]. A slightly more general local attack relation admits
also constraints of the form a →֒. Such a constraint says that the argument set a is
unacceptable (due to Monotonicity, it attacks any argument whatsoever).
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By an argument theory we will mean an arbitrary set of attacks a →֒ b between
finite argument sets. Now, since the Monotonicity condition is a ‘Horn’ one, any ar-
gument theory ∆ generates a unique least attack relation that we will denote by →֒∆.
The latter is obtained from ∆ just by closing it with respect to the Monotonicity
rule. Accordingly, →֒∆ can be described directly as follows:

u →֒∆ v iff a →֒ b ∈ ∆, for some a ⊆ u, b ⊆ v.

An argument theory will be called definite, if it consists of attack rules of the
form a →֒A, where A is a single argument, and singular, if it has only attacks of
the form a →֒ b, where b contains no more than one argument. Then the preceding
lemma, coupled with the above representation, immediately implies the following
simple observation:

Lemma 4. An attack relation is local (respectively, normal) if and only if it is
generated by a singular (resp., definite) argument theory.

Thus, the differences between general, local and normal argumentation are re-
ducible to the differences between corresponding generating argument theories.

3.1 Four-valued logical semantics
Collective argumentation can be given a four-valued semantics that can be seen as
describing the (abstract) meaning of the attack relation. This formal meaning stems
from the following understanding of an attack a →֒ b:

If all arguments in a are accepted, then at least one of the arguments in
b should be rejected.

The argumentation theory does not impose, however, the classical constraints on
acceptance and rejection of arguments, so an argument can be both accepted and
rejected, or neither accepted, nor rejected. Such an understanding can be captured
formally by assigning any argument A a subset ν(A) ⊆ {t, f}, where t denotes
acceptance (truth), while f denotes rejection (falsity). This is nothing other than
the well-known Belnap’s interpretation of four-valued logic (see [Belnap, 1977]). On
this understanding, t ∈ ν(A) means that an argument A is accepted, while f ∈ ν(A)
means that A is rejected. In accordance with this, collective argumentation acquires
a four-valued logical semantics described below.

Definition 5. An attack a →֒ b will be said to hold in a four-valued interpretation
ν of arguments, if either t /∈ ν(A), for some A ∈ a, or f ∈ ν(B), for some B ∈ b.

An interpretation ν will be called a model of an argument theory ∆ if every
attack from ∆ holds in ν.
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Since an attack relation can be seen as a special kind of an argument theory, the
above definition determines also the notion of a model for an attack relation.

Any pair (u, v) of argument sets determines a four-valued interpretation in which
u is the set of true (i.e., accepted) arguments, while v is the set of arguments that are
not false (non-rejected), and vice versa, any four-valued interpretation corresponds
to such a pair of argument sets. In fact, we will often identify in what follows
four-valued interpretations with their associated pairs of argument sets.

In this sense canonical models of an attack relation or an argument theory can
be identified with bitheories described in the next definition.

Definition 6. A pair (u, v) of arguments will be called a bitheory of an argument
theory ∆, if u 6֒→∆ v4.

It can be easily verified that any bitheory of ∆ corresponds to a four-valued
model of the latter.

Definition 7. • A bitheory (u, v) of an argument theory will be called consis-
tent, if u ⊆ v, and complete, if v ⊆ u.

• An argument set u will be called consistent, if u 6֒→ u.

Consistent bitheories correspond to consistent four-valued interpretations,
namely to interpretations in which no argument is both accepted and rejected.
Similarly, complete bitheories correspond to complete four-valued interpretations
in which every argument is either accepted, or rejected. Such constrained interpre-
tations will play an important role in what follows. Finally, consistent argument sets
correspond exactly to bitheories that are both consistent and complete. This notion
of consistency provides an appropriate generalization of the notion of a conflict-free
argument set in Dung’s argumentation theory.

For a set I of four-valued interpretations, we will denote by →֒I the set of all
attacks that hold in each interpretation from I. Then the following result is actually
a basic representation theorem showing that the four-valued semantics is adequate
for collective argumentation.

Theorem 8. →֒ is an attack relation iff it coincides with →֒I , for some set of
four-valued interpretations I.

3.2 Logical kinds of argumentation
We will describe now three special kinds of collective argumentation called, respec-
tively, classical, negative and positive argumentation. On the semantic level, these

4where 6֒→ means that the attack relation does not hold.
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kinds of argumentation will correspond to restrictions of four-valued reasoning to
two- and three-valued reasoning. For all these kinds of argumentation, the attack
relation will be defined by ‘borrowing’ arguments of the opposite side in order to
disprove the latter. Classical argumentation will give an abstract description of
classical consistency-based reasoning. Negative argumentation will be shown to be
especially appropriate for describing the stable nonmonotonic semantics.

In ordinary disputation and argumentation the parties can provisionally accept
some of the arguments defended by their adversaries in order to disprove the latter.
Three basic cases of such an ‘argument sharing’ in attacking the opponents are
described in the following definition (see also [Bondarenko et al., 1997]).

Definition 9. Given an attack relation →֒, we will say that

• a classically attacks b (notation a →֒◦ b) if a, b →֒ a, b;

• a negatively attacks b (notation a →֒− b) if a →֒ a, b;

• a positively attacks b (notation a →֒+ b) if a, b →֒ b.

In a classical attack, the proponent shows, in effect, that her arguments are
incompatible with that of the opponent. In a positive attack, the proponent tem-
porarily accepts opponent’s arguments in order to disprove the latter, while in a
negative attack she shows that her arguments are sufficient for challenging an addi-
tion of the opponent’s arguments. Clearly, if a attacks b directly, then it attacks the
latter classically, positively and negatively, though not vice versa.

As can be seen, →֒◦, →֒− and →֒+ are also attack relations. Moreover, it turns
out that all of them can be given an invariant structural characterization in terms
of additional rules imposed on the attack relation. For explanatory reasons, we will
begin below with a simplest such kind, namely the classical argumentation.

3.2.1 Classical argumentation

Classical argumentation can be seen as an ‘upper bound’ of collective argumenta-
tion; it is a simplest kind of argumentation which amounts, in effect, to classical
consistency reasoning.

Definition 10. An attack relation will be called classical if a, b →֒ a, b always implies
a →֒ b.

It can be easily verified that an argument theory based on a classical attack →֒◦

will be classical. Moreover, the latter determines a least classical ‘closure’ of the
source attack relation:
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Lemma 11. →֒◦ is a least classical attack relation containing →֒.

An immediate consequence of the above lemma is that classical attack relations
are precisely attack relations of the form →֒◦. In other words, classical attack rela-
tions provide a canonical description of argumentation based on a classical attack.

An attack relation is classical if and only if it satisfies:

(Symmetry) a →֒ b, c iff a, b →֒ c.

As a special case of Symmetry, we have

u →֒ v iff ∅ →֒ u, v iff u, v →֒ ∅.

This shows that a classical attack amounts to inconsistency in the full classical
sense. It should be noted in this respect that the classical closure →֒◦ of an at-
tack relation →֒ preserves consistent argument sets. Namely, the definition of →֒◦

immediately implies that it has the same consistent argument sets as →֒.
As could be anticipated, classical argumentation can be characterized semanti-

cally by restricting the set of four-valued interpretations to classical two-valued ones,
namely to interpretations that assign only t or only f to the arguments. This means
that any argument is either accepted or rejected in an interpretation, but not both.

Theorem 12. An attack relation is classical if and only if it is determined by a set
of classical interpretations.

Finally, classical argumentation can be seen as a combination of positive and
negative argumentation. The proof follows immediately from the definitions of the
respective attack relations.

Lemma 13. For any attack relation →֒, (→֒−)+ = (→֒+)− = →֒◦.

The above result says, in particular, that positive and negative argumentation
are incompatible on pain of collapsing to classical reasoning.

3.2.2 Negative argumentation

The definition below provides a general description of collective argumentation based
on a negative attack.

Definition 14. An attack relation will be called negative if a →֒ a, b always implies
a →֒ b.

2896



Argumentation, Nonmonotonic Reasoning and Logic

To begin with, it can be easily verified that any attack relation of the form →֒−

will be negative. Moreover, the latter determines a least negative closure of the
source attack relation:

Lemma 15. →֒− is a least negative attack relation containing →֒.

An immediate consequence of the above lemma is that negative attack relations
are precisely relations of the form →֒−. In other words, negative attack relations
provide a canonical description of argumentation based on negative attacks.

The following result gives an important alternative characterization of negative
argumentation.

Lemma 16. An attack relation is negative iff it satisfies:

(Import) If a →֒ b, c, then a, b →֒ c.

As a special case of Import, we have that if a →֒ b, then a, b →֒ ∅. Thus, any
negative attack relation is bound to be non-affirmative. Furthermore, this implies
that inconsistent argument sets attack any argument:

If v →֒ v, then v →֒u.

This feature is responsible for the fact that only stable sets constitute a reason-
able nonmonotonic semantics for negative argumentation (see below).

Negative argumentation can be characterized semantically by restricting the set
of possible four-valued interpretations to consistent ones that do not assign the set
{t, f} to arguments. This means that no argument can be both accepted and rejected
in an interpretation.

Theorem 17. An attack relation is negative if and only if it is determined by a set
of consistent interpretations.

3.2.3 Positive argumentation

The definition below provides a structural description of positive argumentation.

Definition 18. An attack relation will be called positive if a, b →֒ b always implies
a →֒ b.

Any attack relation →֒+ will be positive. Moreover, the latter determines a least
positive extension of the source attack relation.

Lemma 19. →֒+ is a least positive argument theory containing →֒.
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The lemma implies that positive attack relations are precisely relations of the
form →֒+, and hence they give a canonical description of argumentation based on
positive attacks.

Similarly to negative argumentation, positive argumentation can be character-
ized by the ‘exportation’ property described in the lemma below:

Lemma 20. An attack relation is positive iff it satisfies:

(Export) If a, b →֒ c, then a →֒ b, c.

Positive argumentation can also be characterized semantically by restricting the
set of possible four-valued interpretations to complete ones, namely to interpretations
that do not assign ∅ to arguments. This means that every argument is either accepted
or rejected in an interpretation (or both).

Theorem 21. An attack relation is positive if and only if it is determined by a set
of complete interpretations.

The proof of the above theorem is perfectly similar to the case of negative ar-
gumentation. It turns out, however, that the positive argumentation, taken in its
full generality, is not appropriate for the main nonmonotonic semantics, namely the
stable semantics. Still, the reader can find in the literature a number of weaker argu-
mentation systems that incorporate some of the features of positive argumentation.
We will mention below only one important logical principle of this kind.

Consistent argumentation. A number of argumentation systems suggested in
the literature (see, e.g., [Kakas et al., 1994]) are based on the idea that inconsistent
arguments should not form a legitimate attack on other arguments. A simplest way
to incorporate this idea into an argumentation theory consists in using the following
modification of an attack relation:

Definition 22. Given an attack relation →֒, we will say that a consistently attacks
b (notation a →֒c b) if either a →֒ b, or b →֒ b.

It turns out that this kind of an attack relation can also be given a logical
description.

Definition 23. An attack relation will be called consistent if b →֒ b implies ∅ →֒ b.

As can be seen, consistent attack relations embody the most significant feature
of positive argumentation, namely that inconsistent arguments are attacked by any
argument. Still, consistency in the above sense is a weaker property than positivity
(Export).
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As before, it can be shown that consistent attack relations are precisely relations
of the form →֒c. Finally, a semantic characterization of consistent argumentation can
be obtained by requiring that any inconsistent argument set is rejected in at least one
four-valued interpretation. This requirement is met by restricting the set of possible
four-valued interpretations to quasi-reflexive ones, namely to sets of interpretations
I such that if (u, v) ∈ I, then the corresponding classical interpretation (v, v) also
belongs to I. As a matter of fact, this semantic constraint plays a prominent role
in describing the logics appropriate for the stable semantics of logic programs (see
[Bochman and Lifschitz, 2011]).

4 Nonmonotonic semantics

In the preceding section we have described a structural logical basis of argumenta-
tion. As we have argued in the introduction, however, the argumentation theory
should be viewed as a two-layered formalism which has both logical and nonmono-
tonic components. This means that, in addition to the logical semantics, an argu-
mentation formalism should be assigned also a nonmonotonic semantics that will
determine the actual acceptance and rejection of arguments in each reasoning con-
text. As one of its main objectives, the latter semantics should incorporate and
thoroughly implement the basic principle of default acceptance for arguments.

Partly due to historical reasons (primarily, the logic programming origins), there
is a bewildering number of nonmonotonic semantics that are actively investigated
in the current argumentation literature. There have been a number of attempts
to systematize these semantics (see, e.g., [Baroni and Giacomin, 2007]), though no
uniform picture has been emerged.

In some sense, an attempt to systematize the various nonmonotonic semantics of
argumentation is similar to an attempt to systematize logics in general, and as for
the latter, it appears to be doomed from the very beginning. Worse still, the modern
formal argumentation theory is still too young to provide substantive evidence for
(or against) specific semantics, and thereby implicitly preserves hopes that they
could be found useful in the future.

We will attempt to provide below a rough sketch of the basic principles and
desiderata for constructing the nonmonotonic semantics of argumentation, which
will also implicitly single out certain preferences, or priorities, between them. Our
main underlying idea is that we should always try to apply the best (rather than the
most general) semantics that is consistent with the constraints of the application in
question. Of course, our position on this issue is not uncontroversial, but we contend
that it is a reasonable and defensible position.
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As a starting point, we will formulate the main principle of argumentation as the
claim that arguments (in sharp distinction with factual assertions) bear with them
the presumption of acceptance:

An argument is accepted unless there is a reason for its rejection.

One of the important ways of interpreting the above principle amounts to view-
ing arguments as abducibles in the framework of an argumentation theory. This
understanding can serve as a guidance in determining the associated nonmonotonic
semantics.

Now, in the framework of the formal argumentation theory, the reasons for rejec-
tion of arguments come only in the form of attacks by other arguments. Thus, our
logical interpretation of the attack relation immediately sanctions that if an argu-
ment A attacks an argument B, and A is a accepted, then B should be rejected. In
what follows, we will say that an argument is refuted, if it is attacked by an accepted
argument set. Then our main principle of argumentation implies that an argument
should be accepted whenever all its attacking arguments are not accepted. In other
words, it evolves to

An argument is accepted if and only if it is not refuted.

Now, if we combine the above principle with the natural ‘classical’ requirement
that any argument should be either accepted, or rejected, but not both, we will im-
mediately obtain the primary nonmonotonic semantics of argumentation, the stable
semantics5. According to this semantics, acceptable sets of arguments are conflict-
free sets that attack any argument outside them.

In the general correspondence between Dung’s argumentation theory and other
nonmonotonic formalisms, the stable semantics corresponds to the main nonmono-
tonic semantics of the latter. This, as well as many other facts (some of which will
be detailed later in this study), make the stable semantics a proper candidate on the
role of the standard nonmonotonic semantics for argumentation, much in the same
sense as the classical logic can be viewed as the standard logic for our reasoning
(whatever the objections one could possibly have against this logic).

Despite its naturalness and simplicity, however, there are also quite simple argu-
mentation frameworks where the stable semantics fails to determine an acceptable
set of arguments6. Such situations create an obvious incentive for trying alternative,

5see also [Pollock, 1987].
6A simplest such framework comprises a single argument that attacks itself.
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more tolerant, nonmonotonic semantics7.
It turns out that the general four-valued logical semantics of acceptance and re-

jection of arguments provides all the necessary ‘degrees of freedom’ for defining such
alternative nonmonotonic semantics, and the way to do this amounts to adopting
different ‘partial’ generalizations of the main argumentation principle in the four-
valued setting.

Retaining our earlier definition of refutation, a first such relaxed argumentation
principle can be formulated as follows:

An argument is rejected if and only if it is refuted.

Note that the above principle is not equivalent to our original main
argumentation principle, since the assignments of acceptance and rejection are logi-
cally independent. Instead, combined with our logical characterization of the attack
relation, this principle will give us precisely the notion of labeling from [Jakobovits
and Vermeir, 1999].

An even stronger general constraint on nonmonotonic semantics can be obtained
by adding the following alternative generalization of the main argumentation prin-
ciple:

An argument is accepted if and only if all its attackers are rejected.

Now, if we will restrict the set of valuations to consistent ones, we will obtain ex-
actly the Caminada labellings (see [Caminada and Gabbay, 2009]). These labellings
have been shown to encompass the main nonmonotonic semantics of Dung’s argu-
mentation frameworks.

In the rest of this section we are going to provide a more detailed description of
the nonmonotonic semantics of argumentation.

4.1 Normal (Dung) argumentation
As a convenient starting point, we will describe now a range of nonmonotonic seman-
tics for normal argument theories suggested in [Dung, 1995b]. All these semantics
can be defined in terms of the following two notions:

7As a side remark, it is important to bear in mind, however, that the nonmonotonic semantics
is not intended to replace the logical semantics in all its functions and capacities. In particular, the
nonmonotonic semantics should not be required to deliver a consistent extension in any situation
(just as a definite description in classical first-order logic cannot be required to always determine a
unique referent).
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Definition 24. Given an attack relation →֒, an argument A will be called allowable
for a set of arguments u, if u 6֒→A, and acceptable for u, if u attacks any argument
set that attacks A.

[u] will denote the set of all assumptions allowable by u:

[u] = {A | u 6֒→A}.

The origins of this operator can be found already in [Pollock, 1987], and it has
been extensively used in [Dung, 1995b].

Note that [ ] is an anti-monotonic operator on argument sets, that is, u ⊆ v
implies [v] ⊆ [u]. Moreover, the set of arguments that are acceptable for u coincides
with [[u]], where [[ ]] is obviously a monotonic operator.

Using the above notions, we can give a rather simple characterization of the basic
nonmonotonic models of a normal argumentation.

Definition 25. An argument set u is

• conflict-free if u ⊆ [u];

• admissible if it is conflict-free and u ⊆ [[u]];

• a complete extension if it is conflict-free and u = [[u]];

• a preferred extension if it is a maximal complete extension;

• a stable extension if u = [u].

As has been shown in [Dung, 1995a], the above models correspond to well-known
semantics for normal logic programs.

4.2 Stable and partial stable semantics

Though the above notions and models of Dung’s argumentation theory have been
defined for arbitrary collective attack relations, it should be clear that they are ade-
quate only for normal argumentation, since they are based only on singular attacks.
Still, we will see that in some important cases the more general models defined below
will coincide with their normal counterparts. Unfortunately, it will turn out that
only a small part of the nice and well-organized structure of nonmonotonic models
for normal argumentation can be transferred into a general framework of collective
argumentation.
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If (u, v) is a bitheory of an attack relation (that is, u 6֒→ v), then v is always
included in a maximal set v1 such (u, v1) is a bitheory. The corresponding four-
valued model contains a minimal set of rejected arguments for a given set u of
accepted ones.

For an argument set u, we will denote by 〈u〉 the set of all maximal argument
sets v such that u 6֒→ v. The operator 〈u〉 will play in what follows the same role as
the operator [u] in normal argumentation. In particular, using this operator, we can
give the following rather simple description of stable and partial stable models of
collective argumentation.

Definition 26. • An argument set u will be called stable if u ∈ 〈u〉.

• A bitheory (u, v) will be called partial stable if u ∈ 〈v〉, and v ∈ 〈u〉.
As has been shown in [Bochman, 2003a], under a general correspondence be-

tween collective argumentation and disjunctive logic programs, the above models
correspond precisely to the well-known semantics for such logic programs, given in
the literature.

Stable argument sets correspond precisely to partial stable bitheories of the form
(u, u). Note also that if (u, v) is a partial stable bitheory, then (v, u) will also be
partial stable, and vice versa. A usual additional condition imposed on partial stable
models amounts, however, to requiring that (u, v) should be a consistent bitheory
(that is, u ⊆ v). The corresponding models will be called consistent partial stable
bitheories. Note, however, that the bitheories (u, v) and (v, u) provide the same
information about ‘classical’ acceptance and rejection of assumptions, namely they
single out the same assumptions that are accepted without being rejected, and same
rejected assumptions that are not also accepted.

The following lemmas give more direct, and often more convenient, descriptions
of the above models.

Lemma 27. An argument set u is stable iff u = {A | u 6֒→u,A}.
The above equation says that a stable argument u consists of all arguments A

such that u does not attack u ∪ {A}. A similar description can be given for partial
stable models.

Lemma 28. (u, v) is a partial stable bitheory if and only if

v = {A | u 6֒→ v,A} and u = {A | v 6֒→u,A}.

The next result shows that stable argument sets and consistent partial stable
bitheories of a normal attack relation coincide, respectively, with stable and complete
extensions.
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Lemma 29. If →֒ is a normal attack relation, then

• stable argument sets coincide with stable extensions;

• (u, v) is a consistent partial stable bitheory iff u is a complete extension, and
v = [u].

Furthermore, it can be shown that partial stable bitheories are representable as
stable argument sets of a certain ‘doubled’ attack relation.

Let →֒ be an attack relation on a set A of arguments. For each A ∈ A, we
introduce a new argument A′. For any subset u of A, we will denote by u′ the set
{A′ | A ∈ u}. Now we define a new attack relation →֒◦ on A ∪A′ as follows:

a, b′ →֒◦ c, d
′ ≡ a →֒ d or b →֒ c.

Then we have

Theorem 30. A bitheory (u, v) is partial stable in →֒ if and only if u∪v′ is a stable
argument set in →֒◦.

The above theorem shows, in effect, that partial stable models are essentially
stable argument sets ‘in disguise’. Unfortunately, in the case of collective argumen-
tation they lack most of the structural properties they had in the normal case of
Dung’s theory. Most importantly, they do not form a lower semilattice (under the
standard information order over four-valued models -see, e.g., [Fitting, 1991]) and,
in particular, there may be no least partial stable model. In fact, unlike the normal
case, collective argument theories may have no partial stable models at all.

Example 31. (1) It can be verified that the argument theory

{→֒A,B,C; A →֒B; B →֒C; C →֒A}

does not have any partial stable bitheories.
(2) the argument theory {→֒A,B; A →֒A; B →֒B} does not have consistent

partial stable models, though ({A}, {B}) and ({B}, {A}) are its partial stable bithe-
ories.

4.3 Admissibility semantics
Finally we will briefly consider collective counterparts of admissible argument sets
in normal argumentation. Recall that the latter have been defined as conflict-free
argument sets that counterattack any argument against them. This definition can
be naturally generalized to collective argumentation as follows:
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Definition 32. A consistent argument set u will be called admissible if, for any v,
if v →֒u, then u →֒ v.

Admissible argument sets can also be described in terms of the 〈 〉 operator.
Namely, u is admissible if no argument set from 〈u〉 attacks u. Clearly, admissibility
reduces to Dung-admissibility for normal attack relations. Unfortunately, in the
context of collective argumentation the notion of admissibility behaves in a much
less ordered fashion than in the Dung’s theory. Note, in particular, that even stable
argument sets need not be admissible in this sense:

Example 33. Let us consider an argument theory {A →֒B →֒A,B}. As can be
seen, {B} is a stable argument set of this theory, but it is not admissible: we have
A →֒B, though B 6֒→A.

It turns out, however, that consistent stable extensions are always both admis-
sible and stable.

Lemma 34. Any consistent stable extension of an attack relation is both an admis-
sible and stable argument set.

4.4 Underlying argumentation logics
Any nonmonotonic semantics implicitly determines an appropriate underlying logic,
a logic that preserves this semantics under all expansions of the associated nonmono-
tonic theory. In this section, we describe the effects of imposing logical constraints,
described earlier, on the nonmonotonic argumentation semantics.

As an ‘upper’ limiting case, the classical argumentation theory drastically sim-
plifies the whole range of nonmonotonic semantics:

Lemma 35. If →֒ is a classical attack relation, then

• Admissible sets coincide with consistent sets;

• Stable sets coincide with maximal consistent sets;

• Partial stable bitheories coincide with stable ones.

A more discriminate look reveals that it is the ‘positive ingredient’ of classi-
cal argumentation that could be held responsible for this trivializing effect. More
precisely, already the consistency property produces the same result:

Lemma 36. If →֒ is a consistent attack relation, then

• stable argument sets coincide with maximal consistent sets;
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• consistent partial stable bitheories are bitheories of the form (u, u), where u is
a stable argument set.

On the other hand, the results below will show that negative argumentation
constitutes an adequate and very convenient framework for studying the stable se-
mantics.

As a first step, the next result shows that stable argument sets of an attack
relation are precisely stable extensions of its negative closure.

Lemma 37. Stable argument sets of an attack relation →֒ coincide with the stable
extensions of →֒−.

The above result shows that Dung’s stable extensions and stable argument sets
of collective argumentation are indeed close relatives. As a consequence, we imme-
diately obtain

Corollary 38. • Stable argument sets of a negative attack relation coincide with
its stable extensions.

• Any attack relation →֒ has the same stable argument sets as →֒−.

The second claim above implies that Import is an argumentation rule that pre-
serves stable argument sets, and hence negative argumentation turns out to be ap-
propriate for the stable nonmonotonic semantics. An additional consequence of the
above results is the eventual reduction of stable argument sets to stable extensions
of Dung’s argumentation theory. Lemma 37 says, in effect, that, after extending a
given attack relation to a negative one (by closing it with respect to Import), we
can restrict ourselves to its normal sub-relation; stable extensions of the resulting
normal attack relation will coincide with stable argument sets of the original attack
relation.

Our next result shows, however, that negative argumentation trivializes partial
stable semantics.

Lemma 39. Partial stable bitheories of a negative attack relation are bitheories of
the form (u, u), where u is a stable argument set.

Thus, negative argumentation reduces partial stable models to stable ones. In
fact, negative argumentation seems to exclude all nonmonotonic semantics other
than the stable one.

Our final result shows that admissible argument sets still play an important role
in negative argumentation.

Theorem 40. Let →֒ be a negative attack relation.
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• If u is an admissible argument set in →֒, and v a consistent argument set that
includes u, then v is also admissible in →֒.

• Stable argument sets of →֒ coincide with maximal admissible argument sets.

The above theorem demonstrates that the structure of admissible and stable
argument sets in negative argumentation is very simple. Namely, they behave much
like logically consistent sets. There is, however, a crucial difference: the empty set
∅ is not, in general, admissible. Moreover, a negative attack relation may have no
admissible arguments at all; this happens precisely when it has no stable argument
sets.

5 Negation, deduction and assumptions
The notion of an argument is often taken as primitive in argumentation theory,
which, among other theoretical advantages, allows for a possibility of considering ar-
guments that are non-propositional in character (e.g., arguments as inference rules,
or derivations). Still, there exists a natural, direct connection between abstract
argumentation frameworks and traditional deductive argumentation; it has been
established, in effect, already in [Bondarenko et al., 1997]8. In this formalism of
assumption-based argumentation arguments were constructed as plain deductive ar-
guments that may involve, however, auxiliary propositional assumptions. Moreover,
the attack relation can already be defined in this framework, so the assumption-based
argumentation can be viewed as a special case of Dung’s abstract argumentation.
Nevertheless, it has been shown in [Bondarenko et al., 1997] that this special kind
of argumentation still provides a natural and powerful generalization of the main
nonmonotonic formalisms and various semantics for logic programming.

As we are going to show in this section, the entire formalism of assumption-
based argumentation can be obtained just by adding a single negation connective to
the logical system of abstract argumentation, a connective that is actually implicit
in the formalism of [Bondarenko et al., 1997] in the form of the contrary mapping
on assumptions. This move will also constitute a first, and most important, step
towards a full-fledged theory of propositional argumentation that will be described
subsequently.

Let us extend our underlying language with a negation connective ∼ having the

8See also [Kowalski and Toni, 1996].
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following precise (four-valued) semantic definition9:

∼A is accepted iff A is rejected
∼A is rejected iff A is accepted.

The above definition makes∼ a particular four-valued connective; it will be called
a global negation, since it switches the evaluation contexts between acceptance and
rejection.

An axiomatization of this negation in abstract argumentation theory can be
obtained by imposing the following rules on the attack relation:

A →֒∼A ∼A →֒A

If a →֒A, b and a,∼A →֒ b, then a →֒ b (AN)
If a,A →֒ b and a →֒ b,∼A, then a →֒ b

Attack relations satisfying the above postulates will be called N-attack relations.
It turns out that the latter are inter-definable with a particular kind of consequence
relations.

Recall that a Scott consequence relation, known also as a multiple-conclusion
consequence relation [Shoesmith and Smiley, 1978; Gabbay, 1981; Segerberg, 1982;
Wojcicki, 1988], is a binary relation between sets of propositions that is required to
satisfy the following will-known postulates:

(Reflexivity) A  A;

(Monotonicity) If a  b and a ⊆ a′, b ⊆ b′, then a′  b′;

(Cut) If a  b,A and a,A  b, then a  b,

In this logical framework, our target consequence relations can be described as
follows:

Definition 41. A Belnap consequence relation in a propositional language with a
global negation ∼ is a Scott consequence relation satisfying the following two Double
Negation rules for the global negation:

A  ∼∼A ∼∼A  A.

9This negation connective played a prominent role in Belnap’s information lattices
[Belnap, 1977].
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For any set u of propositions, we will denote by ∼u the set {∼A | A ∈ u}. Now,
for a given N-attack relation, we can define the following consequence relation:

a  b ≡ a →֒∼b (CA)

Similarly, for any Belnap consequence relation we can define the corresponding
attack relation as follows:

a →֒ b ≡ a  ∼b (AC)

As has been shown in [Bochman, 2003a], the above definitions establish an ex-
act equivalence between N-attack relations and Belnap consequence relations. This
correspondence allows us to represent an assumption-based argumentation frame-
work from [Bondarenko et al., 1997] entirely in the framework of attack relations
(see below).

N-attack relations allow to provide simpler alternative descriptions of negative
and positive argumentation. Thus, the rule Import of negative argumentation for
such attack relations is equivalent to the condition

A,∼A →֒ ∅.

whereas the rule Export of positive argumentation is equivalent to

∅ →֒A,∼A.

The above condition explicitly says that any argument should be either rejected
or accepted. As could be expected, it is equivalent also to the principle of reasoning
by cases:

(Factoring) If a,A →֒ b and a,∼A →֒ b, then a →֒ b.

Assumptions versus factual propositions. Though the global negation ∼ is a
logically well-defined connective, it implicitly interferes with the main principle of
argumentation that presupposes an asymmetric treatment of acceptance and rejec-
tion for arguments. Indeed, if A is an argument, then ∼A cannot already be viewed
as an argument, since otherwise presumptive acceptance of ∼A would directly imply
presumptive rejection of A itself!

The emerging problem immediately reminds us, however, that our commonsense
epistemic states are not homogeneous: in addition to normality assumptions (that
can be viewed as primitive arguments), they contain also ordinary factual claims.
Furthermore, the latter have in a sense an opposite nature as compared to arguments.
Namely, they are presumably rejected unless we have reasons for their acceptance.
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A simple and perhaps the most natural way of resolving the above issues consists
in a clear separation between assumptions and factual propositions; it has been
actually implemented in the assumption-based argumentation of [Bondarenko et al.,
1997].

Assumption-based argumentation (ABA). Slightly changing the formulation
of [Bondarenko et al., 1997], an assumption-based argumentation framework can be
defined as a triple consisting of an underlying deductive system (including the current
set of beliefs), a distinguished subset of propositions Ab called assumptions, and a
mapping from Ab to the set of all propositions of the language that determines the
contrary A of any assumption A.

Now, the underlying deductive system can be expressed directly in the framework
of N-attack relations by identifying deductive rules a ⊢ A with attacks of the form
a →֒∼A. Furthermore, the global negation ∼ can also serve as a faithful logical
formalization of the operation of taking the contrary. More precisely, given an
arbitrary underlying language L that does not contain ∼, we can define assumptions
as propositions of the form ∼A, where A ∈ L. Then, since ∼ satisfies double
negation, a negation of an assumption will be a proposition from L. Accordingly,
N-attack relations can be seen as a proper generalization of the assumption-based
framework.

Remark 42. It should be mentioned that our representation assign a bit more struc-
ture and properties to assumptions and the contrary mapping than it was originally
assumed in ABA. Still, it can be verified that this extended representation is fully
conservative with respect to the applications of this argumentation theory to other
nonmonotonic formalisms, described in [Bondarenko et al., 1997].

In [Bondarenko et al., 1997], the connection between (assumption-based) argu-
mentation and main nonmonotonic formalisms has been established by showing that
these nonmonotonic systems can be viewed as assumption-based frameworks just by
defining assumptions and their contraries. As a partial converse of these results,
we are going to show below that many of these formalisms constitute actually pri-
mary instantiations of propositional argumentation in appropriately chosen logical
languages.

6 Default argumentation
Taking seriously the idea of propositional argumentation, it is only natural to make
further steps toward extending the underlying language of arguments to the usual
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classical propositional language. These steps should be coordinated, however, with
the inherently four-valued nature of the attack relation. And the way to do this
amounts to requiring that the relevant classical connectives should behave in a usual
classical way with respect to both acceptance and rejection of arguments.

As a first such connective, we introduce the conjunction ∧ of arguments that is
determined by the following familiar semantic conditions:

A ∧B is accepted iff A is accepted and B is accepted
A ∧B is rejected iff A is rejected or B is rejected

As can be seen, ∧ behaves as an ordinary classical conjunction with respect
to acceptance and rejection of arguments. On the other hand, it is a four-valued
connective, since the above conditions determine a four-valued truth-table for con-
junction in the Belnap’s interpretation of four-valued logic (see [Belnap, 1977]). The
following postulates provide a simple syntactic characterization of this connective
for attack relations:

a,A ∧B →֒ b iff a,A,B →֒ b

a →֒A ∧B, b iff a →֒A,B, b (A∧)

Collective attack relations satisfying these postulates will be called conjunctive.
The next result shows that they give a complete description of the four-valued con-
junction.

Corollary 43. An attack relation is conjunctive if and only if it coincides with
→֒I , for some set of four-valued interpretations I in a language with the four-valued
conjunction ∧.

An immediate benefit of introducing conjunction into the language of argumen-
tation is that any finite set of arguments a becomes reducible to a single argument∧
a:

a →֒ b iff
∧

a →֒
∧

b.

As a result, the collective attack relation in this language is reducible to an attack
relation between individual arguments, just as it has been assumed in [Dung, 1995b].

Having a conjunction at our disposal, we only have to add a classical negation
¬ in order to obtain a full classical language. Moreover, since sets of arguments are
reducible to their conjunctions, we can represent the resulting argumentation theory
using just a binary attack relation on classical formulas.

As a basic condition on argumentation in the classical propositional language,
we will require only that the attack relation should respect the classical entailment
� in the precise sense of being monotonic with respect to � on both sides.
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Definition 44. A propositional attack relation is a relation →֒ on the set of classical
propositions satisfying the following postulates:

(Left Strengthening) If A � B and B →֒C, then A →֒C;

(Right Strengthening) If A →֒B and C � B, then A →֒C;

(Truth) t →֒ f ;

(Falsity) f →֒ t.

Left Strengthening says that logically stronger arguments should attack any ar-
gument that is attacked already by a logically weaker argument, and similarly for
Right Strengthening. Truth and Falsity postulates characterize the limit cases of
argumentation by stipulating that any tautological argument attacks any contradic-
tory one, and vice versa.

There exists a simple definitional way of extending the above attack relation to
a collective attack relation between arbitrary sets of propositions. Namely, for any
sets u, v of propositions, we can define u →֒ v as follows:

u →֒ v ≡ there exist finite a ⊆ u, b ⊆ v such that
∧

a →֒
∧

b

The resulting attack relation will satisfy the properties of collective argumenta-
tion, as well as the postulates (A∧) for conjunction.

Finally, in order to acquire full expressive capabilities of the argumentation the-
ory, we can add the global negation ∼ to the language. Actually, a rather simple
characterization of the resulting collective argumentation theory can be obtained by
accepting the basic postulates AN for ∼, plus the following rule that permits the
use of classical entailment in attacks:

Classicality If a � A, then a →֒∼A and ∼A →֒ a.

It can be verified that the resulting system satisfies all the postulates for propo-
sitional argumentation. The system will be used later for a direct representation of
default logic.

6.1 Logical semantics
A semantic interpretation of propositional attack relations can be obtained by gen-
eralizing four-valued interpretations to pairs (u, v) of deductively closed theories,
where u is the set of accepted propositions, while v the set of propositions that are
not rejected. Such pairs will be called bimodels, while a set of bimodels will be called
a binary semantics.
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Definition 45. An attack A →֒B will be said to be valid in a binary semantics B
if there is no bimodel (u, v) from B such that A ∈ u and B ∈ v.

We will denote by →֒B the set of attacks that are valid in a semantics B. This
set forms a propositional attack relation. Moreover, the following result shows that
propositional attack relations are actually complete for the binary semantics.

Theorem 46. →֒ is a propositional attack relation if and only if it coincides with
→֒B, for some binary semantics B.

6.2 Default logic
Now we will show that propositional argumentation provides a direct representation
of Reiter’s default logic [Reiter, 1980].

Given a system of propositional argumentation in the classical language aug-
mented with the global negation ∼, we will interpret Reiter’s default rule a:b/A as
an attack10

a,∼¬b →֒∼A,
or, equivalently, as a rule a,∼¬b  A of the associated Belnap consequence relation.
Similarly, an axiom A of a default theory will be interpreted as an attack t →֒∼A.
For a default theory ∆, we will denote by tr(∆) the corresponding argument theory
obtained by this translation.

By our general agreement, by assumptions we will mean propositions of the form
∼A, where A is a classical proposition. For a set u of classical propositions, we will
denote by ũ the set of assumptions {∼A | A /∈ u}. Finally, a set w of assumptions
will be called stable in an argument theory ∆ if, for any assumption A, A ∈ w iff
w 6֒→∆ A, where →֒∆ is the least propositional attack relation containing ∆. Then
we have

Theorem 47. A set u of classical propositions is an extension of a default theory
∆ if and only if ũ is a stable set of assumptions in tr(∆).

The above result is similar to the corresponding representation result in [Bon-
darenko et al., 1997, Theorem 3.10], but it is much simpler, and is formulated entirely
in the framework of propositional attack relations. The simpler representation was
made possible due to the fact that propositional attack relations already embody
the deductive capabilities treated as an additional ingredient in assumption-based
frameworks.

10As before, we use set notation according to which ¬b denotes the set {¬B | B ∈ b}.
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7 Probative and causal argumentation
We will introduce now some stronger propositional attack relations that satisfy fur-
ther reasonable postulates:

(Left Or) If A →֒C and B →֒C, then A ∨B →֒C;

(Right Or) If A →֒B and A →֒C, then A →֒B ∨ C;

(Self-Defeat) If A →֒A, then t →֒A.

Definition 48. A propositional attack relation will be called probative if it satisfies
Left Or, basic, if it also satisfies Right Or, and causal, if it is basic and satisfies
Self-Defeat.

Probative argumentation allows for reasoning by cases. Its semantic interpre-
tation can be obtained by restricting bimodels to pairs (α, v), where α is a world
(maximal classically consistent set). The corresponding binary semantics will also
be called probative. Similarly, the semantics for basic argumentation is obtained by
restricting bimodels to world pairs (α, β); such a binary semantics will be called
basic. Finally, the causal binary semantics is obtained from the basic semantics by
requiring further that (α, β) is a bimodel only if (β, β) is also a bimodel.

Corollary 49. A propositional attack relation is probative [basic, causal] iff it is
determined by a probative [resp. basic, causal] binary semantics.

Basic propositional argumentation can already be given a purely four-valued
semantic interpretation, in which the classical negation ¬ has the following semantic
description:

¬A is accepted iff A is not accepted
¬A is rejected iff A is not rejected

A syntactic characterization of this connective in collective argumentation can
be obtained by imposing the rules

A,¬A →֒ →֒A,¬A
If a,A →֒ b and a,¬A →֒ b then a →֒ b (A¬)
If a →֒ b,A and a →֒ b,¬A then a →֒ b

Then a basic propositional attack relation can be alternatively described as a
collective attack relation satisfying the rules (A∧) and (A¬). Moreover, the global
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negation ∼ can be added to this system just by adding the corresponding postulates
(AN). It turns out, however, that the global negation is eliminable in this setting
via to the following reductions:

a,∼A →֒ b ≡ a →֒ b,¬A a →֒∼A, b ≡ a,¬A →֒ b

a,¬∼A →֒ b ≡ a →֒ b,A a →֒¬∼A, b ≡ a,A →֒ b (R∼)

As a result, the basic attack relation can be safely restricted to an attack relation
in a classical language.

Finally, the rule Self-Defeat of causal argumentation gives a formal representa-
tion for an often expressed desideratum that self-conflicting arguments should not
participate in defeating other arguments (see, e.g., [Bondarenko et al., 1997]). This
aim is achieved in our setting by requiring that such arguments are attacked even
by tautologies, and hence by any argument whatsoever.

7.1 Argumentation vs. causal reasoning
Probative attack relations turn out to be equivalent to general production inference
relations from [Bochman, 2003b; Bochman, 2004a], a variant of input-output logics
from [Makinson and van der Torre, 2000].

A production inference relation is a relation⇒ on the set of classical propositions
satisfying the following rules:
(Strengthening) If A � B and B⇒C, then A⇒C;

(Weakening) If A⇒B and B � C, then A⇒C;

(And) If A⇒B and A⇒C, then A⇒B ∧ C;

(Truth) t⇒ t;

(Falsity) f⇒ f .
A production rule A⇒B can be informally interpreted as saying that A causes,

or explains B. A characteristic property of production inference is that reflexivity
A⇒A does not hold for it. Production rules are extended to rules with sets of
propositions in premises by requiring that u⇒A holds for a set u of propositions iff∧
a⇒A, for some finite a ⊆ u. C(u) will denote the set of propositions produced by

u:
C(u) = {A | u⇒A}

The production operator C plays much the same role as the usual derivability
operator for consequence relations.

A production inference relation is called basic, if it satisfies
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(Or) If A⇒C and B⇒C, then A ∨B⇒C.

and causal, if it is basic and satisfies, in addition

(Coherence) If A⇒¬A, then A⇒ f .

It has been shown in [Bochman, 2003b] that causal inference relations provide
a complete description of the underlying logic of causal theories from [McCain and
Turner, 1997] (see also [Giunchiglia et al., 2004]).

It turns out that the binary semantics, introduced earlier, is appropriate also for
interpreting production inference:

Definition 50. A rule A⇒B is valid in a binary semantics B if, for any bimodel
(u, v) ∈ B, A ∈ u only if B ∈ v.

As has been shown in [Bochman, 2004a], the above semantics is adequate for pro-
duction inference relations. Moreover, the semantics for basic production inference
can be obtained by restricting bimodels to world pairs (α, β), while the semantics
for causal inference is obtained by requiring, in addition, that (α, β) is a bimodel
only if (α,α) is also a bimodel.

Now, the correspondence between probative argumentation and production infer-
ence can be established directly on the syntactic level using the following definitions:

A⇒B ≡ ¬B →֒A; (PA)
A →֒B ≡ B⇒¬A. (AP)

Under these correspondences, the rules of a probative attack relation correspond
precisely to the postulates for production relations. Moreover, the correspondence
extends also to a correspondence between basic and causal argumentation, on the one
hand, and basic and causal production inference, on the other. Hence the following
result is straightforward.

Lemma 51. If →֒ is a probative [basic, causal] attack relation, then (PA) determines
a [basic, causal] production inference relation, and vice versa, if⇒ is a [basic, causal]
production inference relation, then (AP) determines a probative [basic, causal] attack
relation.

Remark 52. A seemingly more natural correspondence between propositional argu-
mentation and production inference can be obtained using the following definitions:

A⇒B ≡ A →֒¬B A →֒B ≡ A⇒¬B.
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By these definitions, A explains B if it attacks ¬B, and vice versa, A attacks B if
it explains ¬B. Unfortunately, this correspondence, though plausible by itself, does
not take into account the intended understanding of arguments as (negative) as-
sumptions. As a result, it cannot be extended directly to the correspondence between
the associated nonmonotonic semantics, described below.

As our next result, we will establish a correspondence between the nonmonotonic
semantics of causal inference relations and that of causal argumentation.

The nonmonotonic semantics of a causal inference relation is a set of its exact
worlds, namely worlds α such that α = C(α) (see [Bochman, 2004a]). Such a world
satisfies the rules of the causal relation, and any proposition that holds in it is
explained by the causal rules.

A causal theory is an arbitrary set of production rules. By a nonmonotonic
semantics of a causal theory ∆ we will mean the exact worlds of the least causal
relation containing ∆.

The correspondence between exact worlds and stable sets of assumptions is es-
tablished in the next theorem.

Theorem 53. If ∆ is a causal theory, and ∆a its corresponding argument the-
ory given by (AP), then a world α is an exact world of ∆ iff α̃ is a stable set of
assumptions in ∆a.

The above result shows, in effect, that propositional argumentation subsumes
causal reasoning as a special case. Moreover, it can be shown that causal attack
relations constitute a strongest argumentation system suitable for this kind of non-
monotonic semantics.

7.2 Abstract dialectical frameworks (ADFs)
As we are going to show in this section, Abstract Dialectical Frameworks [Brewka
and Woltran, 2010; Brewka et al., 2013 can be viewed, in effect, as yet another
bridge between argumentation and causal reasoning.

We will restrict our descriptions below only to the features of ADFs that are
relevant for our exposition.

Abstract Dialectical Frameworks have been introduced as an abstract argumen-
tation formalism purported to capture more general forms of argument interaction
than just attacks among arguments. To achieve this, each argument (or statement)
in an ADF is associated with an acceptance condition, which is some propositional
function determined by arguments that are linked to it. Using such acceptance
conditions, ADFs allow to express that arguments may jointly support another ar-
gument, or that two arguments may jointly attack a third one, and so on. Dung’s
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argumentation frameworks are recovered in this setting by acceptance condition
saying that an argument is accepted if none of its parents is.

Formally, an abstract dialectical framework is a directed graph whose nodes
represent statements or positions which can be accepted or not. The links represent
dependencies: the status of a node s only depends on the status of its parents
(denoted par(s)), that is, the nodes with a direct link to s. In addition, each node
s has an associated acceptance condition Cs specifying the exact conditions under
which s is accepted. Cs is a function assigning to each subset of par(s) one of the
truth values t, f . Intuitively, if for some R ⊆ par(s) we have Cs(R) = t, then s will
be accepted provided the nodes in R are accepted and those in par(s) \ R are not
accepted.

Definition 54. An abstract dialectical framework is a tuple D = (S,L,C) where

• S is a set of statements (positions, nodes),

• L ⊆ S × S is a set of links,

• C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {t, f}, one for each
statement s. Cs is called acceptance condition of s.

A more ‘logical’ representation of ADFs can be obtained simply by assigning each
node s a classical propositional formula corresponding to its acceptance condition
Cs (see [Ellmauthaler, 2012]). In this case we can tacitly assume that the acceptance
formulas implicitly specify the parents a node depends on. It is then not necessary
to give the links L, so an ADF D amounts to a tuple (S,C) where S is a set of
statements, and C is a set of propositional formulas, one for each statement from S.
The notation s[Cs] has been used by the authors to denote the fact that Cs is the
acceptance condition of s.

A two-valued interpretation v is a (two-valued) model of an ADF (S,C) when-
ever for all statements s ∈ S we have v(s) = v(ϕs), that is, v maps exactly those
statements to true whose acceptance conditions are satisfied under v. This notion
of a model provides a natural semantics for ADFs. In addition to this semantics,
however, the authors define appropriate generalizations for all the major seman-
tics of Dung’s argumentation frameworks. Following the ‘revised’ description in
[Brewka et al., 2013], all these semantics are defined by generalizing the two-valued
interpretations to three-valued ones. All of them are formulated using the basic op-
erator ΓD over three-valued interpretations that was introduced, in effect, already
in [Brewka and Woltran, 2010]. For an ADF D and a three-valued interpretation v,
the interpretation ΓD(v) is given by the mapping

s 7→
∏
{w(ϕs) | w ∈ [v]2},
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where [v]2 is the set of all two-valued interpretations that extend v.
For each statement s, the operator ΓD returns the consensus truth value for

its acceptance formula ϕs, where the consensus takes into account all possible two-
valued interpretations w that extend the input valuation v. Then two-valued models
of D are precisely those classical interpretations that are fixed points of ΓD.

Taken in its full generality, however, the operator ΓD allows to define general-
izations of all the major Dung’s argumentation semantics as follows.

A three-valued interpretation v for an ADF D is

• admissible iff v ≤i ΓD(v);

• complete iff ΓD(v) = v;

• preferred iff it is ≤i-maximal admissible.

• grounded iff it is the least fixpoint of ΓD.

As has been shown, the above definitions provide proper generalizations of the
corresponding semantics for Dung’s argumentation frameworks and, moreover, pre-
serve much of the properties and relations of the latter.

7.2.1 The causal representation

We will describe now a uniform and modular translation of ADFs into the causal
calculus. Actually, the key to this translation can be found in the striking similarity
between the official definition of an ADF and the notion of a causal model, used by
Judea Pearl in [Pearl, 2000]. Causal models are defined as triples M = 〈U, V, F 〉,
where U is a set of exogenous variables, V is a finite set of endogenous variables,
while F is a set of functions that determine the values of each endogenous variable
in terms of other variables.

Symbolically, F is represented as a set of structural equations

vi = fi(pai, ui) i = 1, . . . , n

where pai is any realization of the unique minimal set of variables PAi in V \{Vi}
(parents) sufficient for representing fi, and similarly for Ui ⊆ U .

In Pearl’s account, every instantiation U = u of the exogenous variables de-
termines a particular “causal world” of the causal model. Such worlds stand in
one-to-one correspondence with the solutions to the above equations in the ordinary
mathematical sense. However, structural equations also encode causal information
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in their very syntax by treating the variable on the left-hand side of = as the ef-
fect and treating those on the right as causes. Accordingly, the equality signs in
structural equations convey the asymmetrical relation of “is determined by”.

Being restricted to the classical propositional language, Pearl’s notion of a causal
model can be reduced to the following notion of a Boolean causal model that has
been used in [Bochman and Lifschitz, 2015]:

Definition 55. Assume that the set of propositional atoms is partitioned into a set
of exogenous atoms and a finite set of endogenous atoms.

• A Boolean structural equation is an expression of the form p = F , where p
is an endogenous atom and F is a propositional formula in which p does not
appear.

• A Boolean causal model is a set of Boolean structural equations p = F , one
for each endogenous atom p.

As can be seen, the above definition is much similar to the logical reformulation
of ADFs, with structural equations p = F playing essentially the same role as the
acceptance conditions p[F ]. The differences are that only endogenous atoms are
determined by their associated conditions in causal models, but on the other hand,
there are no restrictions on appearances of atoms on both sides in ADF’s acceptance
conditions. Furthermore, plain (two-valued) models of ADFs correspond precisely
to causal worlds of the causal model, as defined in [Bochman and Lifschitz, 2015]:

Definition 56. A solution (or a causal world) of a Boolean causal model M is
any propositional interpretation satisfying the equivalences p ↔ F for all equations
p = F in M .

Now, a modular representation of Boolean causal models as causal theories of
the causal calculus has been given in [Bochman and Lifschitz, 2015], and it can now
be seamlessly transformed into the following causal representation of ADFs:

Definition 57 (Causal representation of an ADF). For any ADF D, ∆D is the
causal theory consisting of the rules

F ⇒ p and ¬F ⇒¬p

for all acceptance conditions p[F ] in D.

The above representation is fully modular, and it will be taken as a uniform basis
for the correspondences described in this section.

To begin with, the correspondence results from [Bochman and Lifschitz, 2015]
immediately imply
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Theorem 58. The two-valued semantics of an ADF D corresponds precisely to the
causal nonmonotonic semantics of ∆D.

As a consequence, the full system of causal inference provides a precise logical
basis for this nonmonotonic semantics.

Furthermore, it can be shown that the above causal representation also survives
the transition to three-valued models of ADFs. An essential precondition of this
causal representation, however, amounts to transforming the underlying semantic
interpretations of ADFs in terms of three-valued models into ordinary classical logical
descriptions. In fact, the very possibility of such a classical reformulation stems from
the crucial fact that the basic operator Γ of an ADF, described earlier, is defined,
ultimately, in terms of ordinary classical interpretations extending a given three-
valued one.

Any three-valued interpretation v on the set of statements S can be faithfully
encoded using an associated set of literals [v] = S0 ∪ ¬S1 such that S0 = {p ∈ S |
v(p) = t} and S1 = {p ∈ S | v(p) = f}. Moreover, this set of literals generates a
unique deductively closed theory Th([v]) that corresponds in this sense to the source
three-valued interpretation v. Conversely, let us say that a deductively closed set
u is a literal theory, if it is a deductive (classical) closure of some set of literals.
Then the latter set of literals will correspond to a unique three-valued interpreta-
tion v such that u = Th([v]). These simple facts establish a precise bi-directional
correspondence between three-valued interpretations and classical literal theories.

Now, a broader correspondence between various semantics of ADFs and general
nonmonotonic semantics of the causal calculus arises from the fact that the operator
Γ of an ADF naturally corresponds to a particular causal operator of the associated
causal theory.

Let L denote the set of classical literals of the underlying language. We will
denote by CL the restriction of a causal operator C to literals, that is, CL(u) =
C(u) ∩ L. Now, it can be shown that the operator Γ of ADFs corresponds precisely
to this ‘literal restriction’ of the causal operator associated with a basic production
inference:

Lemma 59. For any three-valued interpretation v,

[ΓD(v)] = CLD([v]),

where CD is a basic production operator corresponding to ∆D.

The above equation has immediate consequences for the broad correspondence
between the semantics of ADFs that are defined in terms of the operator ΓD and
natural sets of propositions definable wrt associated causal theory. Thus, we have
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Theorem 60. Complete models of an ADF D correspond precisely to the fixed points
of CLD:

v = ΓD(v) iff [v] = CLD([v])

As a result, we immediately conclude that preferred models of an ADF corre-
spond to maximal fixpoints of CLD (with respect to set inclusion), while the grounded
model corresponds to the least fixpoint of CLD.

Further details about these correspondences are discussed in [Bochman, 2016].

7.3 Logic programming
To complete the circle of representations, described in this study, we will show in
this section that the formalism of logic programming itself, which could be seen as
one of the main sources of Dung’s argumentation theory, can also be viewed as a
very specific kind of propositional argumentation.

A general logic program Π is a set of rules of the form11

not d, c← a,not b (*)

where a, b, c, d are finite sets of propositional atoms. These are program rules of a
most general kind that contain disjunctions and negations as failure not in their
heads. As has been shown in [Bochman, 2004b], general logic programs are rep-
resentable as causal theories obtained by translating program rules (*) as causal
rules

d,¬b⇒
∧

a→
∨

c,

and adding a formalization of the Closed World Assumption:

(Default Negation) ¬p⇒¬p, for any propositional atom p.

Now, due to the correspondence between causal reasoning and argumentation,
this causal theory can be transformed (using (PA)) into an argument theory that
consists of attacks

a,¬c →֒ ¬b, d (AL)

plus the ‘argumentative’ Closed World Assumption:

(Default Assumption) p →֒ ¬p, for any atom p.

Let tr(Π) denote the argument theory obtained by this translation from a logic
program Π. Then we obtain

11As before, not a denotes the set {notA | A ∈ a}.
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Theorem 61. A set u of propositional atoms is a stable model of a logic program
Π iff ũ is a stable set of assumptions in tr(Π).

It is interesting to note that, due to the reduction rules (R∼) for the global
negation ∼, described earlier, the above representation (AL) of the program rules is
equivalent to a,∼b →֒∼c, d, and therefore to the inference rules

a,∼b  c,∼d

of the associated Belnap consequence relation. For normal logic programs (single
atoms in heads), this latter representation coincides with that given in [Bondarenko
et al., 1997].

8 Conclusions
The main objective of this study consisted in showing that both logic and non-
monotonic reasoning constitute two distinct, but essential, components of argumen-
tation. On the way, we have shown that propositional argumentation suggests a
viable and useful extension of the abstract argumentation theory that allows us to
endow argumentation with full-fledged logical capabilities. The resulted theory has
allowed us, in particular, to provide a systematic description of a large number of
argumentation and nonmonotonic formalisms, such as assumption-based argumen-
tation, abstract dialectical frameworks, default logic, logic programming and causal
reasoning. It is natural to expect that further development of this approach to
argumentation may bring additional theoretical and practical benefits.

One of the basic tasks that still need to be resolved with respect to the sug-
gested formalism of propositional argumentation is a systematic connection of the
latter with the more ‘standard’ approach of structural argumentation in which ar-
guments are represented directly as derivations (proofs) constructed from strict and
defeasible inference rules. Recall that both kinds of formalisms, propositional and
proof-theoretic ones, are peacefully coexisting in the majority of traditional logical
systems, so its only natural to expect that the same kind of correspondence could
be established also for the formal argumentation theory at its present, essentially
nonmonotonic stage of development.
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